2509001551
  • Open Access
  • Perspective

Microneedles: A Promising Therapeutic Strategy for Next-Generation Drug Delivery, Diagnosis and Biosensing

  • Yu Tian 1,   
  • Yu Chen 1, 2, *

Received: 30 Jun 2025 | Revised: 12 Sep 2025 | Accepted: 23 Sep 2025 | Published: 26 Sep 2025

Abstract

Microneedles (MNs) have emerged as a transformative drug delivery technology, offering a minimally invasive, painless alternative that bridges the gap between conventional injections and topical therapies. Initially developed for transdermal delivery, MNs have rapidly evolved into multifunctional platforms capable of administering diverse therapeutic agents, with enhanced precision and bioavailability. Recent innovations have extended MN applications far beyond the skin, enabling closed-loop therapeutic systems through integration with biosensors and stimuli-responsive release mechanisms for the treatment of chronic diseases such as diabetes and cancer. Expanding beyond human medicine, MNs are also being explored in plant science for precise agrochemical delivery and real-time physiological monitoring. Moreover, the adaptability of MNs has led to their successful deployment in challenging anatomical sites, including the oral cavity, eyes, and myocardium, enabling localized and targeted treatments. As the field advances, key challenges remain in material optimization, scalable manufacturing, and clinical translation. Looking forward, the convergence of MNs with wearable technologies and artificial intelligence holds promise for achieving personalized, data-driven therapeutic interventions. This review highlights the recent progress, diverse applications, and future potential of MNs as a next-generation delivery and diagnostic platform.

References 

  • 1.
    Mbituyimana, B.; Adhikari, M.; Qi, F.; et al. Microneedle-Based Cell Delivery and Cell Sampling for Biomedical Applications. J. Control. Release 2023, 362, 692–714. https://doi.org/10.1016/j.jconrel.2023.09.013.
  • 2.
    Tobos, C.I.; Woodrow, K.A. Dissolving Microneedles for Nucleic Acid Delivery: A Systematic Search, Review, and Data Synthesis. Acta Biomater. 2025, 200, 115–131. https://doi.org/10.1016/j.actbio.2025.05.025.
  • 3.
    Tian, Y.; Xia, L.; Song, X.; et al. Dissolving Microneedles as In Situ Chemical Reaction Chambers: From Design Strategies to Versatile Biomedical Applications. Adv. Funct. Mater. 2025, 35, 2422274. https://doi.org/10.1002/adfm.202422274.
  • 4.
    Tian, Y.; Lee, J.; van der Maaden, K.; et al. Intradermal Administration of Influenza Vaccine with Trehalose and Pullulan-Based Dissolving Microneedle Arrays. J. Pharm. Sci. 2022, 111, 1070–1080. https://doi.org/10.1016/j.xphs.2022.01.033.
  • 5.
    Avcil, M.; Çelik, A. Microneedles in Drug Delivery: Progress and Challenges. Micromachines 2021, 12, 1321. https://doi.org/10.3390/mi12111321.
  • 6.
    Yang, Y.; Sun, H.; Sun, X.; et al. From Mechanism to Applications: Advanced Microneedles for Clinical Medicine. Bioact. Mater. 2025, 51, 1–45. https://doi.org/10.1016/j.bioactmat.2025.04.025.
  • 7.
    Koenitz, L.; Crean, A.; Vucen, S. Stress Factors Affecting Protein Stability during the Fabrication and Storage of Dissolvable Microneedles. RPS Pharm. Pharmacol. Rep. 2024, 3, rqae018. https://doi.org/10.1093/rpsppr/rqae018.
  • 8.
    Wu, P.; Zhang, T.; Zhao, D.; et al. Microneedle-Enabled Breakthroughs in Nucleic Acid Therapeutics. Adv. Healthc. Mater. 2025, 14, 2501015. https://doi.org/10.1002/adhm.202501015.
  • 9.
    Cheng, Y.; Lu, Y. Physical Stimuli-Responsive Polymeric Patches for Healthcare. Bioact. Mater. 2025, 43, 342–375. https://doi.org/10.1016/j.bioactmat.2024.08.025.
  • 10.
