- 1.
Bray, F.; Laversanne, M.; Sung, H.; et al. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA A Cancer J. Clin. 2024, 74, 229–263.
https://doi.org/10.3322/caac.21834.
- 2.
Li, L.; Shan, T.; Zhang, D.; et al. Nowcasting and forecasting global aging and cancer burden: Analysis of data from the GLOBOCAN and Global Burden of Disease Study. J. Natl. Cancer Cent. 2024, 4, 223–232.
- 3.
Collaborators, G.A. Global, regional, and national burden of diseases and injuries for adults 70 years and older: Systematic analysis for the Global Burden of Disease 2019 Study. Br. Med. J. 2022, 376, e068208.
- 4.
Amjad, M.T.; Chidharla, A.; Kasi, A. Cancer Chemotherapy; StatPearls Publishing: Treasure Island, FL, USA, 2023.
- 5.
Zeien, J.; Qiu, W.; Triay, M.; et al. Clinical implications of chemotherapeutic agent organ toxicity on perioperative care. Biomed. Pharmacother. 2022, 146, 112503.
- 6.
Ahmad, S.S.; Reinius, M.A.; Hatcher, H.M.; et al. Anticancer chemotherapy in teenagers and young adults: Managing long term side effects. Br. Med. J. 2016, 354, i4567.
- 7.
Duan, C.; Yu, M.; Xu, J.; et al. Overcoming Cancer Multi-drug Resistance (MDR): Reasons, mechanisms, nanotherapeutic solutions, and challenges. Biomed. Pharmacother. 2023, 162, 114643.
- 8.
Wang, M.; Chen, W.; Chen, J.; et al. Abnormal saccharides affecting cancer multi-drug resistance (MDR) and the reversal strategies. Eur. J. Med. Chem. 2021, 220, 113487.
- 9.
Bukowski, K.; Kciuk, M.; Kontek, R. Mechanisms of multidrug resistance in cancer chemotherapy. Int. J. Mol. Sci. 2020, 21, 3233.
- 10.
De Visser, K.E.; Joyce, J.A. The evolving tumor microenvironment: From cancer initiation to metastatic outgrowth. Cancer Cell 2023, 41, 374–403.
- 11.
Tilsed, C.M.; Fisher, S.A.; Nowak, A.K.; et al. Cancer chemotherapy: Insights into cellular and tumor microenvironmental mechanisms of action. Front. Oncol. 2022, 12, 960317.
- 12.
Kemp, J.A.; Kwon, Y.J. Cancer nanotechnology: Current status and perspectives. Nano Converg. 2021, 8, 34.
- 13.
Klochkov, S.G.; Neganova, M.E.; Nikolenko, V.N.; et al. Implications of nanotechnology for the treatment of cancer: Recent advances. Semin. Cancer Biol. 2021, 69, 190–199.
- 14.
Yadav, P.; Ambudkar, S.V.; Rajendra Prasad, N. Emerging nanotechnology-based therapeutics to combat multidrug-resistant cancer. J. Nanobiotechnol. 2022, 20, 423.
- 15.
Yang, Z.; Cai, Y.; Yang, X.; et al. Novel benzo five-membered heterocycle derivatives as P-glycoprotein inhibitors: Design, synthesis, molecular docking, and anti-multidrug resistance activity. J. Med. Chem. 2023, 66, 5550–5566.
- 16.
Montesinos, R.N.; Béduneau, A.; Pellequer, Y.; et al. Delivery of P-glycoprotein substrates using chemosensitizers and nanotechnology for selective and efficient therapeutic outcomes. J. Control. Release 2012, 161, 50–61.
- 17.
Almawash, S.; Chaturvedi, S.; Misra, C.; et al. Vitamin E TPGS-PLGA-based nanoparticles for methotrexate delivery: Promising outcomes from preclinical studies. J. Drug Deliv. Sci. Technol. 2022, 72, 103276.
- 18.
Peihsuan, H.; Weiyuan, H.; Huanchih, W.; et al. Dual-responsive polypeptide nanoparticles attenuate tumor-associated stromal desmoplasia and anticancer through programmable dissociation. Biomaterials 2022, 284, 121469.
