- 1.
Majumder, J.; Taratula, O.; Minko, T. Nanocarrier-based systems for targeted and site specific therapeutic delivery. Adv. Drug Deliv. Rev. 2019, 144, 57–77. https://doi.org/10.1016/j.addr.2019.07.010.
- 2.
Xu, B.; Li, S.; Shi, R.; et al. Multifunctional mesoporous silica nanoparticles for biomedical applications. Signal Transduct. Target. Ther. 2023, 8, 435. https://doi.org/10.1038/s41392-023-01654-7.
- 3.
Zhang, H.; Montesdeoca, N.; Tang, D.; et al. Tumor-targeted glutathione oxidation catalysis with ruthenium nanoreactors against hypoxic osteosarcoma. Nat. Commun. 2024, 15, 9405. https://doi.org/10.1038/s41467-024-53646-y.
- 4.
Chen, L.; Zhou, L.; Wang, C.; et al. Tumor-Targeted Drug and CpG Delivery System for Phototherapy and Docetaxel-Enhanced Immunotherapy with Polarization toward M1-Type Macrophages on Triple Negative Breast Cancers. Adv. Mater. 2019, 31, e1904997. https://doi.org/10.1002/adma.201904997.
- 5.
Zheng, K.; Setyawati, M.I.; Leong, D.T.; et al. Antimicrobial Gold Nanoclusters. ACS Nano 2017, 11, 6904–6910. https://doi.org/10.1021/acsnano.7b02035.
- 6.
Gong, X.; Jadhav, N.D.; Lonikar, V.V.; et al. An overview of green synthesized silver nanoparticles towards bioactive antibacterial, antimicrobial and antifungal applications. Adv. Colloid Interface Sci. 2024, 323, 103053. https://doi.org/10.1016/j.cis.2023.103053.
- 7.
Kesharwani, P.; Ma, R.; Sang, L.; et al. Gold nanoparticles and gold nanorods in the landscape of cancer therapy. Mol. Cancer 2023, 22, 98. https://doi.org/10.1186/s12943-023-01798-8.
- 8.
Amiri, M.; Salavati-Niasari, M.; Akbari, A. Magnetic nanocarriers: Evolution of spinel ferrites for medical applications. Adv. Colloid Interface Sci.2019, 265, 29–44. https://doi.org/10.1016/j.cis.2019.01.003.
- 9.
Zhu, X.; Li, S. Nanomaterials in tumor immunotherapy: New strategies and challenges. Mol. Cancer 2023, 22, 94. https://doi.org/10.1186/s12943-023-01797-9.
- 10.
Seidi, F.; Zhong, Y.; Xiao, H.; et al. Degradable polyprodrugs: Design and therapeutic efficiency. Chem. Soc. Rev. 2022, 51, 6652–6703. https://doi.org/10.1039/d2cs00099g.
- 11.
Wang, X.; Zhong, X.; Li, J.; et al. Inorganic nanomaterials with rapid clearance for biomedical applications. Chem. Soc. Rev. 2021, 50, 8669–8742. https://doi.org/10.1039/d0cs00461h.
- 12.
Sobhanan, J.; Rival, J.V.; Anas, A.; et al. Luminescent quantum dots: Synthesis, optical properties, bioimaging and toxicity. Adv. Drug Deliv. Rev. 2023, 197, 114830. https://doi.org/10.1016/j.addr.2023.114830.
- 13.
Yang, J.; Feng, J.; Yang, S.; et al. Exceedingly Small Magnetic Iron Oxide Nanoparticles for T(1)-Weighted Magnetic Resonance Imaging and Imaging-Guided Therapy of Tumors. Small 2023, 19, e2302856. https://doi.org/10.1002/smll.202302856.
- 14.
Li, F.; Chen, L.; Zhong, S.; et al. Collagen-Targeting Self-Assembled Nanoprobes for Multimodal Molecular Imaging and Quantification of Myocardial Fibrosis in a Rat Model of Myocardial Infarction. ACS Nano 2024, 18, 4886–4902. https://doi.org/10.1021/acsnano.3c09801.
- 15.
Xu, M.; Lin, Y.; Li, Y.; et al. Nanoprobe Based on Novel NIR-II Quinolinium Cyanine for Multimodal Imaging. Small 2024, 20, e2406879. https://doi.org/10.1002/smll.202406879.
- 16.
Bi, X.; Bai, Q.; Liang, M.; et al. Silver Peroxide Nanoparticles for Combined Antibacterial Sonodynamic and Photothermal Therapy. Small 2022, 18, e2104160. https://doi.org/10.1002/smll.202104160.
- 17.