    Liu, Y.; Yu, Q.; Luo, X.; et al. Continuous Monitoring of Diabetes with an Integrated Microneedle Biosensing Device through 3D Printing. Microsyst. Nanoeng. 2021, 7, 75. https://doi.org/10.1038/s41378-021-00302-w.
  • 11.
    Li, L.; Zhou, Y.; Sun, C.; et al. Fully Integrated Wearable Microneedle Biosensing Platform for Wide-Range and Real-Time Continuous Glucose Monitoring. Acta Biomater. 2024, 175, 199–213. https://doi.org/10.1016/j.actbio.2023.12.044.
  • 12.
    Dervisevic, M.; Alba, M.; Adams, T.E.; et al. Electrochemical Immunosensor for Breast Cancer Biomarker Detection Using High-Density Silicon Microneedle Array. Biosens. Bioelectron. 2021, 192, 113496. https://doi.org/10.1016/j.bios.2021.113496.
  • 13.
    Faraji Rad, Z. Microneedle Technologies for Food and Crop Health: Recent Advances and Future Perspectives. Adv. Eng. Mater. 2023, 25, 2201194. https://doi.org/10.1002/adem.202201194.
  • 14.
    Cao, Y.; Kim, D.; Koh, S.S.; et al. Nanofabrication of Silk Microneedles for High-Throughput Micronutrient Delivery and Continuous Sap Monitoring in Plants. Nat. Nanotechnol. 2025, 20, 1142–1151. https://doi.org/10.1038/s41565-025-01923-2.
  • 15.
    Paul, R.; Saville, A.C.; Hansel, J.C.; et al. Extraction of Plant DNA by Microneedle Patch for Rapid Detection of Plant Diseases. ACS Nano 2019, 13, 6540–6549. https://doi.org/10.1021/acsnano.9b00193.
  • 16.
    Creighton, R.L.; Faber, K.A.; Tobos, C.I.; et al. Oral Mucosal Vaccination Using Integrated Fiber Microneedles. J. Control. Release 2024, 367, 649–660. https://doi.org/10.1016/j.jconrel.2024.01.062.
  • 17.
    Zhang, X.; Hasani-Sadrabadi, M.M.; Zarubova, J.; et al. Immunomodulatory Microneedle Patch for Periodontal Tissue Regeneration. Matter 2022, 5, 666–682. https://doi.org/10.1016/j.matt.2021.11.017.
  • 18.
    Gadziński, P.; Froelich, A.; Wojtyłko, M.; et al. Microneedle-Based Ocular Drug Delivery Systems—Recent Advances and Challenges. Beilstein J. Nanotechnol. 2022, 13, 1167–1184. https://doi.org/10.3762/bjnano.13.98.
  • 19.
    Wang, L.; Guo, Y.; Chen, B.; et al. An Annular Corneal Microneedle Patch for Minimally Invasive Ophthalmic Drug Delivery. Sci. Adv. 2025, 11, eadv1661. https://doi.org/10.1126/sciadv.adv1661.
  • 20.
    Long, L.; Ji, D.; Hu, C.; et al. Microneedles for in Situ Tissue Regeneration. Mater. Today Bio 2023, 19, 100579. https://doi.org/10.1016/j.mtbio.2023.100579.
  • 21.
    Teepe, G.; Thayyil, M.V.; Joram, N.; et al. Bioelectric Energy Harvesting from Myocardial Tissue In-Vivo. A New Method for Biological Energy Collection. Heart Rhythm 2025, in press. https://doi.org/10.1016/j.hrthm.2025.06.003.
  • 22.
    Wang, Z.; Luan, J.; Seth, A.; et al. Microneedle Patch for the Ultrasensitive Quantification of Protein Biomarkers in Interstitial Fluid. Nat. Biomed. Eng. 2021, 5, 64–76. https://doi.org/10.1038/s41551-020-00672-y.
  • 23.
    Saifullah, K.M.; Faraji Rad, Z. Sampling Dermal Interstitial Fluid Using Microneedles: A Review of Recent Developments in Sampling Methods and Microneedle-Based Biosensors. Adv. Mater. Interfaces 2023, 10, 2201763. https://doi.org/10.1002/admi.202201763.
  • 24.