- 19.
Lingmei, L.; Yipin, X.; Yurong, Q.; et al. Tumor microenvironment-responsive drug self-delivery systems to treat cancer and overcome MDR. Rare Met. 2025, 44, 1–33.
- 20.
Zhang, W.; Li, S.; Liu, X.; et al. Oxygen-generating MnO2 nanodots-anchored versatile nanoplatform for combined chemo-photodynamic therapy in hypoxic cancer. Adv. Funct. Mater. 2018, 28, 1706375.
- 21.
Wu, B.; Shi, X.; Jiang, M.; et al. Cross-talk between cancer stem cells and immune cells: Potential therapeutic targets in the tumor immune microenvironment. Mol. Cancer 2023, 22, 38.
- 22.
Navarro-Marchal, S.A.; Grinan-Lison, C.; Entrena, J.-M.; et al. Anti-CD44-conjugated olive oil liquid nanocapsules for targeting pancreatic cancer stem cells. Biomacromolecules 2021, 22, 1374–1388.
- 23.
Li, C.; Liang, Y.; Cao, J.; et al. The delivery of a Wnt pathway inhibitor toward CSCs requires stable liposome encapsulation and delayed drug release in tumor tissues. Mol. Ther. 2019, 27, 1558–1567.
- 24.
Kirtane, A.R.; Kalscheuer, S.M.; Panyam, J. Exploiting nanotechnology to overcome tumor drug resistance: Challenges and opportunities. Adv. Drug Deliv. Rev. 2013, 65, 1731–1747.
- 25.
Li, J.; Liu, C.; Hu, Y.; et al. pH-responsive perylenediimide nanoparticles for cancer trimodality imaging and photothermal therapy. Theranostics 2020, 10, 166.
- 26.
Zeng, Z.; Zhang, C.; Li, J.; et al. Activatable polymer nanoenzymes for photodynamic immunometabolic cancer therapy. Adv. Mater. 2021, 33, 2007247.
- 27.
Hong, L.; Li, W.; Li, Y.; et al. Nanoparticle-based drug delivery systems targeting cancer cell surfaces. RSC Adv. 2023, 13, 21365–21382.
- 28.
Antimisiaris, S.; Marazioti, A.; Kannavou, M.; et al. Overcoming barriers by local drug delivery with liposomes. Adv. Drug Deliv. Rev. 2021, 174, 53–86.
- 29.
Rarokar, N.R.; Saoji, S.D.; Raut, N.A.; et al. Nanostructured cubosomes in a thermoresponsive depot system: An alternative approach for the controlled delivery of docetaxel. AAPS Pharmscitech 2016, 17, 436–445.
- 30.
Bhattacharya, S.; Saoji, S.D. Development, optimization, and characterization of polymeric micelles to improve dasatinib oral bioavailability: Hep G2 cell cytotoxicity and in vivo pharmacokinetics for targeted liver cancer therapy. Heliyon 2024, 10, e39632.
- 31.
Patil, J.; Bhattacharya, S.; Saoji, S.D.; et al. Cabozantinib-phospholipid complex for enhanced solubility, bioavailability, and reduced toxicity in liver cancer. Ther. Deliv. 2025, 16, 25–41.
- 32.
Kalluri, R.; LeBleu, V.S. The biology, function, and biomedical applications of exosomes. Science 2020, 367, eaau6977.
- 33.
Chao, Y.; Chen, Q.; Liu, Z. Smart injectable hydrogels for cancer immunotherapy. Adv. Funct. Mater. 2020, 30, 1902785.
- 34.
Singh, N.; Son, S.; An, J.; et al. Nanoscale porous organic polymers for drug delivery and advanced cancer theranostics. Chem. Soc. Rev. 2021, 50, 12883–12896.
- 35.
Bracho-Sanchez, E.; Xia, C.Q.; Clare-Salzler, M.J.; et al. Micro and nano material carriers for immunomodulation. Am. J. Transplant. 2016, 16, 3362–3370.
- 36.
