- 1.
Mbituyimana, B.; Adhikari, M.; Qi, F.; et al. Microneedle-Based Cell Delivery and Cell Sampling for Biomedical Applications. J. Control. Release 2023, 362, 692–714. https://doi.org/10.1016/j.jconrel.2023.09.013.
- 2.
Tobos, C.I.; Woodrow, K.A. Dissolving Microneedles for Nucleic Acid Delivery: A Systematic Search, Review, and Data Synthesis. Acta Biomater. 2025, 200, 115–131. https://doi.org/10.1016/j.actbio.2025.05.025.
- 3.
Tian, Y.; Xia, L.; Song, X.; et al. Dissolving Microneedles as In Situ Chemical Reaction Chambers: From Design Strategies to Versatile Biomedical Applications. Adv. Funct. Mater. 2025, 35, 2422274. https://doi.org/10.1002/adfm.202422274.
- 4.
Tian, Y.; Lee, J.; van der Maaden, K.; et al. Intradermal Administration of Influenza Vaccine with Trehalose and Pullulan-Based Dissolving Microneedle Arrays. J. Pharm. Sci. 2022, 111, 1070–1080. https://doi.org/10.1016/j.xphs.2022.01.033.
- 5.
Avcil, M.; Çelik, A. Microneedles in Drug Delivery: Progress and Challenges. Micromachines 2021, 12, 1321. https://doi.org/10.3390/mi12111321.
- 6.
Yang, Y.; Sun, H.; Sun, X.; et al. From Mechanism to Applications: Advanced Microneedles for Clinical Medicine. Bioact. Mater. 2025, 51, 1–45. https://doi.org/10.1016/j.bioactmat.2025.04.025.
- 7.
Koenitz, L.; Crean, A.; Vucen, S. Stress Factors Affecting Protein Stability during the Fabrication and Storage of Dissolvable Microneedles. RPS Pharm. Pharmacol. Rep. 2024, 3, rqae018. https://doi.org/10.1093/rpsppr/rqae018.
- 8.
Wu, P.; Zhang, T.; Zhao, D.; et al. Microneedle-Enabled Breakthroughs in Nucleic Acid Therapeutics. Adv. Healthc. Mater. 2025, 14, 2501015. https://doi.org/10.1002/adhm.202501015.
- 9.
Cheng, Y.; Lu, Y. Physical Stimuli-Responsive Polymeric Patches for Healthcare. Bioact. Mater. 2025, 43, 342–375. https://doi.org/10.1016/j.bioactmat.2024.08.025.
- 10.
Liu, Y.; Yu, Q.; Luo, X.; et al. Continuous Monitoring of Diabetes with an Integrated Microneedle Biosensing Device through 3D Printing. Microsyst. Nanoeng. 2021, 7, 75. https://doi.org/10.1038/s41378-021-00302-w.
- 11.
Li, L.; Zhou, Y.; Sun, C.; et al. Fully Integrated Wearable Microneedle Biosensing Platform for Wide-Range and Real-Time Continuous Glucose Monitoring. Acta Biomater. 2024, 175, 199–213. https://doi.org/10.1016/j.actbio.2023.12.044.
- 12.
Dervisevic, M.; Alba, M.; Adams, T.E.; et al. Electrochemical Immunosensor for Breast Cancer Biomarker Detection Using High-Density Silicon Microneedle Array. Biosens. Bioelectron. 2021, 192, 113496. https://doi.org/10.1016/j.bios.2021.113496.
- 13.
Faraji Rad, Z. Microneedle Technologies for Food and Crop Health: Recent Advances and Future Perspectives. Adv. Eng. Mater. 2023, 25, 2201194. https://doi.org/10.1002/adem.202201194.
- 14.
Cao, Y.; Kim, D.; Koh, S.S.; et al. Nanofabrication of Silk Microneedles for High-Throughput Micronutrient Delivery and Continuous Sap Monitoring in Plants. Nat. Nanotechnol. 2025, 20, 1142–1151. https://doi.org/10.1038/s41565-025-01923-2.
- 15.
Paul, R.; Saville, A.C.; Hansel, J.C.; et al. Extraction of Plant DNA by Microneedle Patch for Rapid Detection of Plant Diseases. ACS Nano 2019, 13, 6540–6549. https://doi.org/10.1021/acsnano.9b00193.
- 16.
Creighton, R.L.; Faber, K.A.; Tobos, C.I.; et al. Oral Mucosal Vaccination Using Integrated Fiber Microneedles. J. Control. Release 2024, 367, 649–660. https://doi.org/10.1016/j.jconrel.2024.01.062.