    Hu, Y.; Chatzilakou, E.; Pan, Z.; et al. Microneedle Sensors for Point-of-Care Diagnostics. Adv. Sci. 2024, 11, 2306560. https://doi.org/10.1002/advs.202306560.
  • 25.
    Pei, S.; Babity, S.; Sara Cordeiro, A.; et al. Integrating Microneedles and Sensing Strategies for Diagnostic and Monitoring Applications: The State of the Art. Adv. Drug Deliv. Rev. 2024, 210, 115341. https://doi.org/10.1016/j.addr.2024.115341.
  • 26.
    Dixon, R.V.; Skaria, E.; Lau, W.M.; et al. Microneedle-Based Devices for Point-of-Care Infectious Disease Diagnostics. Acta Pharm. Sin. B 2021, 11, 2344–2361. https://doi.org/10.1016/j.apsb.2021.02.010.
  • 27.
    Huang, X.; Zheng, S.; Liang, B.; et al. 3D-Assembled Microneedle Ion Sensor-Based Wearable System for the Transdermal Monitoring of Physiological Ion Fluctuations. Microsyst. Nanoeng. 2023, 9, 25. https://doi.org/10.1038/s41378-023-00497-0.
  • 28.
    Yang, Y.; Sheng, C.; Dong, F.; et al. An Integrated Wearable Differential Microneedle Array for Continuous Glucose Monitoring in Interstitial Fluids. Biosens. Bioelectron. 2024, 256, 116280. https://doi.org/10.1016/j.bios.2024.116280.
  • 29.
    Raz, A.; Gubi, H.; Cohen, A.; et al. Transdermal Minimally Invasive Optical Multiplex Detection of Protein Biomarkers by Nanopillars Array-Embedded Microneedles. ACS Nano 2024, 18, 30848–30862. https://doi.org/10.1021/acsnano.4c11612.
  • 30.
    Kim, G.; Ahn, H.; Chaj Ulloa, J.; et al. Microneedle Sensors for Dermal Interstitial Fluid Analysis. Med-X 2024, 2, 15. https://doi.org/10.1007/s44258-024-00028-0.
  • 31.
    Clarke, W.L.; Renard, E. Clinical Requirements for Closed-Loop Control Systems. J. Diabetes Sci. Technol. 2012, 6, 444–452. https://doi.org/10.1177/193229681200600233.
  • 32.
    Farmer, T.G.; Edgar, T.F.; Peppas, N.A. The Future of Open- and Closed-Loop Insulin Delivery Systems†. J. Pharm. Pharmacol. 2008, 60, 1–13. https://doi.org/10.1211/jpp.60.1.0001.
  • 33.
    Zheng, Z.; Zhu, R.; Peng, I.; et al. Wearable and Implantable Biosensors: Mechanisms and Applications in Closed-Loop Therapeutic Systems. J. Mater. Chem. B 2024, 12, 8577–8604. https://doi.org/10.1039/D4TB00782D.
  • 34.
    Stead, W.W.; Gregg, W.M.; Jirjis, J.N. Extending Closed-loop Control to The Management of Chronic Disease. Trans Am Clin Clim. Assoc. 2011, 122, 93–102.
  • 35.
    Ware, J.; Hovorka, R. Closed-Loop Insulin Delivery: Update on the State of the Field and Emerging Technologies. Expert Rev Med Devices. 2022, 19, 859–875. https://doi.org/10.1080/17434440.2022.2142556.
  • 36.
    Li, X.; Huang, X.; Mo, J.; et al. A Fully Integrated Closed-Loop System Based on Mesoporous Microneedles-Iontophoresis for Diabetes Treatment. Adv. Sci. 2021, 8, e2100827. https://doi.org/10.1002/advs.202100827.
  • 37.
    Parrilla, M.; Detamornrat, U.; Domínguez-Robles, J.; et al. Wearable Microneedle-Based Array Patches for Continuous Electrochemical Monitoring and Drug Delivery: Toward a Closed-Loop System for Methotrexate Treatment. ACS Sens. 2023, 8, 4161–4170. https://doi.org/10.1021/acssensors.3c01381.
  • 38.