Setyawati, M.I.; Wang, Q.; Ni, N.; et al. Engineering tumoral vascular leakiness with gold nanoparticles. Nat. Commun. 2023, 14, 4269.
- 37.
Li, X.; Li, Y.; Yu, C.; et al. ROS-responsive janus Au/mesoporous silica core/shell nanoparticles for drug delivery and long-term CT imaging tracking of MSCs in pulmonary fibrosis treatment. ACS Nano 2023, 17, 6387–6399.
- 38.
Li, H.; Yang, S.; Hui, D.; et al. Progress in magnetic Fe3O4 nanomaterials in magnetic resonance imaging. Nanotechnol. Rev. 2020, 9, 1265–1283.
- 39.
Fan, X.; Jiao, G.; Gao, L.; et al. The preparation and drug delivery of a graphene–carbon nanotube–Fe3O4 nanoparticle hybrid. J. Mater. Chem. B 2013, 1, 2658–2664.
- 40.
Chen, G.; Qian, Y.; Zhang, H.; et al. Advances in cancer theranostics using organic-inorganic hybrid nanotechnology. Appl. Mater. Today 2021, 23, 101003.
- 41.
Ding, S.; He, L.; Bian, X.; et al. Metal-organic frameworks-based nanozymes for combined cancer therapy. Nano Today 2020, 35, 100920.
- 42.
Cho, N.-H.; Cheong, T.-C.; Min, J.H.; et al. A multifunctional core–shell nanoparticle for dendritic cell-based cancer immunotherapy. Nat. Nanotechnol. 2011, 6, 675–682.
- 43.
Pan, Y.; Zhao, H.; Huang, W.; et al. Metal-Protein Hybrid Materials: Unlocking New Frontiers in Biomedical Applications. Adv. Healthc. Mater. 2025, 14, 2404405.
- 44.
Zhao, Q.; Sun, X.; Wu, B.; et al. Construction of homologous cancer cell membrane camouflage in a nano-drug delivery system for the treatment of lymphoma. J. Nanobiotechnol. 2021, 19, 1–19.
- 45.
Nazari, M.; Minai-Tehrani, A.; Mousavi, S.; et al. Development of recombinant biomimetic nano-carrier for targeted gene transfer to HER3 positive breast cancer. Int. J. Biol. Macromol. 2021, 189, 948–955.
- 46.
Jain, A.; Reddy, V.A.; Muntimadugu, E.; et al. Nanotechnology in vaccine delivery. Curr. Trends Pharm. Sci. 2014, 1, 17–27.
- 47.
Barrera, Y.B.; Hause, G.; Menzel, M.; et al. Engineering osteogenic microenvironments by combination of multilayers from collagen type I and chondroitin sulfate with novel cationic liposomes. Mater. Today Bio 2020, 7, 100071.
- 48.
Gao, C.; Huang, Q.; Liu, C.; et al. Treatment of atherosclerosis by macrophage-biomimetic nanoparticles via targeted pharmacotherapy and sequestration of proinflammatory cytokines. Nat. Commun. 2020, 11, 2622.
https://doi.org/10.1038/s41467-020-16439-7.
- 49.
Yang, L.; Zhang, Y.; Zhang, Y.; et al. Live macrophage-delivered doxorubicin-loaded liposomes effectively treat triple-negative breast cancer. ACS Nano 2022, 16, 9799–9809.
- 50.
He, Q.; Gao, Y.; Zhang, L.; et al. A pH-responsive mesoporous silica nanoparticles-based multi-drug delivery system for overcoming multi-drug resistance. Biomaterials 2011, 32, 7711–7720.
- 51.
Cui, Y.; Xu, Q.; Chow, P.K.-H.; et al. Transferrin-conjugated magnetic silica PLGA nanoparticles loaded with doxorubicin and paclitaxel for brain glioma treatment. Biomaterials 2013, 34, 8511–8520.
- 52.
Martínez-Carmona, M.; Lozano, D.; Colilla, M.; et al. Lectin-conjugated pH-responsive mesoporous silica nanoparticles for targeted bone cancer treatment. Acta Biomater. 2018, 65, 393–404.
- 53.