- 17.
Zhang, X.; Hasani-Sadrabadi, M.M.; Zarubova, J.; et al. Immunomodulatory Microneedle Patch for Periodontal Tissue Regeneration. Matter 2022, 5, 666–682. https://doi.org/10.1016/j.matt.2021.11.017.
- 18.
Gadziński, P.; Froelich, A.; Wojtyłko, M.; et al. Microneedle-Based Ocular Drug Delivery Systems—Recent Advances and Challenges. Beilstein J. Nanotechnol. 2022, 13, 1167–1184. https://doi.org/10.3762/bjnano.13.98.
- 19.
Wang, L.; Guo, Y.; Chen, B.; et al. An Annular Corneal Microneedle Patch for Minimally Invasive Ophthalmic Drug Delivery. Sci. Adv. 2025, 11, eadv1661. https://doi.org/10.1126/sciadv.adv1661.
- 20.
Long, L.; Ji, D.; Hu, C.; et al. Microneedles for in Situ Tissue Regeneration. Mater. Today Bio 2023, 19, 100579. https://doi.org/10.1016/j.mtbio.2023.100579.
- 21.
Teepe, G.; Thayyil, M.V.; Joram, N.; et al. Bioelectric Energy Harvesting from Myocardial Tissue In-Vivo. A New Method for Biological Energy Collection. Heart Rhythm 2025, in press. https://doi.org/10.1016/j.hrthm.2025.06.003.
- 22.
Wang, Z.; Luan, J.; Seth, A.; et al. Microneedle Patch for the Ultrasensitive Quantification of Protein Biomarkers in Interstitial Fluid. Nat. Biomed. Eng. 2021, 5, 64–76. https://doi.org/10.1038/s41551-020-00672-y.
- 23.
Saifullah, K.M.; Faraji Rad, Z. Sampling Dermal Interstitial Fluid Using Microneedles: A Review of Recent Developments in Sampling Methods and Microneedle-Based Biosensors. Adv. Mater. Interfaces 2023, 10, 2201763. https://doi.org/10.1002/admi.202201763.
- 24.
Hu, Y.; Chatzilakou, E.; Pan, Z.; et al. Microneedle Sensors for Point-of-Care Diagnostics. Adv. Sci. 2024, 11, 2306560. https://doi.org/10.1002/advs.202306560.
- 25.
Pei, S.; Babity, S.; Sara Cordeiro, A.; et al. Integrating Microneedles and Sensing Strategies for Diagnostic and Monitoring Applications: The State of the Art. Adv. Drug Deliv. Rev. 2024, 210, 115341. https://doi.org/10.1016/j.addr.2024.115341.
- 26.
Dixon, R.V.; Skaria, E.; Lau, W.M.; et al. Microneedle-Based Devices for Point-of-Care Infectious Disease Diagnostics. Acta Pharm. Sin. B 2021, 11, 2344–2361. https://doi.org/10.1016/j.apsb.2021.02.010.
- 27.
Huang, X.; Zheng, S.; Liang, B.; et al. 3D-Assembled Microneedle Ion Sensor-Based Wearable System for the Transdermal Monitoring of Physiological Ion Fluctuations. Microsyst. Nanoeng. 2023, 9, 25. https://doi.org/10.1038/s41378-023-00497-0.
- 28.
Yang, Y.; Sheng, C.; Dong, F.; et al. An Integrated Wearable Differential Microneedle Array for Continuous Glucose Monitoring in Interstitial Fluids. Biosens. Bioelectron. 2024, 256, 116280. https://doi.org/10.1016/j.bios.2024.116280.
- 29.
Raz, A.; Gubi, H.; Cohen, A.; et al. Transdermal Minimally Invasive Optical Multiplex Detection of Protein Biomarkers by Nanopillars Array-Embedded Microneedles. ACS Nano 2024, 18, 30848–30862. https://doi.org/10.1021/acsnano.4c11612.
- 30.
Kim, G.; Ahn, H.; Chaj Ulloa, J.; et al. Microneedle Sensors for Dermal Interstitial Fluid Analysis. Med-X 2024, 2, 15. https://doi.org/10.1007/s44258-024-00028-0.
- 31.
Clarke, W.L.; Renard, E. Clinical Requirements for Closed-Loop Control Systems. J. Diabetes Sci. Technol. 2012, 6, 444–452. https://doi.org/10.1177/193229681200600233.
- 32.
