2511002237
  • Open Access
  • Article

A Portable Micro-SORS Prototype for Cultural Heritage: New Capabilities and Advantages

  • Alessandra Botteon 1,   
  • Alberto Lux 1,2,*,   
  • Chiara Colombo 1,   
  • Susanne Töpfer 3,   
  • Enrico Ferraris 3,   
  • Lavina Galli 4,   
  • Carlotta Beccaria 5,   
  • Kevin Ambrogioni 6,   
  • Matteo Passoni 6,   
  • Pavel Matousek 7,   
  • Antonio Sansonetti 1,   
  • Costanza Miliani 1,   
  • Claudia Conti 1,*

Received: 29 Oct 2025 | Accepted: 11 Nov 2025 | Published: 20 Jan 2026

Abstract

The combination of Spatially Offset Raman Spectroscopy (SORS) with microscopy has led to the development of micro-SORS, a technique enabling non-invasive analysis of subsurface layers at the microscale, specifically optimized for Heritage Science applications. Here, we present the capabilities and advantages of a recently developed advanced portable micro-SORS prototype, designed to overcome the main limitations of current commercial and custom-built systems. The prototype offers high sensitivity, wide spectral window (100–3050 cm−1) and a simultaneous acquisition of multiple offset spectra via a custom fibre bundle, which also reduces mechanical vibrations. Moreover, an integrated digital microscope allows for an accurate point selection during in-situ analysis of artworks. The system was tested during two analytical campaigns within the MOLAB platform at the Italian node of E-RIHS-ERIC (European Research Infrastructure for Heritage Science): the study of Andrea Solario’s paintings at the Museo Poldi Pezzoli (Milan) and the Book of the Dead of Kha at the Museo Egizio (Turin). The results demonstrate four key capabilities: (i) non-invasive identification of pigments with diagnostic Raman bands in the low-frequency region (e.g., lead-tin yellow type I, anatase); (ii) detection of ground layers, revealing insights into painting techniques; (iii) reconstruction of stratigraphies, including the identification of pigment layering in the papyrus; and (iv) characterization of surface heterogeneity, such as elemental sulphur crystallization linked to arsenic sulphides degradation. These findings confirm the prototype potential as a powerful tool for heritage science, enabling high-quality, depth-resolved Raman analysis directly on artworks. Limitations observed during one year of field use are also reported, highlighting opportunities for future developments.

References 

  • 1.

    Smith, D.C. In situ mobile subaquatic archaeometry evaluated by nondestructive Raman microscopy of gemstones lying under impure waters. Spectrochim. Acta A 2003, 59, 2353–2369.

  • 2.

    Andrikopoulos, K.S.; Daniilia, S.; Roussel, B.; et al. In vitro validation of a mobile Raman–XRF micro-analytical instrument’s capabilities on the diagnosis of Byzantine icons. J. Raman Spectrosc. 2006, 37, 1026–1034.

  • 3.

    Colomban, P. The on-site/remote Raman analysis with mobile instruments: A review of drawbacks and success in cultural heritage studies and other associated fields. J. Raman Spectrosc. 2012, 43, 1529–1535.

  • 4.

    Conti, C.; Striova, J.; Aliatis, I.; et al. Portable Raman versus portable mid-FTIR reflectance instruments to monitor synthetic treatments used for the conservation of monument surfaces. Anal. Bioanal. Chem. 2013, 405, 1733–1741.

  • 5.

    Lauwers, D.; Hutado, A.G.; Tanevska, V.; et al. Characterisation of a portable Raman spectrometer for in situ analysis of art objects. Spectrochim. Acta A 2014, 118, 294–301.

  • 6.

    Conti, C.; Botteon, A.; Bertasa, M.; et al. Portable Sequentially Shifted Excitation Raman spectroscopy as an innovative tool for in situ chemical interrogation of painted surfaces. Analyst 2016, 141, 4599–4607.

  • 7.

    Casadio, F.; Daher, C.; Bellot-Gurlet, L.; et al. Topics in Current Chemistry Collections. In Analytical Chemistry for Cultural Heritage; Springer: Cham, Switzerland, 2017; pp. 161–211.

  • 8.

    Bersani, D.; Conti, C.; Matousek, P.; et al. Methodological evolutions of Raman spectroscopy in art and archaeology. Anal. Methods 2016, 8, 8395–8409.

  • 9.

    Vagnini, M.; Gabrieli, F.; Daveri, A.; et al. Handheld new technology Raman and portable FT-IR spectrometers as complementary tools for the in situ identification of organic materials in modern art. Spectrochim. Acta A 2017, 176, 174–182.

  • 10.

    Pozzi, F.; Basso, E.; Rizzo, A.; et al. Evaluation and optimization of the potential of a handheld Raman spectrometer: In situ, noninvasive materials characterization in artworks. J. Raman Spectrosc. 2019, 50, 861–872.

  • 11.

    Crocombe, R.A.; Leary, P.E.; Kammrath, B.W. Portable Spectroscopy and Spectrometry, Applications; John Wiley & Sons: Hoboken, NJ, USA, 2021.

  • 12.

    Odelli, E.; Rousaki, A.; Raneri, S.; et al. Advantages and pitfalls of the use of mobile Raman and XRF systems applied on cultural heritage objects in Tuscany (Italy). Eur. Phys. J. Plus. 2021, 136, 449.

  • 13.