Zhang, D.; Liu, L.; Wang, J.; et al. Drug-loaded PEG-PLGA nanoparticles for cancer treatment. Front. Pharmacol. 2022, 13, 990505.
- 54.
Arrieta, V.A.; Gould, A.; Kim, K.-S.; et al. Ultrasound-mediated delivery of doxorubicin to the brain results in immune modulation and improved responses to PD-1 blockade in gliomas. Nat. Commun. 2024, 15, 4698.
- 55.
Tapeinos, C.; Battaglini, M.; Ciofani, G. Advances in the design of solid lipid nanoparticles and nanostructured lipid carriers for targeting brain diseases. J. Control. Release 2017, 264, 306–332.
- 56.
Sung, Y.K.; Kim, S.W. Recent advances in polymeric drug delivery systems. Biomater. Res. 2020, 24, 12.
- 57.
He, Z.; Chen, W.; Hu, K.; et al. Resolvin D1 delivery to lesional macrophages using antioxidative black phosphorus nanosheets for atherosclerosis treatment. Nat. Nanotechnol. 2024, 19, 1386–1398.
https://doi.org/10.1038/s41565-024-01687-1.
- 58.
Zhang, Y.; Yan, C.; Dong, Y.; et al. ANGPTL3 accelerates atherosclerotic progression via direct regulation of M1 macrophage activation in plaque. J. Adv. Res. 2024, 70, 125–138.
https://doi.org/10.1016/j.jare.2024.05.011.
- 59.
Rahman, M.M.; Wang, J.; Wang, G.; et al. Chimeric nanobody-decorated liposomes by self-assembly. Nat. Nanotechnol. 2024, 19, 818–824.
- 60.
Wei, D.; Huang, Y.; Wang, B.; et al. Photo-Reduction with NIR Light of Nucleus-Targeting PtIV Nanoparticles for Combined Tumor-Targeted Chemotherapy and Photodynamic Immunotherapy. Angew. Chem. Int. Ed. 2022, 61, e202201486.
- 61.
Marques, A.C.; Costa, P.; Velho, S.; Amaral, M.H. Functionalizing nanoparticles with cancer-targeting antibodies: A comparison of strategies. J. Control. Release 2020, 320, 180–200.
- 62.
Ma, K.; Li, W.; Zhu, G.; et al. Functionalized PDA/DEX-PEI@ HA nanoparticles combined with sleeping-beauty transposons for multistage targeted delivery of CRISPR/Cas9 gene. Biomed. Pharmacother. 2021, 142, 112061.
- 63.
Li, C.-X.; Qi, Y.-D.; Feng, J.; et al. Cell-Based Bio-Hybrid Delivery System for Disease Treatments. Adv. Nanobiomed Res. 2021, 1, 2000052.
- 64.
Kwon, S.; Shin, S.; Do, M.; et al. Engineering approaches for effective therapeutic applications based on extracellular vesicles. J. Control. Release 2021, 330, 15–30.
- 65.
Deng, X.; Li, K.; Cai, X.; et al. A hollow-structured CuS@ Cu2S@ Au nanohybrid: Synergistically enhanced photothermal efficiency and photoswitchable targeting effect for cancer theranostics. Adv. Mater. 2017, 29, 1701266.
- 66.
Zhang, Y.; Wang, Y.; Zhu, A.; et al. Dual-Targeting Biomimetic Semiconducting Polymer Nanocomposites for Amplified Theranostics of Bone Metastasis. Angew. Chem. 2024, 136, e202310252.
- 67.
Patil, Y.B.; Toti, U.S.; Khdair, A.; et al. Single-step surface functionalization of polymeric nanoparticles for targeted drug delivery. Biomaterials 2009, 30, 859–866.
- 68.
Tian, Y.; Gao, Z.; Wang, N.; et al. Engineering poly (ethylene glycol) nanoparticles for accelerated blood clearance inhibition and targeted drug delivery. J. Am. Chem. Soc. 2022, 144, 18419–18428.
- 69.
Shubhra, Q.T.; Guo, K.; Liu, Y.; et al. Dual targeting smart drug delivery system for multimodal synergistic combination cancer therapy with reduced cardiotoxicity. Acta Biomater. 2021, 131, 493–507.