Farmer, T.G.; Edgar, T.F.; Peppas, N.A. The Future of Open- and Closed-Loop Insulin Delivery Systems†. J. Pharm. Pharmacol. 2008, 60, 1–13. https://doi.org/10.1211/jpp.60.1.0001.
- 33.
Zheng, Z.; Zhu, R.; Peng, I.; et al. Wearable and Implantable Biosensors: Mechanisms and Applications in Closed-Loop Therapeutic Systems. J. Mater. Chem. B 2024, 12, 8577–8604. https://doi.org/10.1039/D4TB00782D.
- 34.
Stead, W.W.; Gregg, W.M.; Jirjis, J.N. Extending Closed-loop Control to The Management of Chronic Disease. Trans Am Clin Clim. Assoc. 2011, 122, 93–102.
- 35.
Ware, J.; Hovorka, R. Closed-Loop Insulin Delivery: Update on the State of the Field and Emerging Technologies. Expert Rev Med Devices. 2022, 19, 859–875. https://doi.org/10.1080/17434440.2022.2142556.
- 36.
Li, X.; Huang, X.; Mo, J.; et al. A Fully Integrated Closed-Loop System Based on Mesoporous Microneedles-Iontophoresis for Diabetes Treatment. Adv. Sci. 2021, 8, e2100827. https://doi.org/10.1002/advs.202100827.
- 37.
Parrilla, M.; Detamornrat, U.; Domínguez-Robles, J.; et al. Wearable Microneedle-Based Array Patches for Continuous Electrochemical Monitoring and Drug Delivery: Toward a Closed-Loop System for Methotrexate Treatment. ACS Sens. 2023, 8, 4161–4170. https://doi.org/10.1021/acssensors.3c01381.
- 38.
Liang, S.; Liu, S.; Long, Z.; et al. A Self-Powered Hydration-Monitoring and Drug-Delivery Skin Patch for Closed-Loop Treatment of Atopic Dermatitis. Microsyst. Nanoeng. 2025, 11, 156. https://doi.org/10.1038/s41378-025-01000-7.
- 39.
Su, Y.; Ashworth, V.; Kim, C.; et al. Delivery, Uptake, Fate, and Transport of Engineered Nanoparticles in Plants: A Critical Review and Data Analysis. Environ. Sci. Nano 2019, 6, 2311–2331. https://doi.org/10.1039/C9EN00461K.
- 40.
Christiano, R.S.C.; Reilly, C.C.; Miller, W.P.; et al. Oxytetracycline Dynamics on Peach Leaves in Relation to Temperature, Sunlight, and Simulated Rain. Plant Dis. 2010, 94, 1213–1218. https://doi.org/10.1094/PDIS-04-10-0282.
- 41.
Dudley, N.; Alexander, S. Agriculture and Biodiversity: A Review. Biodiversity 2017, 18, 45–49. https://doi.org/10.1080/14888386.2017.1351892.
- 42.
Pilling, D.; Bélanger, J.; Hoffmann, I. Declining Biodiversity for Food and Agriculture Needs Urgent Global Action. Nat. Food 2020, 1, 144–147. https://doi.org/10.1038/s43016-020-0040-y.
- 43.
Nicolopoulou-Stamati, P.; Maipas, S.; Kotampasi, C.; et al. Chemical Pesticides and Human Health: The Urgent Need for a New Concept in Agriculture. Front. Public Health 2016, 4, 148. https://doi.org/10.3389/fpubh.2016.00148.
- 44.
Ece, E.; Eş, I.; Inci, F. Microneedle Technology as a New Standpoint in Agriculture: Treatment and Sensing. Mater. Today 2023, 68, 275–297. https://doi.org/10.1016/j.mattod.2023.07.002.
- 45.
Cao, Y.; Koh, S.S.; Han, Y.; et al. Drug Delivery in Plants Using Silk Microneedles. Adv. Mater. 2023, 35, 2205794. https://doi.org/10.1002/adma.202205794.
- 46.
Cao, Y.; Lim, E.; Xu, M.; et al. Precision Delivery of Multiscale Payloads to Tissue-Specific Targets in Plants. Adv. Sci. 2020, 7, 1903551. https://doi.org/10.1002/advs.201903551.
- 47.
Wang, B.; Lu, H.; Jiang, S.; et al. Recent Advances of Microneedles Biosensors for Plants. Anal. Bioanal. Chem. 2024, 416, 55–69. https://doi.org/10.1007/s00216-023-05003-z.
- 48.