Zhu, X.; Wang, J.; Cai, L.; et al. Dissection of the antibacterial mechanism of zinc oxide nanoparticles with manipulable nanoscale morphologies. J. Hazard Mater. 2022, 430, 128436. https://doi.org/10.1016/j.jhazmat.2022.128436.
- 18.
Liu, Y.; Zhao, Y.; Guo, S.; et al. Copper doped carbon dots modified bacterial cellulose with enhanced antibacterial and immune regulatory functions for accelerating wound healing. Carbohydr Polym 2024, 346, 122656. https://doi.org/10.1016/j.carbpol.2024.122656.
- 19.
Salah, M.; Akasaka, H.; Shimizu, Y.; et al. Reactive oxygen species-inducing titanium peroxide nanoparticles as promising radiosensitizers for eliminating pancreatic cancer stem cells. J. Exp. Clin. Cancer Res. 2022, 41, 146. https://doi.org/10.1186/s13046-022-02358-6.
- 20.
Vallet-Regí, M.; Schüth, F.; Lozano, D.; et al. Engineering mesoporous silica nanoparticles for drug delivery: Where are we after two decades? Chem. Soc. Rev. 2022, 51, 5365–5451. https://doi.org/10.1039/d1cs00659b.
- 21.
Khan, S.; Falahati, M.; Cho, W.C.; et al. Core-shell inorganic NP@MOF nanostructures for targeted drug delivery and multimodal imaging-guided combination tumor treatment. Adv. Colloid Interface Sci. 2023, 321, 103007. https://doi.org/10.1016/j.cis.2023.103007.
- 22.
Arvizo, R.R.; Bhattacharyya, S.; Kudgus, R.A.; et al. Intrinsic therapeutic applications of noble metal nanoparticles: Past, present and future. Chem. Soc. Rev. 2012, 41, 2943–2970. https://doi.org/10.1039/c2cs15355f.
- 23.
Hao, R.; Xing, R.; Xu, Z.; et al. Synthesis, functionalization, and biomedical applications of multifunctional magnetic nanoparticles. Adv. Mater. 2010, 22, 2729–2742. https://doi.org/10.1002/adma.201000260.
- 24.
Fan, H.; Yan, G.; Zhao, Z.; et al. A Smart Photosensitizer-Manganese Dioxide Nanosystem for Enhanced Photodynamic Therapy by Reducing Glutathione Levels in Cancer Cells. Angew. Chem. Int. Ed. Engl. 2016, 55, 5477–5482. https://doi.org/10.1002/anie.201510748.
- 25.
Zhu, W.; Dong, Z.; Fu, T.; et al. Modulation of Hypoxia in Solid Tumor Microenvironment with MnO2 Nanoparticles to Enhance Photodynamic Therapy. Adv. Funct. Mater. 2016, 26, 5490–5498. https://doi.org/10.1002/adfm.201600676.
- 26.
Chen, Y.; Ye, D.; Wu, M.; et al. Break-up of two-dimensional MnO2 nanosheets promotes ultrasensitive pH-triggered theranostics of cancer. Adv. Mater. 2014, 26, 7019–7026. https://doi.org/10.1002/adma.201402572.
- 27.
Chen, Q.; Feng, L.; Liu, J.; et al. Intelligent Albumin-MnO2 Nanoparticles as pH-/H2 O2 -Responsive Dissociable Nanocarriers to Modulate Tumor Hypoxia for Effective Combination Therapy. Adv. Mater. 2016, 28, 7129–7136. https://doi.org/10.1002/adma.201601902.
- 28.
Dong, Z.; Feng, L.; Zhu, W.; et al. CaCO3 nanoparticles as an ultra-sensitive tumor-pH-responsive nanoplatform enabling real-time drug release monitoring and cancer combination therapy. Biomater. 2016, 110, 60–70. https://doi.org/10.1016/j.biomaterials.2016.09.025.
- 29.
Xu, L.; Tong, G.; Song, Q.; et al. Enhanced Intracellular Ca(2+) Nanogenerator for Tumor-Specific Synergistic Therapy via Disruption of Mitochondrial Ca(2+) Homeostasis and Photothermal Therapy. ACS Nano 2018, 12, 6806–6818. https://doi.org/10.1021/acsnano.8b02034.
- 30.
Hao, J.; Song, G.; Liu, T.; et al. In Vivo Long-Term Biodistribution, Excretion, and Toxicology of PEGylated Transition-Metal Dichalcogenides MS2 (M = Mo, W, Ti) Nanosheets. Adv. Sci. (Weinh.) 2017, 4, 1600160. https://doi.org/10.1002/advs.201600160.
- 31.
Zhou, M.; Li, J.; Liang, S.; et al. CuS Nanodots with Ultrahigh Efficient Renal Clearance for Positron Emission Tomography Imaging and Image-Guided Photothermal Therapy. ACS Nano 2015, 9, 7085–7096. https://doi.org/10.1021/acsnano.5b02635.
