- 1.
Glazer, A.M. The classification of tilted octahedral in perovskites. Acta Crystallogr. Sect. B 1972, 28, 3384.
- 2.
Glazer, A.M. Simple ways of determining perovskite structures. Acta Crystallogr. Sect. A 1975, 31, 756.
- 3.
Pascale, F.; Darco, P.; Dovesi, R. The ferromagnetic and anti-ferromagnetic phases (cubic, tetragonal, orthorhombic) of KMnF3. A quantum mechanical investigation. Phys. Chem. Chem. Phys. 2021, 23, 26780. https://doi.org/10.1039/D1CP03816H.
- 4.
El-Kelany, K.E.; Pascale, F.; Platonenko, A.; et al. Quantum mechanical simulation of various phases of KVF3 perovstites. J. Phys. Condens. Matter 2022, 34, 285401.
- 5.
Goldschmidt, V. Die Gesetze der Krystallochemie. Naturwissenschaften 1926, 14, 477.
- 6.
Shannon, R.D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. Sect. A 1976, 32, 751. https://doi.org/10.1107/S0567739476001551.
- 7.
Dubrovin, R.M.; Garcia-Castro, A.C.; Siverin, N.V.; et al. Incipient geometric lattice instability of cubic fluoroperovskites. Phys. Rev. B 2021, 104, 144304. https://link.aps.org/doi/10.1103/PhysRevB.104.144304.
- 8.
Geller, S. Crystallographic studies of perovskite-like compounds. IV Rare earth scandates, vanadites, galliates, orthochromites. Acta Crystallogr. 1957, 10, 243. https://doi.org/10.1107/ S0365110X57000778.
- 9.
Cwik, M.; Lorenz, T.; Baier, J.; et al. Crystal and magnetic structure of LaTiO3: Evidence nondegenerate t2g orbitals. Phys. Rev. B 2003, 68, 060401. https://link. aps.org/doi/10.1103/PhysRevB.68.060401.
- 10.
Bordet, P.; Chaillout, C.; Marezio, M.; et al. Strucutral Aspects of the Crystallographic-Magnetic Transition in LaVO3 around 140 K. J. Solid State Chem. 1993, 106, 253. https://doi.org/10.1006/jssc.1993.1285.
- 11.
Tezuka, K.; Hinatsu, Y.; Nakamura, A.; et al. Magnetic properties of ternanry sodium oxides NaLnO2 (Ln = Rare earths). J. Solid State Chem. 1998, 141, 404. https://doi.org/10.1016/j.jssc.2003.08.001.
- 12.
Li, G.; Kuang, X.; Tian, S.; et al. Structural and Conductivity of Perovskites Sr1-xLaxT1-xCrxO3. J. Solid State Chem. 2002, 165, 381. https://doi.org/10.1006/jssc.2002.9561.
- 13.
Elemans, J.B.; Van Laar, B.; Van Der Veen, K.; et al. The crystallographic and magnetic structures of La1-xBaxMn1-xMexO3(Me = Mn or Ti). J. Solid State Chem. 1971, 3, 238. https://doi.org/10.1016/0022-4596(71)90034-X.
- 14.
Dann, S.; Currie, D.; Weller, M.; et al. The sysntheis and structures of Sr2FeO4. J. Solid State Chem. 1994, 109, 134. https://doi.org/10.1016/0022-4596(91)90263-H.
- 15.
Thornton, G.; To eld, B.; Hewat, A. A neutron diffraction study of LaCoO3 on the temperature range 42 < T < 1248 K. J. Solid State Chem. 1986, 61, 301. https://doi.org/10.1016/0022-4596(86)90035-6.
- 16.
Haas, O.; Struis, R.; McBreen, J. Synchrotron X-ray absorption of LaCoO3 perovskite. J. Solid State Chem. 2004, 177, 1000. https://doi.org/10.1016/j.jssc.2003.10.004.
- 17.
Garca-Munoz, J.L.; Rodrguez-Carvajal, J.; Lacorre, P.; et al. Neutron-diffraction study of RNiO3 (R = La, Pr, Nd, Sm) Electronically induced structural changes across the metal-insukator transition. Phys. Rev. B 1992, 46, 4414. https://doi.org/10.1103/PhysRevB.46.4414.
- 18.
Bringley, J.F.; Scott, B.A.; La Placa, S.J.; et al. Structural and properties of the LaCuO3-δ perovskites. Phys. Rev. B 1993, 47, 15269. https://doi.org/10.1103/PhysRevB.47.15269.