Selz, J.; Adam, N.R.; Magrini, C.E.M.; et al. A Field-Capable Rapid Plant DNA Extraction Protocol Using Microneedle Patches for Botanical Surveying and Monitoring. Appl. Plant Sci. 2023, 11, e11529. https://doi.org/10.1002/aps3.11529.
- 49.
Paul, R.; Ostermann, E.; Chen, Y.; et al. Integrated Microneedle-Smartphone Nucleic Acid Amplification Platform for in-Field Diagnosis of Plant Diseases. Biosens. Bioelectron. 2021, 187, 113312. https://doi.org/10.1016/j.bios.2021.113312.
- 50.
Fiorello, I.; Meder, F.; Mondini, A.; et al. Plant-like Hooked Miniature Machines for on-Leaf Sensing and Delivery. Commun. Mater. 2021, 2, 103. https://doi.org/10.1038/s43246-021-00208-0.
- 51.
Seong, K.-Y.; Kim, M.J.; Lee, H.; et al. One-Touch Embeddable Microneedles for Hair Loss Treatment. Int. J. Pharm. 2025, 669, 125020. https://doi.org/10.1016/j.ijpharm.2024.125020.
- 52.
Kaur, S.D.; Choudhary, S.; Sen, S.; et al. Microneedle Patches: The next Frontier in Cardiovascular Care. Drug Deliv. Transl. Res. 2025, 15, 2951–2966. https://doi.org/10.1007/s13346-025-01802-2.
- 53.
Mulkutkar, M.; Damani, M.; Sawarkar, S. Polymeric Microneedles for the Eye: An Overview of Advances and Ocular Applications for Minimally Invasive Drug Delivery. Eur. J. Pharm. Biopharm. 2024, 197, 114209. https://doi.org/10.1016/j.ejpb.2024.114209.
- 54.
Meng, Y.; Li, X.J.; Li, Y.; et al. Novel Double-Layer Dissolving Microneedles for Transmucosal Sequential Delivery of Multiple Drugs in the Treatment of Oral Mucosa Diseases. ACS Appl. Mater. Interfaces 2023, 15, 13892–13906. https://doi.org/10.1021/acsami.2c19913.
- 55.
Zheng, B.; Li, Q.; Fang, L.; et al. Microorganism Microneedle Micro-Engine Depth Drug Delivery. Nat. Commun. 2024, 15, 8947. https://doi.org/10.1038/s41467-024-53280-8.
- 56.
Ding, Y.-W.; Li, Y.; Zhang, Z.-W.; et al. Hydrogel Forming Microneedles Loaded with VEGF and Ritlecitinib/Polyhydroxyalkanoates Nanoparticles for Mini-Invasive Androgenetic Alopecia Treatment. Bioact. Mater. 2024, 38, 95–108. https://doi.org/10.1016/j.bioactmat.2024.04.020.
- 57.
Jiang, X.; Liu, S.; Chen, J.; et al. A Transformative Wearable Corneal Microneedle Patch for Efficient Therapy of Ocular Injury and Infection. Adv. Sci. 2025, 12, 2414548. https://doi.org/10.1002/advs.202414548.
- 58.
Song, C.; Lu, M.; Li, N.; et al. MXene-Integrated Responsive Hydrogel Microneedles for Oral Ulcers Healing. Smart Med. 2025, 4, e135. https://doi.org/10.1002/smmd.135.
- 59.
Wang, F.; Xu, Z.; Zheng, F.; et al. Cardiac Organoid Model Inspired Micro-Robot Smart Patch to Treat Myocardial Infarction. Adv. Mater. 2025, 37, 2417327. https://doi.org/10.1002/adma.202417327.
- 60.
Wang, J.; Yuan, S.; Tu, Y.; et al. Extracellular Vesicles in Skin Health, Diseases, and Aging. Interdiscip. Med. 2024, 2, e20240011. https://doi.org/10.1002/INMD.20240011.
- 61.
Shah, S.W.A.; Li, X.; Yuan, H.; et al. Innovative Transdermal Drug Delivery Systems: Benefits, Challenges, and Emerging Application. BMEMat 2025, e70001. https://doi.org/10.1002/bmm2.70001.
- 62.
Yang, D.; Chen, M.; Sun, Y.; et al. Microneedle-Mediated Transdermal Drug Delivery for Treating Diverse Skin Diseases. Acta Biomater. 2021, 121, 119–133. https://doi.org/10.1016/j.actbio.2020.12.004.
- 63.
Wang, J.; Li, X.; Zhao, X.; et al. Lactobacillus Rhamnosus GG-Derived Extracellular Vesicles Promote Wound Healing via miR-21-5p-Mediated Re-Epithelization and Angiogenesis. J. Nanobiotechnol. 2024, 22, 644. https://doi.org/10.1186/s12951-024-02893-8.