- 32.
Wang, L.; Xu, D.; Jiang, L.; et al. Transition Metal Dichalcogenides for Sensing and Oncotherapy: Status, Challenges, and Perspective. Adv. Funct. Mater. 2020, 31, 2004408. https://doi.org/10.1002/adfm.202004408.
- 33.
Yang, S.M.; Shim, J.H.; Cho, H.U.; et al. Hetero-Integration of Silicon Nanomembranes with 2D Materials for Bioresorbable, Wireless Neurochemical System. Adv. Mater. 2022, 34, e2108203. https://doi.org/10.1002/adma.202108203.
- 34.
Zhu, S.; Meng, Q.; Wang, L.; et al. Highly photoluminescent carbon dots for multicolor patterning, sensors, and bioimaging. Angew. Chem. Int. Ed. Engl. 2013, 52, 3953–3957. https://doi.org/10.1002/anie.201300519.
- 35.
Feng, T.; Ai, X.; Ong, H.; et al. Dual-Responsive Carbon Dots for Tumor Extracellular Microenvironment Triggered Targeting and Enhanced Anticancer Drug Delivery. ACS Appl. Mater. Interfaces 2016, 8, 18732–18740. https://doi.org/10.1021/acsami.6b06695.
- 36.
Feng, T.; Ai, X.; An, G.; et al. Charge-Convertible Carbon Dots for Imaging-Guided Drug Delivery with Enhanced in Vivo Cancer Therapeutic Efficiency. ACS Nano 2016, 10, 4410–4420. https://doi.org/10.1021/acsnano.6b00043.
- 37.
Huang, P.; Lin, J.; Wang, X.; et al. Light-triggered theranostics based on photosensitizer-conjugated carbon dots for simultaneous enhanced-fluorescence imaging and photodynamic therapy. Adv. Mater. 2012, 24, 5104–5110. https://doi.org/10.1002/adma.201200650.
- 38.
Huang, X.; Zhang, F.; Zhu, L.; et al. Effect of injection routes on the biodistribution, clearance, and tumor uptake of carbon dots. ACS Nano 2013, 7, 5684–5693. https://doi.org/10.1021/nn401911k.
- 39.
Licciardello, N.; Hunoldt, S.; Bergmann, R.; et al. Biodistribution studies of ultrasmall silicon nanoparticles and carbon dots in experimental rats and tumor mice. Nanoscale 2018, 10, 9880–9891. https://doi.org/10.1039/c8nr01063c.
- 40.
Wang, S.; Li, C.; Qian, M.; et al. Augmented glioma-targeted theranostics using multifunctional polymer-coated carbon nanodots. Biomater. 2017, 141, 29–39. https://doi.org/10.1016/j.biomaterials.2017.05.040.
- 41.
Iannazzo, D.; Ziccarelli, I.; Pistone, A. Graphene quantum dots: Multifunctional nanoplatforms for anticancer therapy. J. Mater. Chem. B 2017, 5, 6471–6489. https://doi.org/10.1039/c7tb00747g.
- 42.
Lee, C.; Kwon, W.; Beack, S.; et al. Biodegradable Nitrogen-Doped Carbon Nanodots for Non-Invasive Photoacoustic Imaging and Photothermal Therapy. Theranostics 2016, 6, 2196–2208.
- 43.
Chong, Y.; Ma, Y.; Shen, H.; et al. The in vitro and in vivo toxicity of graphene quantum dots. Biomater. 2014, 35, 5041–5048. https://doi.org/10.1016/j.biomaterials.2014.03.021.
- 44.
Yan, H.; Wang, Q.; Wang, J.; et al. Planted Graphene Quantum Dots for Targeted, Enhanced Tumor Imaging and Long-Term Visualization of Local Pharmacokinetics. Adv. Mater. 2023, 35, e2210809. https://doi.org/10.1002/adma.202210809.
- 45.
Yu, W.W.; Chang, E.; Drezek, R.; et al. Water-soluble quantum dots for biomedical applications. Biochem Biophys. Res. Commun. 2006, 348, 781–786.
- 46.
Zhang, W.; Chen, G.; Wang, J.; et al. Design and synthesis of highly luminescent near-infrared-emitting water-soluble CdTe/CdSe/ZnS core/shell/shell quantum dots. Inorg. Chem. 2009, 48, 9723–9731. https://doi.org/10.1021/ic9010949.
- 47.
Liu, W.; Choi, H.S.; Zimmer, J.P.; et al. Compact cysteine-coated CdSe(ZnCdS) quantum dots for in vivo applications. J. Am. Chem. Soc. 2007, 129, 14530–14531.
- 48.