    Liang, S.; Liu, S.; Long, Z.; et al. A Self-Powered Hydration-Monitoring and Drug-Delivery Skin Patch for Closed-Loop Treatment of Atopic Dermatitis. Microsyst. Nanoeng. 2025, 11, 156. https://doi.org/10.1038/s41378-025-01000-7.
  • 39.
    Su, Y.; Ashworth, V.; Kim, C.; et al. Delivery, Uptake, Fate, and Transport of Engineered Nanoparticles in Plants: A Critical Review and Data Analysis. Environ. Sci. Nano 2019, 6, 2311–2331. https://doi.org/10.1039/C9EN00461K.
  • 40.
    Christiano, R.S.C.; Reilly, C.C.; Miller, W.P.; et al. Oxytetracycline Dynamics on Peach Leaves in Relation to Temperature, Sunlight, and Simulated Rain. Plant Dis. 2010, 94, 1213–1218. https://doi.org/10.1094/PDIS-04-10-0282.
  • 41.
    Dudley, N.; Alexander, S. Agriculture and Biodiversity: A Review. Biodiversity 2017, 18, 45–49. https://doi.org/10.1080/14888386.2017.1351892.
  • 42.
    Pilling, D.; Bélanger, J.; Hoffmann, I. Declining Biodiversity for Food and Agriculture Needs Urgent Global Action. Nat. Food 2020, 1, 144–147. https://doi.org/10.1038/s43016-020-0040-y.
  • 43.
    Nicolopoulou-Stamati, P.; Maipas, S.; Kotampasi, C.; et al. Chemical Pesticides and Human Health: The Urgent Need for a New Concept in Agriculture. Front. Public Health 2016, 4, 148. https://doi.org/10.3389/fpubh.2016.00148.
  • 44.
    Ece, E.; Eş, I.; Inci, F. Microneedle Technology as a New Standpoint in Agriculture: Treatment and Sensing. Mater. Today 2023, 68, 275–297. https://doi.org/10.1016/j.mattod.2023.07.002.
  • 45.
    Cao, Y.; Koh, S.S.; Han, Y.; et al. Drug Delivery in Plants Using Silk Microneedles. Adv. Mater. 2023, 35, 2205794. https://doi.org/10.1002/adma.202205794.
  • 46.
    Cao, Y.; Lim, E.; Xu, M.; et al. Precision Delivery of Multiscale Payloads to Tissue-Specific Targets in Plants. Adv. Sci. 2020, 7, 1903551. https://doi.org/10.1002/advs.201903551.
  • 47.
    Wang, B.; Lu, H.; Jiang, S.; et al. Recent Advances of Microneedles Biosensors for Plants. Anal. Bioanal. Chem. 2024, 416, 55–69. https://doi.org/10.1007/s00216-023-05003-z.
  • 48.
    Selz, J.; Adam, N.R.; Magrini, C.E.M.; et al. A Field-Capable Rapid Plant DNA Extraction Protocol Using Microneedle Patches for Botanical Surveying and Monitoring. Appl. Plant Sci. 2023, 11, e11529. https://doi.org/10.1002/aps3.11529.
  • 49.
    Paul, R.; Ostermann, E.; Chen, Y.; et al. Integrated Microneedle-Smartphone Nucleic Acid Amplification Platform for in-Field Diagnosis of Plant Diseases. Biosens. Bioelectron. 2021, 187, 113312. https://doi.org/10.1016/j.bios.2021.113312.
  • 50.
    Fiorello, I.; Meder, F.; Mondini, A.; et al. Plant-like Hooked Miniature Machines for on-Leaf Sensing and Delivery. Commun. Mater. 2021, 2, 103. https://doi.org/10.1038/s43246-021-00208-0.
  • 51.
    Seong, K.-Y.; Kim, M.J.; Lee, H.; et al. One-Touch Embeddable Microneedles for Hair Loss Treatment. Int. J. Pharm. 2025, 669, 125020. https://doi.org/10.1016/j.ijpharm.2024.125020.
  • 52.
    Kaur, S.D.; Choudhary, S.; Sen, S.; et al. Microneedle Patches: The next Frontier in Cardiovascular Care. Drug Deliv. Transl. Res. 2025, 15, 2951–2966. https://doi.org/10.1007/s13346-025-01802-2.