- 70.
Lin, Y.; Zhou, H.; Chen, N.; et al. Unveiling the improved targeting migration of mesenchymal stem cells with CXC chemokine receptor 3-modification using intravital NIR-II photoacoustic imaging. J. Nanobiotechnol. 2022, 20, 307.
- 71.
Xiao, W.; Wang, Y.; Zhang, H.; et al. The protein corona hampers the transcytosis of transferrin-modified nanoparticles through blood–brain barrier and attenuates their targeting ability to brain tumor. Biomaterials 2021, 274, 120888.
- 72.
Zhou, J.; Ji, Q.; Li, Q. Resistance to anti-EGFR therapies in metastatic colorectal cancer: Underlying mechanisms and reversal strategies. J. Exp. Clin. Cancer Res. 2021, 40, 328.
- 73.
Raikwar, S.; Yadav, V.; Jain, S.; et al. Antibody-conjugated pH-sensitive liposomes for HER-2 positive breast cancer: Development, characterization, in vitro and in vivo assessment. J. Liposome Res. 2024, 34, 239–263.
- 74.
Luo, Z.; Yan, Z.; Jin, K.; et al. Precise glioblastoma targeting by AS1411 aptamer-functionalized poly (l-γ-glutamylglutamine)–paclitaxel nanoconjugates. J. Colloid Interface Sci. 2017, 490, 783–796.
- 75.
Kesharwani, P.; Halwai, K.; Jha, S.K.; et al. Folate-engineered chitosan nanoparticles: Next-generation anticancer nanocarriers. Mol. Cancer 2024, 23, 244.
- 76.
- 77.
Wang, Y.; Li, H.; Niu, G.; et al. Boosting sono-immunotherapy of prostate carcinoma through amplifying domino-effect of mitochondrial oxidative stress using biodegradable cascade-targeting nanocomposites. ACS Nano 2024, 18, 5828–5846.
- 78.
Xiao, Z.; Li, T.; Zheng, X.; et al. Nanodrug enhances post-ablation immunotherapy of hepatocellular carcinoma via promoting dendritic cell maturation and antigen presentation. Bioact. Mater. 2023, 21, 57–68.
- 79.
Oh, J.Y.; Jana, B.; Seong, J.; et al. Unveiling the Power of Cloaking Metal–Organic Framework Platforms via Supramolecular Antibody Conjugation. ACS Nano 2024, 18, 15790–15801.
- 80.
Yoo, J.-W.; Irvine, D.J.; Discher, D.E.; et al. Bio-inspired, bioengineered and biomimetic drug delivery carriers. Nat. Rev. Drug Discov. 2011, 10, 521–535.
- 81.
Han, X.; Gong, C.; Yang, Q.; et al. Biomimetic nano-drug delivery system: An emerging platform for promoting tumor treatment. Int. J. Nanomed. 2024, 19, 571–608.
- 82.
Tang, L.; He, S.; Yin, Y.; et al. Combination of nanomaterials in cell-based drug delivery systems for cancer treatment. Pharmaceutics 2021, 13, 1888.
- 83.
Guo, Q.; Qian, Z.-M. Macrophage based drug delivery: Key challenges and strategies. Bioact. Mater. 2024, 38, 55–72.
- 84.
Wang, X.; Lu, J.; Mao, Y.; et al. A mutually beneficial macrophages-mediated delivery system realizing photo/immune therapy. J. Control. Release 2022, 347, 14–26.
- 85.
Ding, J.; Lu, Y.; Zhao, X.; et al. Activating Iterative Revolutions of the Cancer-Immunity Cycle in Hypoxic Tumors with a Smart Nano-Regulator. Adv. Mater. 2024, 36, 2400196.
- 86.
Lin, H.; Chen, Y.; Shi, J. Nanoparticle-triggered in situ catalytic chemical reactions for tumour-specific therapy. Chem. Soc. Rev. 2018, 47, 1938–1958.
- 87.
Cook, A.B.; Decuzzi, P. Harnessing endogenous stimuli for responsive materials in theranostics. ACS Nano 2021, 15, 2068–2098.