    Rousaki, A.; Vandenabeele, P. In situ Raman spectroscopy for cultural heritage studies. J. Raman Spectrosc. 2021, 52, 2178–2189.

  • 14.

    Jehlička, J.; Culka, A. Critical evaluation of portable Raman spectrometers: From rock outcrops and planetary analogs to cultural heritage—A review. Anal. Chim. Acta 2022, 1209, 339027.

  • 15.

    Caggiani, M.C.; Colomban, P. Advanced procedures in Raman forensic, natural, and cultural heritage studies: Mobile set-up, optics, and data treatment—State of the art and perspectives. J. Raman Spectrosc. 2024, 55, 116–124.

  • 16.

    Conti, C.; Colombo, C.; Realini, M.; et al. Subsurface Raman analysis of thin painted layers. Appl. Spectrosc. 2014, 68, 686–691.

  • 17.

    Conti, C.; Botteon, A.; Colombo, C.; et al. Advances in Raman spectroscopy for the non-destructive subsurface analysis of artworks: Micro-SORS. J. Cult. Herit. 2020, 43, 319.

  • 18.

    Botteon, A.; Colombo, C.; Realini, M.; et al. Non-invasive and in situ investigation of layers sequence in panel paintings by portable micro-spatially offset Raman spectroscopy. J. Raman Spectrosc. 2020, 51, 2016–2021.

  • 19.

    Vieira, M.; Melo, M.J.; Conti, C.; et al. A combined approach to the vibrational characterization of medieval paints on parchment: Handheld Raman spectroscopy and micro-SORS. J. Raman Spectrosc. 2024, 55, 263–275.

  • 20.

    Botteon, A.; Yiming, J.; Prati, S.; et al. Non-invasive characterisation of molecular diffusion of agent into turbid matrix using micro-SORS. Talanta 2020, 218, 121078.

  • 21.

    Botteon, A.; Realini, M.; Colombo, C.; et al. Micro-SORS, diffusion processes and heritage science: A non-destructive and systematic investigation. Eur. Phys. J. Plus. 2021, 136, 1–12.

  • 22.

    Botteon, A.; Vermeulen, M.; Cristina, L.; et al. Advanced microspatially offset Raman spectroscopy for noninvasive imaging of concealed texts and figures using Raman signal, fluorescence emission, and overall spectral intensity. Anal. Chem. 2024, 96, 4535–4543.

  • 23.

    Vermeulen, M.; Conti, C.; Matousek, P.; et al. Unravelling hidden text and figures in paper-based archival documents with micro-spatially offset Raman spectroscopy imaging. Spectrochim. Acta A 2025, 329, 125591.

  • 24.

    Realini, M.; Botteon, A.; Conti, C.; et al. Development of portable defocusing micro-scale spatially offset Raman spectroscopy. Analyst 2016, 141, 3012–3019.

  • 25.

    Realini, M.; Conti, C.; Botteon, A.; et al. Development of a full micro-scale spatially offset Raman spectroscopy prototype as a portable analytical tool. Analyst 2017, 142, 351–355.

  • 26.

    Vandenabeele, P.; Conti, C.; Rousaki, A.; et al. Development of a Fiber-Optics Microspatially Offset Raman Spectroscopy Sensor for Probing Layered Materials. Anal. Chem. 2017, 89, 9218–9223.

  • 27.

    Lux, A.; Realini, M.; Botteon, A.; et al. Advanced portable micro-SORS prototype coupled with SERDS for heritage science. Analyst 2024, 149, 2317–2327.

  • 28.

    Schiaparelli, E. Relazione sui Lavori della Missione Archeologica Italiana in Egitto (Anni 1903–1920). Vol. II, La Tomba intatta dell’Architetto Kha nella Necropoli di Tebe; Casa Editrice Giovanni Chiantore: Torino, Italy, 1927.

  • 29.

    Galli, L.; Mazzotta, A. Andrea Solario, Renaissance Painter between Italy and France; Dario Cimorelli Editore: Milano, Italy, 2024.

  • 30.

    Artesani, A.; Ghirardello, M.; Mosca, S.; et al. Combined photoluminescence and Raman microscopy for the identification of modern pigments: Explanatory examples on cross-sections from Russian avant-garde paintings. Herit. Sci. 2019, 7, 1–13.

  • 31.

    Mirazimi, M.; Mohammadi, M.; Liu, W. Kinetics and mechanisms of arsenic and sulfur release from crystalline orpiment. Min. Engin. 2021, 170, 107032.

  • 32.

    Lux, A.; Conti, C.; Botteon, A.; et al. Shifted-excitation Raman difference spectroscopy and charge-shifting detection coupled with spatially offset Raman spectroscopy for heritage science. Analyst 2025, 150, 1140–1150.

Share this article:
How to Cite
Botteon, A.; Lux, A.; Colombo, C.; Töpfer, S.; Ferraris, E.; Galli, L.; Beccaria, C.; Ambrogioni, K.; Passoni, M.; Matousek, P.; Sansonetti, A.; Miliani, C.; Conti, C. A Portable Micro-SORS Prototype for Cultural Heritage: New Capabilities and Advantages. Photochemistry and Spectroscopy 2026, 2 (1), 2. https://doi.org/10.53941/ps.2026.100002.
RIS
BibTex
Copyright & License
article copyright Image
Copyright (c) 2026 by the authors.