2508001085
  • Open Access
  • Article

The Evolution of the IR and Raman Spectra When the Symmetry Reduces—The Case of the LaCoO3 Perovskite

  • Tarek Larbi 1, 2, *,   
  • Klaus Doll 3,   
  • Michel Rerat 4,   
  • Roberto Dovesi 5

Received: 11 Jul 2025 | Revised: 07 Aug 2025 | Accepted: 08 Aug 2025 | Published: 14 Aug 2025

Abstract

The IR and Raman spectra of the LaCoO3 perovskite (the formal occupancy on Co is d6, low spin, t2g6) are computed by imposing space groups (SG) of decreasing symmetry, from the cubic (SG Pm-3m, N. 221, and Fm-3m, N. 225), to the tetragonal (SG 140), rhombohedral (SG 167) and orthorhombic (SG 62) ones. The total energy differences between these structures, computed at the quantum mechanical level by using an all electron Gaussian type basis set and the full range hybrid B3LYP functional, is extremely small: 0.2 mEh between SG 167 and SG 62, 1.2 mEh between SG 140 and SG 62, and 4.5 mEh between the most stable structure and the cubic, ideal aristotype. These minor differences indicate that the experimentally proposed SG might be one of the (many) possible alternatives. The IR and Raman spectra are very rarely used for the identification of the symmetry of the perovskites at different temperatures. Here we investigate the evolution of the two spectra (IR and Raman) through the various competing space groups, exploring the possibility that they might be used for the identification of the low temperature structure (SG and position of the atoms) of the investigated compounds, and of perovskites in particular. 