Haque, M.; Kalita, M.; Chamlagai, D.; et al. Human serum albumin directed formation of cadmium telluride quantum dots: Applications in biosensing, anti-bacterial activities and cell cytotoxicity measurements. Int. J. Biol. Macromol. 2024, 268, 131862. https://doi.org/10.1016/j.ijbiomac.2024.131862.
- 49.
Ma, N.; Marshall, A.F.; Gambhir, S.S.; et al. Facile synthesis, silanization, and biodistribution of biocompatible quantum dots. Small 2010, 6, 1520–1528. https://doi.org/10.1002/smll.200902409.
- 50.
Su, Y.; Ji, X.; He, Y. Water-Dispersible Fluorescent Silicon Nanoparticles and their Optical Applications. Adv. Mater. 2016, 28, 10567–10574. https://doi.org/10.1002/adma.201601173.
- 51.
Tang, J.; Chu, B.; Wang, J.; et al. Multifunctional nanoagents for ultrasensitive imaging and photoactive killing of Gram-negative and Gram-positive bacteria. Nat. Commun. 2019, 10, 4057. https://doi.org/10.1038/s41467-019-12088-7.
- 52.
Benezra, M.; Penate-Medina, O.; Zanzonico, P.B.; et al. Multimodal silica nanoparticles are effective cancer-targeted probes in a model of human melanoma. J. Clin. Investig. 2011, 121, 2768–2780. https://doi.org/10.1172/JCI45600.
- 53.
Jokerst, J.V.; Gambhir, S.S. Molecular imaging with theranostic nanoparticles. Acc. Chem. Res. 2011, 44, 1050–1060. https://doi.org/10.1021/ar200106e.
- 54.
Erogbogbo, F.; Yong, K.-T.; Hu, R.; et al. Biocompatible magnetofluorescent probes: Luminescent silicon quantum dots coupled with superparamagnetic iron(III) oxide. ACS Nano 2010, 4, 5131–5138. https://doi.org/10.1021/nn101016f.
- 55.
Hanada, S.; Fujioka, K.; Futamura, Y.; et al. Evaluation of anti-inflammatory drug-conjugated silicon quantum dots: Their cytotoxicity and biological effect. Int. J. Mol. Sci. 2013, 14, 1323–1334. https://doi.org/10.3390/ijms14011323.
- 56.
Chen, G.; Teng, Z.; Su, X.; et al. Unique Biological Degradation Behavior of Stöber Mesoporous Silica Nanoparticles from Their Interiors to Their Exteriors. J. Biomed Nanotechnol. 2015, 11, 722–729.
- 57.
Yamada, H.; Urata, C.; Aoyama, Y.; et al. Preparation of Colloidal Mesoporous Silica Nanoparticles with Different Diameters and Their Unique Degradation Behavior in Static Aqueous Systems. Chem. Mater. 2012, 24, 1462–1471. https://doi.org/10.1021/cm3001688.
- 58.
He, Q.; Shi, J.; Zhu, M.; et al. The three-stage in vitro degradation behavior of mesoporous silica in simulated body fluid. Microporous Mesoporous Mater. 2010, 131, 314–320. https://doi.org/10.1016/j.micromeso.2010.01.009.
- 59.
Toy, R.; Peiris, P.M.; Ghaghada, K.B.; et al. Shaping cancer nanomedicine: The effect of particle shape on the in vivo journey of nanoparticles. Nanomedicine 2014, 9, 121–134. https://doi.org/10.2217/nnm.13.191.
- 60.
Truong, N.P.; Whittaker, M.R.; Mak, C.W.; et al. The importance of nanoparticle shape in cancer drug delivery. Expert Opin. Drug. Deliv. 2015, 12, 129–142. https://doi.org/10.1517/17425247.2014.950564.
- 61.
Huang, X.; Li, L.; Liu, T.; et al. The shape effect of mesoporous silica nanoparticles on biodistribution, clearance, and biocompatibility in vivo. ACS Nano 2011, 5, 5390–5399. https://doi.org/10.1021/nn200365a.
- 62.
He, Q.; Zhang, Z.; Gao, F.; et al. In vivo biodistribution and urinary excretion of mesoporous silica nanoparticles: Effects of particle size and PEGylation. Small 2011, 7, 271–280. https://doi.org/10.1002/smll.201001459.
- 63.
Cauda, V.; Argyo, C.; Bein, T. Impact of different PEGylation patterns on the long-term bio-stability of colloidal mesoporous silica nanoparticles. J. Mater. Chem. 2010, 20, 8693–8699. https://doi.org/10.1039/c0jm01390k.
- 64.
He, X.; Nie, H.; Wang, K.; et al. In vivo study of biodistribution and urinary excretion of surface-modified silica nanoparticles. Anal. Chem. 2008, 80, 9597–9603. https://doi.org/10.1021/ac801882g.