  • 53.
    Mulkutkar, M.; Damani, M.; Sawarkar, S. Polymeric Microneedles for the Eye: An Overview of Advances and Ocular Applications for Minimally Invasive Drug Delivery. Eur. J. Pharm. Biopharm. 2024, 197, 114209. https://doi.org/10.1016/j.ejpb.2024.114209.
  • 54.
    Meng, Y.; Li, X.J.; Li, Y.; et al. Novel Double-Layer Dissolving Microneedles for Transmucosal Sequential Delivery of Multiple Drugs in the Treatment of Oral Mucosa Diseases. ACS Appl. Mater. Interfaces 2023, 15, 13892–13906. https://doi.org/10.1021/acsami.2c19913.
  • 55.
    Zheng, B.; Li, Q.; Fang, L.; et al. Microorganism Microneedle Micro-Engine Depth Drug Delivery. Nat. Commun. 2024, 15, 8947. https://doi.org/10.1038/s41467-024-53280-8.
  • 56.
    Ding, Y.-W.; Li, Y.; Zhang, Z.-W.; et al. Hydrogel Forming Microneedles Loaded with VEGF and Ritlecitinib/Polyhydroxyalkanoates Nanoparticles for Mini-Invasive Androgenetic Alopecia Treatment. Bioact. Mater. 2024, 38, 95–108. https://doi.org/10.1016/j.bioactmat.2024.04.020.
  • 57.
    Jiang, X.; Liu, S.; Chen, J.; et al. A Transformative Wearable Corneal Microneedle Patch for Efficient Therapy of Ocular Injury and Infection. Adv. Sci. 2025, 12, 2414548. https://doi.org/10.1002/advs.202414548.
  • 58.
    Song, C.; Lu, M.; Li, N.; et al. MXene-Integrated Responsive Hydrogel Microneedles for Oral Ulcers Healing. Smart Med. 2025, 4, e135. https://doi.org/10.1002/smmd.135.
  • 59.
    Wang, F.; Xu, Z.; Zheng, F.; et al. Cardiac Organoid Model Inspired Micro-Robot Smart Patch to Treat Myocardial Infarction. Adv. Mater. 2025, 37, 2417327. https://doi.org/10.1002/adma.202417327.
  • 60.
    Wang, J.; Yuan, S.; Tu, Y.; et al. Extracellular Vesicles in Skin Health, Diseases, and Aging. Interdiscip. Med. 2024, 2, e20240011. https://doi.org/10.1002/INMD.20240011.
  • 61.
    Shah, S.W.A.; Li, X.; Yuan, H.; et al. Innovative Transdermal Drug Delivery Systems: Benefits, Challenges, and Emerging Application. BMEMat 2025, e70001. https://doi.org/10.1002/bmm2.70001.
  • 62.
    Yang, D.; Chen, M.; Sun, Y.; et al. Microneedle-Mediated Transdermal Drug Delivery for Treating Diverse Skin Diseases. Acta Biomater. 2021, 121, 119–133. https://doi.org/10.1016/j.actbio.2020.12.004.
  • 63.
    Wang, J.; Li, X.; Zhao, X.; et al. Lactobacillus Rhamnosus GG-Derived Extracellular Vesicles Promote Wound Healing via miR-21-5p-Mediated Re-Epithelization and Angiogenesis. J. Nanobiotechnol. 2024, 22, 644. https://doi.org/10.1186/s12951-024-02893-8.
  • 64.
    Hu, J.; Xu, Y.; Ma, X.; et al. Hair Follicle-Targeted Delivery for Hair Recoloration Using Scalp-Curvature-Conforming Microneedles Based on Sodium Alginate and Polyvinylpyrrolidone. Int. J. Biol. Macromol. 2024, 280, 135917. https://doi.org/10.1016/j.ijbiomac.2024.135917.
  • 65.
    Mandal, A.; Gote, V.; Pal, D.; et al. Ocular Pharmacokinetics of a Topical Ophthalmic Nanomicellar Solution of Cyclosporine (Cequa®) for Dry Eye Disease. Pharm. Res. 2019, 36, 36. https://doi.org/10.1007/s11095-018-2556-5.