- 19.
Darracq, S.; Matar, S.; Demazeau, G. Correlations between the structural distortion of LaCuO3 lattice and the resulting physical properties. Solid State Commun. 1993, 85, 961. https://doi.org/10.1016/0038-1098(93)90713-W.
- 20.
Currie, D.B.; Weller, M.T. Structure of LaCuO3 by powder neutron diffraction. Acta Crystallogr. C 1991, 47, 696. https://doi.org/10.1107/S010827019001040X.
- 21.
Becke, A.D. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 1993, 98, 5648.
- 22.
Lee, C.; Yang, W.; Parr, R. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 1988, 37, 785.
- 23.
Dovesi, R.; Saunders, V.R.; Roetti, C.; et al. Quantum-mechanical condensed matter simulations with CRYSTAL. In CRYSTAL Users Manual; Universita di Torino: Torino, Italy, 2017.
- 24.
Dovesi, R.; Pascale, F.; Civalleri, B.; et al. The CRYSTAL code, 1976-2020 and beyond, a long story. J. Chem. Phys. 2020, 152, 204111.
- 25.
Dovesi, R.; Pisani, C.; Roetti, C.; et al. Treatment of Coulomb interactions in Hartree-Fock calculations of periodic systems. Phys. Rev. B 1983, 28, 5781. https://doi.org/10.1103/PhysRevB.28.5781.
- 26.
Causà, M.; Dovesi, R.; Orlando, R.; et al. Treatment of the exchange interactions in Hartree-Fock LCAO calculations of periodic systems. J. Phys. Chem. 1988, 92, 909. https://doi.org/10.1021/j100315a010.
- 27.
Dovesi, R.; Saunders, V.R.; Roetti, C.; et al. CRYSTAL06 Users Manual; Universita di Torino: Torino, Italy, 2006.
- 28.
Pascale, F.; Zicovich-Wilson, C.M.; Gejo, F.L.; et al. The calcukation of the vibrational frequencies of crystalline compounds and its implementation in the CRYSTAL code. J. Comput. Chem. 2004, 25, 888. https://doi.org/10.1002/jcc.20019.
- 29.
Zicovich-Wilson, C.M.; Pascale, F.; Roetti, C.; et al. Calculation of the vibration frequencies of alpha-quartz: The effect of Hamiltonian and ba sis set. J. Comput. Chem. 2004, 25, 1873. https://doi.org/10.1002/jcc.20120.
- 30.
Carteret, C.; Pierre, M.D.L.; Dossot, M.; et al. The vibrational spectrum of CaCO3 aragonite: A combined experimental and quantum-mechanical investigation. J. Chem. Phys. 2013, 138, 014201.
- 31.
Ferrero, M.; Rerat, M.; Kirtman, B.; et al. Calcukation of first and second static hyperpolarizabilities of one- to three-dimensional periodic compounds. Implementation in the CRYSTAL code. J. Chem. Phys. 2008, 129, 244110. https://doi.org/10.1063/1.3043366.
- 32.
Ferrero, M.; Rérat, M.; Orlando, R.; et al. Coupled perturbed Hartree-Fock for periodic systems: The role of symmetry and related computational aspects. J. Chem. Phys. 2008, 128, 014110.
- 33.
Maschio, L.; Kirtman, B.; Rerat, M.; et al. Ab initio analatical Raman intensities for periodic systems through a coupled perturbed Hartree-Fock-Kohn-Sham method in an atomic orbital basis. II. Validation and comparison with experiments. J. Chem. Phys. 2013, 139, 164102. https://doi.org/10.1063/1.4824443.
- 34.
El-Kelany, K.E.; Platonenko, A.; Doll, K.; et al. The Structural, Electronic and vibrational Properties of LaCrO3. A Quantum Mechanical Investigation by using an All Electron Gaussian Type Basis Set and a Full Range Hybrid Functional. J. Comput. Chem. 2025, 46, e27523. https://doi.org/10.1002/jcc.27523.
- 35.
El-Kelany, K.E.; Platonenko, A.; Sambrano, J.; et al. The charge and spin density of five LBO3 perovskytes (B= Sc, Ti, V, Cr and Co). A Mulliken analysis. Chem. Phys. 2025, 591, 112594. https://doi.org/10.1016/j.chemphys.2024.112594.