- 65.
Vivero-Escoto, J.L.; Taylor-Pashow, K.M.; Huxford, R.C.; et al. Multifunctional mesoporous silica nanospheres with cleavable Gd(III) chelates as MRI contrast agents: Synthesis, characterization, target-specificity, and renal clearance. Small 2011, 7, 3519–3528. https://doi.org/10.1002/smll.201100521.
- 66.
Souris, J.S.; Lee, C.-H.; Cheng, S.-H.; et al. Surface charge-mediated rapid hepatobiliary excretion of mesoporous silica nanoparticles. Biomater. 2010, 31, 5564–5574. https://doi.org/10.1016/j.biomaterials.2010.03.048.
- 67.
Wang, C.; Yan, C.; An, L.; et al. Fe3O4 assembly for tumor accurate diagnosis by endogenous GSH responsive T2/T1 magnetic relaxation conversion. J. Mater. Chem. B 2021, 9, 7734–7740. https://doi.org/10.1039/d1tb01018b.
- 68.
Guan, G.; Zhang, C.; Liu, H.; et al. Ternary Alloy PtWMn as a Mn Nanoreservoir for High-Field MRI Monitoring and Highly Selective Ferroptosis Therapy. Angew. Chem. Int. Ed. Engl. 2022, 61, e202117229. https://doi.org/10.1002/anie.202117229.
- 69.
Liu, Y.; Teng, L.; Yin, B.; et al. Chemical Design of Activatable Photoacoustic Probes for Precise Biomedical Applications. Chem. Rev. 2022, 122, 6850–6918. https://doi.org/10.1021/acs.chemrev.1c00875.
- 70.
Zeng, J.; Cheng, M.; Wang, Y.; et al. pH-Responsive Fe(III)-Gallic Acid Nanoparticles for In Vivo Photoacoustic-Imaging-Guided Photothermal Therapy. Adv. Healthc. Mater. 2016, 5, 772–780. https://doi.org/10.1002/adhm.201500898.
- 71.
Wang, S.; Zhang, L.; Zhao, J.; et al. A tumor microenvironment-induced absorption red-shifted polymer nanoparticle for simultaneously activated photoacoustic imaging and photothermal therapy. Sci. Adv. 2021, 7, eabe3588. https://doi.org/10.1126/sciadv.abe3588.
- 72.
Zhang, W.; Wang, J.; Su, L.; et al. Activatable nanoscale metal-organic framework for ratiometric photoacoustic imaging of hydrogen sulfide and orthotopic colorectal cancer in vivo. Sci. China Chem. 2020, 63, 1315–1322. https://doi.org/10.1007/s11426-020-9775-y.
- 73.
Zhao, J.; Jin, G.; Weng, G.; et al. Recent advances in activatable fluorescence imaging probes for tumor imaging. Drug Discov. Today 2017, 22, 1367–1374. https://doi.org/10.1016/j.drudis.2017.04.006.
- 74.
Yang, W.; Yang, S.; Jiang, L.; et al. Tumor microenvironment triggered biodegradation of inorganic nanoparticles for enhanced tumor theranostics. RSC Adv. 2020, 10, 26742–26751. https://doi.org/10.1039/d0ra04651e.
- 75.
Liu, F.; Li, X.-L.; Zhou, H. Biodegradable MnO2 nanosheet based DNAzyme-recycling amplification towards: Sensitive detection of intracellular MicroRNAs. Talanta 2020, 206, 120199. https://doi.org/10.1016/j.talanta.2019.120199.
- 76.
Wei, M.; Bai, J.; Shen, X.; et al. Glutathione-Exhausting Nanoprobes for NIR-II Fluorescence Imaging-Guided Surgery and Boosting Radiation Therapy Efficacy via Ferroptosis in Breast Cancer. ACS Nano 2023, 17, 11345–11361. https://doi.org/10.1021/acsnano.3c00350.
- 77.
Lu, J.; Li, Z.; Lu, M.; et al. Assessing Early Atherosclerosis by Detecting and Imaging of Hypochlorous Acid and Phosphorylation Using Fluorescence Nanoprobe. Adv. Mater. 2023, 35, e2307008. https://doi.org/10.1002/adma.202307008.
- 78.
Sabuncu, S.; Yildirim, A. Gas-stabilizing nanoparticles for ultrasound imaging and therapy of cancer. Nano Converg. 2021, 8, 39. https://doi.org/10.1186/s40580-021-00287-2.
- 79.
Feng, Q.; Zhang, W.; Yang, X.; et al. pH/Ultrasound Dual-Responsive Gas Generator for Ultrasound Imaging-Guided Therapeutic Inertial Cavitation and Sonodynamic Therapy. Adv. Healthc. Mater. 2018, 7, 1700957. https://doi.org/10.1002/adhm.201700957.