  • 66.
    Glover, K.; Mishra, D.; Gade, S.; et al. Microneedles for Advanced Ocular Drug Delivery. Adv. Drug Deliv. Rev. 2023, 201, 115082. https://doi.org/10.1016/j.addr.2023.115082.
  • 67.
    Austin, A.; Lietman, T.; Rose-Nussbaumer, J. Update on the Management of Infectious Keratitis. Ophthalmology 2017, 124, 1678–1689. https://doi.org/10.1016/j.ophtha.2017.05.012.
  • 68.
    Tavakoli, S.; Peynshaert, K.; Lajunen, T.; et al. Ocular Barriers to Retinal Delivery of Intravitreal Liposomes: Impact of Vitreoretinal Interface. J. Control. Release 2020, 328, 952–961. https://doi.org/10.1016/j.jconrel.2020.10.028.
  • 69.
    Wu, Y.; Vora, L.K.; Wang, Y.; et al. Long-Acting Nanoparticle-Loaded Bilayer Microneedles for Protein Delivery to the Posterior Segment of the Eye. Eur. J. Pharm. Biopharm. 2021, 165, 306–318. https://doi.org/10.1016/j.ejpb.2021.05.022.
  • 70.
    Choi, J.; Shim, S.; Shin, J.; et al. Suprachoroidal Space-Inducing Hydrogel-Forming Microneedles (SI-HFMN): An Innovative Platform for Drug Delivery to the Posterior Segment of the Eye. Bioact. Mater. 2025, 50, 47–60. https://doi.org/10.1016/j.bioactmat.2025.03.024.
  • 71.
    Paderni, C.; Compilato, D.; Giannola, L.I.; et al. Oral Local Drug Delivery and New Perspectives in Oral Drug Formulation. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 2012, 114, e25–e34. https://doi.org/10.1016/j.oooo.2012.02.016.
  • 72.
    Liu, J.; Zhang, Z.; Lin, X.; et al. Magnesium Metal–Organic Framework Microneedles Loaded with Curcumin for Accelerating Oral Ulcer Healing. J. Nanobiotechnol. 2024, 22, 594. https://doi.org/10.1186/s12951-024-02873-y.
  • 73.
    Aldeen Salaymeh, E.; Steinberg, D.; Abu Ammar, A. Chlorhexidine-Loaded Microneedles for Treatment of Oral Diseases. Int. J. Pharm. 2025, 670, 125143. https://doi.org/10.1016/j.ijpharm.2024.125143.
  • 74.
    Ferreira, L.E.; Franz-Montan, M.; Benso, B.; et al. Microneedles for Oral Mucosal Delivery—Current Trends and Perspective on Future Directions. Expert Opin. Drug Deliv. 2023, 20, 1251–1265. https://doi.org/10.1080/17425247.2023.2264189.
  • 75.
    Zhu, R.; Sun, H.; Yu, K.; et al. Interleukin-37 and Dendritic Cells Treated with Interleukin-37 Plus Troponin I Ameliorate Cardiac Remodeling After Myocardial Infarction. JAHA 2016, 5, e004406. https://doi.org/10.1161/JAHA.116.004406.
  • 76.
    Tang, J.; Wang, J.; Huang, K.; et al. Cardiac Cell–Integrated Microneedle Patch for Treating Myocardial Infarction. Sci. Adv. 2018, 4, eaat9365. https://doi.org/10.1126/sciadv.aat9365.
  • 77.
    Hu, S.; Zhu, D.; Li, Z.; et al. Detachable Microneedle Patches Deliver Mesenchymal Stromal Cell Factor-Loaded Nanoparticles for Cardiac Repair. ACS Nano 2022, 16, 15935–15945. https://doi.org/10.1021/acsnano.2c03060.
Share this article:
How to Cite
Tian, Y.; Chen, Y. Microneedles: A Promising Therapeutic Strategy for Next-Generation Drug Delivery, Diagnosis and Biosensing. Medical Materials Research 2025, 1 (1), 5. https://doi.org/10.53941/mmr.2025.100005 .
RIS
BibTex
Copyright & License
article copyright Image
Copyright (c) 2025 by the authors.