References 

  • 1.
    Glazer, A.M. The classification of tilted octahedral in perovskites. Acta Crystallogr. Sect. B 1972, 28, 3384.
  • 2.
    Glazer, A.M. Simple ways of determining perovskite structures. Acta Crystallogr. Sect. A 1975, 31, 756.
  • 3.
    Pascale, F.; Darco, P.; Dovesi, R. The ferromagnetic and anti-ferromagnetic phases (cubic, tetragonal, orthorhombic) of KMnF3. A quantum mechanical investigation. Phys. Chem. Chem. Phys. 2021, 23, 26780. https://doi.org/10.1039/D1CP03816H.
  • 4.
    El-Kelany, K.E.; Pascale, F.; Platonenko, A.; et al. Quantum mechanical simulation of various phases of KVF3 perovstites. J. Phys. Condens. Matter 2022, 34, 285401.
  • 5.
    Goldschmidt, V. Die Gesetze der Krystallochemie. Naturwissenschaften 1926, 14, 477.
  • 6.
    Shannon, R.D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. Sect. A 1976, 32, 751. https://doi.org/10.1107/S0567739476001551.
  • 7.
    Dubrovin, R.M.; Garcia-Castro, A.C.; Siverin, N.V.; et al. Incipient geometric lattice instability of cubic fluoroperovskites. Phys. Rev. B 2021, 104, 144304. https://link.aps.org/doi/10.1103/PhysRevB.104.144304.
  • 8.
    Geller, S. Crystallographic studies of perovskite-like compounds. IV Rare earth scandates, vanadites, galliates, orthochromites. Acta Crystallogr. 1957, 10, 243. https://doi.org/10.1107/ S0365110X57000778.
  • 9.
    Cwik, M.; Lorenz, T.; Baier, J.; et al. Crystal and magnetic structure of LaTiO3: Evidence nondegenerate t2g orbitals. Phys. Rev. B 2003, 68, 060401. https://link. aps.org/doi/10.1103/PhysRevB.68.060401.
  • 10.
    Bordet, P.; Chaillout, C.; Marezio, M.; et al. Strucutral Aspects of the Crystallographic-Magnetic Transition in LaVO3 around 140 K. J. Solid State Chem. 1993, 106, 253. https://doi.org/10.1006/jssc.1993.1285.
  • 11.
    Tezuka, K.; Hinatsu, Y.; Nakamura, A.; et al. Magnetic properties of ternanry sodium oxides NaLnO2 (Ln = Rare earths). J. Solid State Chem. 1998, 141, 404. https://doi.org/10.1016/j.jssc.2003.08.001.
  • 12.
    Li, G.; Kuang, X.; Tian, S.; et al. Structural and Conductivity of Perovskites Sr1-xLaxT1-xCrxO3. J. Solid State Chem. 2002, 165, 381. https://doi.org/10.1006/jssc.2002.9561.
  • 13.
    Elemans, J.B.; Van Laar, B.; Van Der Veen, K.; et al. The crystallographic and magnetic structures of La1-xBaxMn1-xMexO3(Me = Mn or Ti). J. Solid State Chem. 1971, 3, 238. https://doi.org/10.1016/0022-4596(71)90034-X.
  • 14.
    Dann, S.; Currie, D.; Weller, M.; et al. The sysntheis and structures of Sr2FeO4. J. Solid State Chem. 1994, 109, 134. https://doi.org/10.1016/0022-4596(91)90263-H.
  • 15.
    Thornton, G.; To eld, B.; Hewat, A. A neutron diffraction study of LaCoO3 on the temperature range 42 < T < 1248 K. J. Solid State Chem. 1986, 61, 301. https://doi.org/10.1016/0022-4596(86)90035-6.
  • 16.
    Haas, O.; Struis, R.; McBreen, J. Synchrotron X-ray absorption of LaCoO3 perovskite. J. Solid State Chem. 2004, 177, 1000. https://doi.org/10.1016/j.jssc.2003.10.004.
  • 17.
    Garca-Munoz, J.L.; Rodrguez-Carvajal, J.; Lacorre, P.; et al. Neutron-diffraction study of RNiO3 (R = La, Pr, Nd, Sm) Electronically induced structural changes across the metal-insukator transition. Phys. Rev. B 1992, 46, 4414. https://doi.org/10.1103/PhysRevB.46.4414.
  • 18.
    Bringley, J.F.; Scott, B.A.; La Placa, S.J.; et al. Structural and properties of the LaCuO3-δ perovskites. Phys. Rev. B 1993, 47, 15269. https://doi.org/10.1103/PhysRevB.47.15269.
  • 19.
    Darracq, S.; Matar, S.; Demazeau, G. Correlations between the structural distortion of LaCuO3 lattice and the resulting physical properties. Solid State Commun. 1993, 85, 961. https://doi.org/10.1016/0038-1098(93)90713-W.
  • 20.
    Currie, D.B.; Weller, M.T. Structure of LaCuO3 by powder neutron diffraction. Acta Crystallogr. C 1991, 47, 696. https://doi.org/10.1107/S010827019001040X.
  • 21.
    Becke, A.D. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 1993, 98, 5648.
  • 22.
    Lee, C.; Yang, W.; Parr, R. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 1988, 37, 785.
  • 23.
    Dovesi, R.; Saunders, V.R.; Roetti, C.; et al. Quantum-mechanical condensed matter simulations with CRYSTAL. In CRYSTAL Users Manual; Universita di Torino: Torino, Italy, 2017.
  • 24.
    Dovesi, R.; Pascale, F.; Civalleri, B.; et al. The CRYSTAL code, 1976-2020 and beyond, a long story. J. Chem. Phys. 2020, 152, 204111.
  • 25.
    Dovesi, R.; Pisani, C.; Roetti, C.; et al. Treatment of Coulomb interactions in Hartree-Fock calculations of periodic systems. Phys. Rev. B 1983, 28, 5781. https://doi.org/10.1103/PhysRevB.28.5781.
  • 26.
    Causà, M.; Dovesi, R.; Orlando, R.; et al. Treatment of the exchange interactions in Hartree-Fock LCAO calculations of periodic systems. J. Phys. Chem. 1988, 92, 909. https://doi.org/10.1021/j100315a010.
  • 27.
    Dovesi, R.; Saunders, V.R.; Roetti, C.; et al. CRYSTAL06 Users Manual; Universita di Torino: Torino, Italy, 2006.
  • 28.
    Pascale, F.; Zicovich-Wilson, C.M.; Gejo, F.L.; et al. The calcukation of the vibrational frequencies of crystalline compounds and its implementation in the CRYSTAL code. J. Comput. Chem. 2004, 25, 888. https://doi.org/10.1002/jcc.20019.
  • 29.
    Zicovich-Wilson, C.M.; Pascale, F.; Roetti, C.; et al. Calculation of the vibration frequencies of alpha-quartz: The effect of Hamiltonian and ba sis set. J. Comput. Chem. 2004, 25, 1873. https://doi.org/10.1002/jcc.20120.
  • 30.
    Carteret, C.; Pierre, M.D.L.; Dossot, M.; et al. The vibrational spectrum of CaCO3 aragonite: A combined experimental and quantum-mechanical investigation. J. Chem. Phys. 2013, 138, 014201.
  • 31.
    Ferrero, M.; Rerat, M.; Kirtman, B.; et al. Calcukation of first and second static hyperpolarizabilities of one- to three-dimensional periodic compounds. Implementation in the CRYSTAL code. J. Chem. Phys. 2008, 129, 244110. https://doi.org/10.1063/1.3043366.
  • 32.
    Ferrero, M.; Rérat, M.; Orlando, R.; et al. Coupled perturbed Hartree-Fock for periodic systems: The role of symmetry and related computational aspects. J. Chem. Phys. 2008, 128, 014110.
  • 33.
    Maschio, L.; Kirtman, B.; Rerat, M.; et al. Ab initio analatical Raman intensities for periodic systems through a coupled perturbed Hartree-Fock-Kohn-Sham method in an atomic orbital basis. II. Validation and comparison with experiments. J. Chem. Phys. 2013, 139, 164102. https://doi.org/10.1063/1.4824443.
  • 34.
    El-Kelany, K.E.; Platonenko, A.; Doll, K.; et al. The Structural, Electronic and vibrational Properties of LaCrO3. A Quantum Mechanical Investigation by using an All Electron Gaussian Type Basis Set and a Full Range Hybrid Functional. J. Comput. Chem. 2025, 46, e27523. https://doi.org/10.1002/jcc.27523.
  • 35.
    El-Kelany, K.E.; Platonenko, A.; Sambrano, J.; et al. The charge and spin density of five LBO3 perovskytes (B= Sc, Ti, V, Cr and Co). A Mulliken analysis. Chem. Phys. 2025, 591, 112594. https://doi.org/10.1016/j.chemphys.2024.112594.
Share this article:
How to Cite
Larbi, T.; Doll, K.; Rerat, M.; Dovesi, R. The Evolution of the IR and Raman Spectra When the Symmetry Reduces—The Case of the LaCoO3 Perovskite. Photochemistry and Spectroscopy 2026.
RIS
BibTex
Copyright & License
article copyright Image
Copyright (c) 2025 by the authors.