- 80.
Wu, J.; Williams, G.R.; Niu, S.; et al. A Multifunctional Biodegradable Nanocomposite for Cancer Theranostics. Adv. Sci. 2019, 6, 1802001. https://doi.org/10.1002/advs.201802001.
- 81.
Meng, X.; Yi, Y.; Meng, Y.; et al. Self-Enhanced Acoustic Impedance Difference Strategy for Detecting the Acidic Tumor Microenvironment. ACS Nano 2022, 16, 4217–4227. https://doi.org/10.1021/acsnano.1c10173.
- 82.
Cohen, M.L. Changing patterns of infectious disease. Nature 2000, 406, 762–767.
- 83.
Huo, M.; Wang, L.; Zhang, H.; et al. Construction of Single-Iron-Atom Nanocatalysts for Highly Efficient Catalytic Antibiotics. Small 2019, 15, e1901834. https://doi.org/10.1002/smll.201901834.
- 84.
Lu, M.-M.; Ge, Y.; Qiu, J.; et al. Redox/pH dual-controlled release of chlorhexidine and silver ions from biodegradable mesoporous silica nanoparticles against oral biofilms. Int. J. Nanomed. 2018, 13, 7697–7709. https://doi.org/10.2147/IJN.S181168.
- 85.
Gao, L.; Wang, Y.; Li, Y.; et al. Biomimetic biodegradable Ag@Au nanoparticle-embedded ureteral stent with a constantly renewable contact-killing antimicrobial surface and antibiofilm and extraction-free properties. Acta Biomater. 2020, 114, 117–132. https://doi.org/10.1016/j.actbio.2020.07.025.
- 86.
Zhang, W.; Yang, C.; Lei, Z.; et al. New Strategy for Specific Eradication of Implant-Related Infections Based on Special and Selective Degradability of Rhenium Trioxide Nanocubes. ACS Appl. Mater. Interfaces 2019, 11, 25691–25701. https://doi.org/10.1021/acsami.9b07359.
- 87.
Rabe, K.F.; Watz, H. Chronic obstructive pulmonary disease. Lancet 2017, 389, 1931–1940. https://doi.org/10.1016/S0140-6736(17)31222-9.
- 88.
Ti, H.; Zhou, Y.; Liang, X.; et al. Targeted Treatments for Chronic Obstructive Pulmonary Disease (COPD) Using Low-Molecular-Weight Drugs (LMWDs). J. Med. Chem. 2019, 62, 5944–5978. https://doi.org/10.1021/acs.jmedchem.8b01520.
- 89.
Li, Z.; Luo, G.; Hu, W.-P.; et al. Mediated Drug Release from Nanovehicles by Black Phosphorus Quantum Dots for Efficient Therapy of Chronic Obstructive Pulmonary Disease. Angew. Chem. Int. Ed. Engl. 2020, 59, 20568–20576. https://doi.org/10.1002/anie.202008379.
- 90.
Wang, X.; Zhong, X.; Lei, H.; et al. Hollow Cu2Se Nanozymes for Tumor Photothermal-Catalytic Therapy. Chem. of Mater. 2019, 31, 6174–6186. https://doi.org/10.1021/acs.chemmater.9b01958.
- 91.
Xi, J.; Wei, G.; Wu, Q.; et al. Light-enhanced sponge-like carbon nanozyme used for synergetic antibacterial therapy. Biomater. Sci. 2019, 7, 4131–4141. https://doi.org/10.1039/c9bm00705a.
- 92.
Xu, B.; Wang, H.; Wang, W.; et al. A Single-Atom Nanozyme for Wound Disinfection Applications. Angew. Chem. Int. Ed. Engl. 2019, 58, 4911–4916. https://doi.org/10.1002/anie.201813994.
- 93.
Yin, W.; Yu, J.; Lv, F.; et al. Functionalized Nano-MoS2 with Peroxidase Catalytic and Near-Infrared Photothermal Activities for Safe and Synergetic Wound Antibacterial Applications. ACS Nano 2016, 10, 11000–11011. https://doi.org/10.1021/acsnano.6b05810.
- 94.
Liu, Y.; Guo, Z.; Li, F.; et al. Multifunctional Magnetic Copper Ferrite Nanoparticles as Fenton-like Reaction and Near-Infrared Photothermal Agents for Synergetic Antibacterial Therapy. ACS Appl. Mater. Interfaces 2019, 11, 31649–31660. https://doi.org/10.1021/acsami.9b10096.
- 95.