- 88.
De La Rica, R.; Aili, D.; Stevens, M.M. Enzyme-responsive nanoparticles for drug release and diagnostics. Adv. Drug Deliv. Rev. 2012, 64, 967–978.
- 89.
Wang, H.; Chen, Y.; Wang, H.; et al. DNAzyme-loaded metal–organic frameworks (MOFs) for self-sufficient gene therapy. Angew. Chem. 2019, 131, 7458–7462.
- 90.
Wang, L.; Wang, T.; Zhang, Y.; et al. Biomimetic nanosystems harnessing NIR-II photothermal effect and hypoxia-responsive prodrug for self-amplifying and synergistic tumor treatment. Nano Today 2024, 57, 102395.
- 91.
Mura, S.; Nicolas, J.; Couvreur, P. Stimuli-responsive nanocarriers for drug delivery. Nat. Mater. 2013, 12, 991–1003.
- 92.
Zhang, Q.; Kuang, G.; Li, W.; et al. Stimuli-responsive gene delivery nanocarriers for cancer therapy. Nano-Micro Lett. 2023, 15, 44.
- 93.
Lei, Q.; Zhou, W.; Gao, S.; et al. Ultrasound-responsive metal–organic framework-based nanosystem for sonodynamic therapy/amplified ferroptosis/Ido-blockade osteosarcoma immunotherapy. Chem. Eng. J. 2024, 490, 151614.
- 94.
Fu, Q.; Zhang, S.; Shen, S.; et al. Radiotherapy-triggered reduction of platinum-based chemotherapeutic prodrugs in tumours. Nat. Biomed. Eng. 2024, 8, 1425–1435.
- 95.
Zhang, Y.; Yu, J.; Bomba, H.N.; et al. Mechanical force-triggered drug delivery. Chem. Rev. 2016, 116, 12536–12563.
- 96.
Yang, G.; Xu, L.; Chao, Y.; et al. Hollow MnO2 as a tumor-microenvironment-responsive biodegradable nano-platform for combination therapy favoring antitumor immune responses. Nat. Commun. 2017, 8, 902.
- 97.
Liu, C.; Wang, D.; Zhang, S.; et al. Biodegradable biomimic copper/manganese silicate nanospheres for chemodynamic/photodynamic synergistic therapy with simultaneous glutathione depletion and hypoxia relief. ACS Nano 2019, 13, 4267–4277.
- 98.
Li, J.; Liu, F.; Shao, Q.; et al. Enzyme-responsive cell-penetrating peptide conjugated mesoporous silica quantum dot nanocarriers for controlled release of nucleus-targeted drug molecules and real-time intracellular fluorescence imaging of tumor cells. Adv. Healthc. Mater. 2014, 3, 1230–1239.
- 99.
Thambi, T.; Deepagan, V.; Yoon, H.Y.; et al. Hypoxia-responsive polymeric nanoparticles for tumor-targeted drug delivery. Biomaterials 2014, 35, 1735–1743.
- 100.
Wang, Y.; Kohane, D.S. External triggering and triggered targeting strategies for drug delivery. Nat. Rev. Mater. 2017, 2, 17020.
- 101.
Chen, F.; Ruan, F.; Xie, X.; et al. Gold Nanocluster: A Photoelectric Converter for X-Ray-Activated Chemotherapy. Adv. Mater. 2024, 36, 2402966.
- 102.
Karimi, M.; Ghasemi, A.; Zangabad, P.S.; et al. Smart micro/nanoparticles in stimulus-responsive drug/gene delivery systems. Chem. Soc. Rev. 2016, 45, 1457–1501.
- 103.
Shirin, V.A.; Sankar, R.; Johnson, A.P.; et al. Advanced drug delivery applications of layered double hydroxide. J. Control. Release 2021, 330, 398–426.
- 104.
Izci, M.; Maksoudian, C.; Manshian, B.B.; et al. The use of alternative strategies for enhanced nanoparticle delivery to solid tumors. Chem. Rev. 2021, 121, 1746–1803.
- 105.