- 64.
Hu, J.; Xu, Y.; Ma, X.; et al. Hair Follicle-Targeted Delivery for Hair Recoloration Using Scalp-Curvature-Conforming Microneedles Based on Sodium Alginate and Polyvinylpyrrolidone. Int. J. Biol. Macromol. 2024, 280, 135917. https://doi.org/10.1016/j.ijbiomac.2024.135917.
- 65.
Mandal, A.; Gote, V.; Pal, D.; et al. Ocular Pharmacokinetics of a Topical Ophthalmic Nanomicellar Solution of Cyclosporine (Cequa®) for Dry Eye Disease. Pharm. Res. 2019, 36, 36. https://doi.org/10.1007/s11095-018-2556-5.
- 66.
Glover, K.; Mishra, D.; Gade, S.; et al. Microneedles for Advanced Ocular Drug Delivery. Adv. Drug Deliv. Rev. 2023, 201, 115082. https://doi.org/10.1016/j.addr.2023.115082.
- 67.
Austin, A.; Lietman, T.; Rose-Nussbaumer, J. Update on the Management of Infectious Keratitis. Ophthalmology 2017, 124, 1678–1689. https://doi.org/10.1016/j.ophtha.2017.05.012.
- 68.
Tavakoli, S.; Peynshaert, K.; Lajunen, T.; et al. Ocular Barriers to Retinal Delivery of Intravitreal Liposomes: Impact of Vitreoretinal Interface. J. Control. Release 2020, 328, 952–961. https://doi.org/10.1016/j.jconrel.2020.10.028.
- 69.
Wu, Y.; Vora, L.K.; Wang, Y.; et al. Long-Acting Nanoparticle-Loaded Bilayer Microneedles for Protein Delivery to the Posterior Segment of the Eye. Eur. J. Pharm. Biopharm. 2021, 165, 306–318. https://doi.org/10.1016/j.ejpb.2021.05.022.
- 70.
Choi, J.; Shim, S.; Shin, J.; et al. Suprachoroidal Space-Inducing Hydrogel-Forming Microneedles (SI-HFMN): An Innovative Platform for Drug Delivery to the Posterior Segment of the Eye. Bioact. Mater. 2025, 50, 47–60. https://doi.org/10.1016/j.bioactmat.2025.03.024.
- 71.
Paderni, C.; Compilato, D.; Giannola, L.I.; et al. Oral Local Drug Delivery and New Perspectives in Oral Drug Formulation. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 2012, 114, e25–e34. https://doi.org/10.1016/j.oooo.2012.02.016.
- 72.
Liu, J.; Zhang, Z.; Lin, X.; et al. Magnesium Metal–Organic Framework Microneedles Loaded with Curcumin for Accelerating Oral Ulcer Healing. J. Nanobiotechnol. 2024, 22, 594. https://doi.org/10.1186/s12951-024-02873-y.
- 73.
Aldeen Salaymeh, E.; Steinberg, D.; Abu Ammar, A. Chlorhexidine-Loaded Microneedles for Treatment of Oral Diseases. Int. J. Pharm. 2025, 670, 125143. https://doi.org/10.1016/j.ijpharm.2024.125143.
- 74.
Ferreira, L.E.; Franz-Montan, M.; Benso, B.; et al. Microneedles for Oral Mucosal Delivery—Current Trends and Perspective on Future Directions. Expert Opin. Drug Deliv. 2023, 20, 1251–1265. https://doi.org/10.1080/17425247.2023.2264189.
- 75.
Zhu, R.; Sun, H.; Yu, K.; et al. Interleukin-37 and Dendritic Cells Treated with Interleukin-37 Plus Troponin I Ameliorate Cardiac Remodeling After Myocardial Infarction. JAHA 2016, 5, e004406. https://doi.org/10.1161/JAHA.116.004406.
- 76.
Tang, J.; Wang, J.; Huang, K.; et al. Cardiac Cell–Integrated Microneedle Patch for Treating Myocardial Infarction. Sci. Adv. 2018, 4, eaat9365. https://doi.org/10.1126/sciadv.aat9365.
- 77.
Hu, S.; Zhu, D.; Li, Z.; et al. Detachable Microneedle Patches Deliver Mesenchymal Stromal Cell Factor-Loaded Nanoparticles for Cardiac Repair. ACS Nano 2022, 16, 15935–15945. https://doi.org/10.1021/acsnano.2c03060.