Wang, X.; Fan, L.; Cheng, L.; et al. Biodegradable Nickel Disulfide Nanozymes with GSH-Depleting Function for High-Efficiency Photothermal-Catalytic Antibacterial Therapy. iScience 2020, 23, 101281. https://doi.org/10.1016/j.isci.2020.101281.
- 96.
Zhang, Z.; Wang, X.; Liu, J.; et al. Structural Element of Vitamin U-Mimicking Antibacterial Polypeptide with Ultrahigh Selectivity for Effectively Treating MRSA Infections. Angew. Chem. Int. Ed. Engl. 2024, 63, e202318011. https://doi.org/10.1002/anie.202318011.
- 97.
Lee, J.E.; Lee, N.; Kim, T.; et al. Multifunctional mesoporous silica nanocomposite nanoparticles for theranostic applications. Acc. Chem. Res. 2011, 44, 893–902. https://doi.org/10.1021/ar2000259.
- 98.
Li, Z.; Barnes, J.C.; Bosoy, A.; et al. Mesoporous silica nanoparticles in biomedical applications. Chem. Soc. Rev. 2012, 41, 2590–2605. https://doi.org/10.1039/c1cs15246g.
- 99.
Yang, P.; Quan, Z.; Hou, Z.; et al. A magnetic, luminescent and mesoporous core-shell structured composite material as drug carrier. Biomaterials 2009, 30, 4786–4795. https://doi.org/10.1016/j.biomaterials.2009.05.038.
- 100.
Arias, L.S.; Pessan, J.P.; Vieira, A.P.M.; et al. Iron Oxide Nanoparticles for Biomedical Applications: A Perspective on Synthesis, Drugs, Antimicrobial Activity, and Toxicity. Antibiot. (Basel) 2018, 7, 46. https://doi.org/10.3390/antibiotics7020046.
- 101.
Bobo, D.; Robinson, K.J.; Islam, J.; et al. Nanoparticle-Based Medicines: A Review of FDA-Approved Materials and Clinical Trials to Date. Pharm. Res. 2016, 33, 2373–2387. https://doi.org/10.1007/s11095-016-1958-5.
- 102.
Zhang, Y.; Fu, X.; Jia, J.; et al. Glioblastoma Therapy Using Codelivery of Cisplatin and Glutathione Peroxidase Targeting siRNA from Iron Oxide Nanoparticles. ACS Appl. Mater. Interfaces 2020, 12, 43408–43421. https://doi.org/10.1021/acsami.0c12042.
- 103.
Li, M.; Li, J.; Chen, J.; et al. Platelet Membrane Biomimetic Magnetic Nanocarriers for Targeted Delivery and in Situ Generation of Nitric Oxide in Early Ischemic Stroke. ACS Nano 2020, 14, 2024–2035. https://doi.org/10.1021/acsnano.9b08587.
- 104.
Voon, S.H.; Kiew, L.V.; Lee, H.B.; et al. In vivo studies of nanostructure-based photosensitizers for photodynamic cancer therapy. Small 2014, 10, 4993–5013. https://doi.org/10.1002/smll.201401416.
- 105.
Felsher, D.W. Cancer revoked: Oncogenes as therapeutic targets. Nat. Rev. Cancer. 2003, 3, 375–380.
- 106.
Agostinis, P.; Berg, K.; Cengel, K.A.; et al. Photodynamic therapy of cancer: An update. CA Cancer J. Clin. 2011, 61, 250–281. https://doi.org/10.3322/caac.20114.
- 107.
Plaetzer, K.; Krammer, B.; Berlanda, J.; et al. Photophysics and photochemistry of photodynamic therapy: Fundamental aspects. Lasers Med. Sci. 2009, 24, 259–268. https://doi.org/10.1007/s10103-008-0539-1.
- 108.
Zhao, J.; Wu, W.; Sun, J.; Guo, S. Triplet photosensitizers: From molecular design to applications. Chem. Soc. Rev. 2013, 42, 5323–5351. https://doi.org/10.1039/c3cs35531d.
- 109.
Liu, J.; Ohta, S.-I.; Sonoda, A.; et al. Preparation of PEG-conjugated fullerene containing Gd3+ ions for photodynamic therapy. J. Control Release 2007, 117, 104–110.
- 110.
Gao, F.; Sun, M.; Ma, W.; et al. A Singlet Oxygen Generating Agent by Chirality-dependent Plasmonic Shell-Satellite Nanoassembly. Adv. Mater. 2017, 29, 1606864. https://doi.org/10.1002/adma.201606864.
- 111.
Liu, G.; Zou, J.; Tang, Q.; et al. Surface Modified Ti3C2 MXene Nanosheets for Tumor Targeting Photothermal/Photodynamic/Chemo Synergistic Therapy. ACS Appl. Mater. Interfaces 2017, 9, 40077–40086. https://doi.org/10.1021/acsami.7b13421.