Almoshari, Y. Development, therapeutic evaluation and theranostic applications of cubosomes on cancers: An updated review. Pharmaceutics 2022, 14, 600.
- 106.
Mitchell, M.J.; Billingsley, M.M.; Haley, R.M.; et al. Engineering precision nanoparticles for drug delivery. Nat. Rev. Drug Discov. 2021, 20, 101–124.
- 107.
Meng, L.; Gan, S.; Zhou, Y.; et al. Oxygen-rich chemotherapy via modified Abraxane to inhibit the growth and metastasis of triple-negative breast cancer. Biomater. Sci. 2019, 7, 168–177.
- 108.
Hoy, S.M. Albumin-bound paclitaxel: A review of its use for the first-line combination treatment of metastatic pancreatic cancer. Drugs 2014, 74, 1757–1768.
- 109.
Setyawati, M.; Tay, C.; Chia, S.; et al. Titanium dioxide nanomaterials cause endothelial cell leakiness by disrupting the homophilic interaction of VE–cadherin. Nat. Commun. 2013, 4, 1673.
- 110.
Peng, F.; Setyawati, M.I.; Tee, J.K.; et al. Nanoparticles promote in vivo breast cancer cell intravasation and extravasation by inducing endothelial leakiness. Nat. Nanotechnol. 2019, 14, 279–286.
- 111.
Xu, Z.; Zhen, W.; McCleary, C.; et al. Nanoscale Metal-Organic Framework with an X-ray Triggerable Prodrug for Synergistic Radiotherapy and Chemotherapy. J Am Chem Soc. 2023, 145, 18698–18704.
- 112.
Chen, Z.; Li, S.; Li, F.; et al. DNA Damage Inducer Mitoxantrone Amplifies Synergistic Mild-Photothermal Chemotherapy for TNBC via Decreasing Heat Shock Protein 70 Expression. Adv. Sci. 2023, 10, e2206707.
https://doi.org/10.1002/advs.202206707.
- 113.
Chen, H.; Zhang, S.; Fang, Q.; et al. Biomimetic Nanosonosensitizers Combined with Noninvasive Ultrasound Actuation to Reverse Drug Resistance and Sonodynamic-Enhanced Chemotherapy against Orthotopic Glioblastoma. ACS Nano 2023, 17, 421–436.
https://doi.org/10.1021/acsnano.2c08861.
- 114.
Liao, Z.; Niu, Y.; Wang, Z.; et al. A “Nonsolvent Quenching” Strategy for 3D Printing of Polysaccharide Scaffolds with Immunoregulatory Accuracy. Adv. Sci. 2022, 9, e2203236.
https://doi.org/10.1002/advs.202203236.
- 115.
- 116.
- 117.
Huang, C.; Xie, T.; Liu, Y.; et al. A Sodium Alginate-Based Multifunctional Nanoplatform for Synergistic Chemo-Immunotherapy of Hepatocellular Carcinoma. Adv. Mater. 2023, 35, e2301352.
https://doi.org/10.1002/adma.202301352.
- 118.
Jin, Y.; Li, D.; Zheng, X.; et al. A Novel Activatable Nanoradiosensitizer for Second Near-Infrared Fluorescence Imaging-Guided Safe-Dose Synergetic Chemo-Radiotherapy of Rheumatoid Arthritis. Adv. Sci. 2024, 11, e2308905.
https://doi.org/10.1002/advs.202308905.
- 119.
Zeng, F.; Fan, Z.; Li, S.; et al. Tumor Microenvironment Activated Photoacoustic-Fluorescence Bimodal Nanoprobe for Precise Chemo-immunotherapy and Immune Response Tracing of Glioblastoma. ACS Nano 2023, 17, 19753–19766.
https://doi.org/10.1021/acsnano.3c03378.
- 120.
Li, G.; Shi, S.; Tan, J.; et al. Highly Efficient Synergistic Chemotherapy and Magnetic Resonance Imaging for Targeted Ovarian Cancer Therapy Using Hyaluronic Acid-Coated Coordination Polymer Nanoparticles. Adv. Sci. 2024, 11, e2309464.
https://doi.org/10.1002/advs.202309464.
- 121.
Theivendren, P.; Kunjiappan, S.; Pavadai, P.; et al. Revolutionizing Cancer Immunotherapy: Emerging Nanotechnology-Driven Drug Delivery Systems for Enhanced Therapeutic Efficacy. ACS Meas. Sci. Au 2024, 5, 31–35.
- 122.
Ding, Y.; Su, S.; Zhang, R.; et al. Precision combination therapy for triple negative breast cancer via biomimetic polydopamine polymer core-shell nanostructures. Biomaterials 2017, 113, 243–252.
- 123.
Zhang, Q.; Shan, W.; Ai, C.; et al. Construction of multifunctional Fe3O4-MTX@ HBc nanoparticles for MR imaging and photothermal therapy/chemotherapy. Nanotheranostics 2018, 2, 87.
- 124.
Landesman-Milo, D.; Peer, D. Altering the immune response with lipid-based nanoparticles. J. Control. Release 2012, 161, 600–608.
- 125.
Ho, K.-W.; Liu, Y.-L.; Liao, T.-Y.; et al. Strategies for Non-Covalent Attachment of Antibodies to PEGylated Nanoparticles for Targeted Drug Delivery. Int. J. Nanomed. 2024, 19, 10045–10064.
- 126.
Saaiq, M. Clinical and Demographic Profile of Volkmann’s Ischemic Contractures Presenting at National Institute of Rehabilitation Medicine, Islamabad, Pakistan. World J. Plast. Surg. 2020, 9, 166.
- 127.
Mohn, F.; Scheffler, K.; Ackers, J.; et al. Characterization of the clinically approved MRI tracer resotran for magnetic particle imaging in a comparison study. Phys. Med. Biol. 2024, 69, 135014.
- 128.
Cheng, L.; Wang, C.; Feng, L.; et al. Functional nanomaterials for phototherapies of cancer. Chem. Rev. 2014, 114, 10869–10939.
- 129.
Shi, J.; Kantoff, P.W.; Wooster, R.; et al. Cancer nanomedicine: Progress, challenges and opportunities. Nat. Rev. Cancer 2017, 17, 20–37.
- 130.
Rosenblum, D.; Joshi, N.; Tao, W.; et al. Progress and challenges towards targeted delivery of cancer therapeutics. Nat. Commun. 2018, 9, 1410.
- 131.
Anselmo, A.C.; Mitragotri, S. Nanoparticles in the clinic: An update. Bioeng. Transl. Med. 2019, 4, e10143.
- 132.
Li, L.; Yang, W.-W.; Xu, D.-G. Stimuli-responsive nanoscale drug delivery systems for cancer therapy. J. Drug Target. 2019, 27, 423–433.
- 133.
Ge, K.; Ren, Y.; Hong, Z.; et al. Microchip Based Isolation and Drug Delivery of Patient-Derived Extracellular Vesicles Against Their Homologous Tumor. Adv. Healthc. Mater. 2024, 13, 2401990.
- 134.
Garbuzenko, O.B.; Sapiezynski, J.; Girda, E.; et al. Personalized Versus Precision Nanomedicine for Treatment of Ovarian Cancer. Small 2024, 20, 2307462.
https://doi.org/10.1002/smll.202307462.
- 135.
- 136.
Elbadawi, M.; McCoubrey, L.E.; Gavins, F.K.; et al. Harnessing artificial intelligence for the next generation of 3D printed medicines. Adv. Drug Deliv. Rev. 2021, 175, 113805.
- 137.
Ahmed, M. Modulation of the Tumor Microenvironment to Overcome Glioblastoma Treatment Resistance. Ph.D. Thesis, Université Paris-Saclay, Orsay, France, 2021.
- 138.
Blanco, E.; Shen, H.; Ferrari, M. Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat. Biotechnol. 2015, 33, 941–951.
- 139.
Karlsson, J.; Vaughan, H.J.; Green, J.J. Biodegradable polymeric nanoparticles for therapeutic cancer treatments. Annu. Rev. Chem. Biomol. Eng. 2018, 9, 105–127.