- 112.
Yang, K.; Zhang, S.; Zhang, G.; et al. Graphene in mice: Ultrahigh in vivo tumor uptake and efficient photothermal therapy. Nano Lett. 2010, 10, 3318–3323. https://doi.org/10.1021/nl100996u.
- 113.
Melamed, J.R.; Edelstein, R.S.; Day, E.S. Elucidating the fundamental mechanisms of cell death triggered by photothermal therapy. ACS Nano 2015, 9, 6–11. https://doi.org/10.1021/acsnano.5b00021.
- 114.
Fernandes, N.; Rodrigues, C.F.; Moreira, A.F.; et al. Overview of the application of inorganic nanomaterials in cancer photothermal therapy. Biomater. Sci. 2020, 8, 2990–3020. https://doi.org/10.1039/d0bm00222d.
- 115.
Gellini, C.; Feis, A. Optothermal properties of plasmonic inorganic nanoparticles for photoacoustic applications. Photoacoust. 2021, 23, 100281. https://doi.org/10.1016/j.pacs.2021.100281.
- 116.
Wang, J.; Wu, X.; Shen, P.; et al. Applications of Inorganic Nanomaterials in Photothermal Therapy Based on Combinational Cancer Treatment. Int. J. Nanomed.2020, 15, 1903–1914. https://doi.org/10.2147/IJN.S239751.
- 117.
Gai, S.; Yang, G.; Yang, P.; et al. Recent advances in functional nanomaterials for light–triggered cancer therapy. Nano Today 2018, 19, 146–187. https://doi.org/10.1016/j.nantod.2018.02.010.
- 118.
Huang, X.; El-Sayed, I.H.; Qian, W.; et al. Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. J. Am. Chem. Soc. 2006, 128, 2115–2120.
- 119.
Yavuz, M.S.; Cheng, Y.; Chen, J.; et al. Gold nanocages covered by smart polymers for controlled release with near-infrared light. Nat. Mater. 2009, 8, 935–939. https://doi.org/10.1038/nmat2564.
- 120.
Zhou, Z.; Wang, Y.; Yan, Y.; et al. Dendrimer-Templated Ultrasmall and Multifunctional Photothermal Agents for Efficient Tumor Ablation. ACS Nano 2016, 10, 4863–4872. https://doi.org/10.1021/acsnano.6b02058.
- 121.
Dumas, A.; Couvreur, P. Palladium: A future key player in the nanomedical field? Chem. Sci. 2015, 6, 2153–2157. https://doi.org/10.1039/c5sc00070j.
- 122.
Wei, X.; Huang, H.; Guo, J.; et al. Biomimetic Nano-Immunoactivator via Io nic Metabolic Modulation for Strengthened NIR-II Photothermal Immunotherapy. Small 2023, 19, e2304370. https://doi.org/10.1002/smll.202304370.
- 123.
Wang, S.; Li, K.; Chen, Y.; et al. Biocompatible PEGylated MoS2 nanosheets: Controllable bottom-up synthesis and highly efficient photothermal regression of tumor. Biomater. 2015, 39, 206–217. https://doi.org/10.1016/j.biomaterials.2014.11.009.
- 124.
Xuan, J.; Wang, Z.; Chen, Y.; et al. Organic-Base-Driven Intercalation and Delamination for the Production of Functionalized Titanium Carbide Nanosheets with Superior Photothermal Therapeutic Performance. Angew. Chem. Int. Ed. Engl. 2016, 55, 14569–14574. https://doi.org/10.1002/anie.201606643.
- 125.
Huang, K.; Li, Z.; Lin, J.; et al. Two-dimensional transition metal carbides and nitrides (MXenes) for biomedical applications. Chem. Soc. Rev. 2018, 47, 5109–5124. https://doi.org/10.1039/c7cs00838d.
- 126.
Lin, H.; Wang, Y.; Gao, S.; et al. Theranostic 2D Tantalum Carbide (MXene). Adv. Mater. 2018, 30, 1703284. https://doi.org/10.1002/adma.201703284.
- 127.
Chen, R.; Wang, X.; Yao, X.; et al. Near-IR-triggered photothermal/photodynamic dual-modality therapy system via chitosan hybrid nanospheres. Biomaterials 2013, 34, 8314–8322. https://doi.org/10.1016/j.biomaterials.2013.07.034.
- 128.
Zheng, Y.; Chen, J.; Song, X.R.; et al. Manganese-enriched photonic/catalytic nanomedicine augments synergistic anti-TNBC photothermal/nanocatalytic/immuno-therapy via activating cGAS-STING pathway. Biomaterials 2023, 293, 121988. https://doi.org/10.1016/j.biomaterials.2022.121988.