2512002441
  • Open Access
  • Article

Optical Characterization of 3D Bio-Hybrid Actuators

  • Andrea Pianetti 1,†,   
  • Ilaria Venturino  1,2,†,   
  • Giulia Simoncini 1,2,   
  • Samim Sardar 1,3,   
  • Ludovico Aloisio 1,2,   
  • Paola Moretti 4,   
  • Giuseppe Maria Paternò 1,2,   
  • Chiara Bertarelli 4,   
  • Cosimo D'Andrea 1,2,*,   
  • Guglielmo Lanzani 1,2,*

Received: 31 Oct 2025 | Revised: 28 Nov 2025 | Accepted: 03 Dec 2025 | Published: 28 Jan 2026

Abstract

Bio-hybrid actuators (BHAs) integrate biological components, such as skeletal muscle cells, with synthetic materials to generate motion through external stimuli. Here, we study the use of light to remotely control 3D bio-hybrid actuators. Specifically, the employment of the amphiphilic azobenzene derivative Ziapin2 to modulate cell membrane capacitance and induce contraction has been proved to be effective for myotube in 2D planar substrates. Transitioning from 2D planar substrates to 3D scaffolds demands the full characterization of the interaction of light with the cell seeded scaffold. Scattering analysis, confocal microscopy, and time-resolved photoluminescence (TRPL) have been effectively used to investigate and model light interaction of these 3D structures. The application of these techniques allowed us to optimize sample preparation and quantitative study the behavior, in a non-destructive way, on this new class of biomaterials. This study aims at establishing a foundation for the characterization of scalable, optically controlled 3D bio-hybrid actuators with applications in soft robotics and implantable biomedical device.

References 

  • 1.

    Pfeffer, M.E.; DiFrancesco, M.L.; Marchesi, A.; et al. Nanoactuator for Neuronal Optoporation. ACS Nano 2024, 18, 12427–12452. https://doi.org/10.1021/acsnano.4c01672.

  • 2.

    Lee, Y.; Song, W.J.; Sun, J.-Y. Hydrogel Soft Robotics. Mater. Today Phys. 2020, 15, 100258. https://doi.org/10.1016/j.mtphys.2020.100258.

  • 3.

    Wang, C.; Zhang, Z.; Wang, J.; et al. Biohybrid Materials: Structure Design and Biomedical Applications. Mater. Today Bio. 2022, 16, 100352. https://doi.org/10.1016/j.mtbio.2022.100352.

  • 4.

    Yan, B. Actuators for Implantable Devices: A Broad View. Micromachines 2022, 13, 1756. https://doi.org/10.3390/mi13101756.

  • 5.

    Sun, L.; Yu, Y.; Chen, Z.; et al. Biohybrid Robotics with Living Cell Actuation. Chem. Soc. Rev. 2020, 49, 4043–4069. https://doi.org/10.1039/D0CS00120A.

  • 6.

    Webster-Wood, V.A.; Guix, M.; Xu, N.W.; et al. Biohybrid Robots: Recent Progress, Challenges, and Perspectives. Bioinspir. Biomim. 2022, 18, 015001. https://doi.org/10.1088/1748-3190/ac9c3b.

  • 7.

    Revete, A.; Aparicio, A.; Cisterna, B.A.; et al. Advancements in the Use of Hydrogels for Regenerative Medicine: Properties and Biomedical Applications. Int. J. Biomater. 2022, 2022, 3606765. https://doi.org/10.1155/2022/3606765.

  • 8.

    Sun, W.; Schaffer, S.; Dai, K.; et al. 3D Printing Hydrogel-Based Soft and Biohybrid Actuators: A Mini-Review on Fabrication Techniques, Applications, and Challenges. Front. Robot. AI 2021, 8, 673533. https://doi.org/10.3389/frobt.2021.673533.

  • 9.

    Balint, R.; Cassidy, N.J.; Cartmell, S.H. Electrical Stimulation: A Novel Tool for Tissue Engineering. Tissue Eng. Part B Rev. 2013, 19, 48–57. https://doi.org/10.1089/ten.teb.2012.0183.

  • 10.

    Antognazza, M.R.; Martino, N.; Ghezzi, D.; et al. Shedding Light on Living Cells. Adv. Mater. 2015, 27, 7662–7669. https://doi.org/10.1002/adma.201403513.

  • 11.

    Vurro, V.; Venturino, I.; Lanzani, G. A Perspective on the Use of Light as a Driving Element for Bio-Hybrid Actuation. Appl. Phys. Lett. 2022, 120, 080502.

  • 12.

    DiFrancesco, M.L.; Lodola, F.; Colombo, E.; et al. Neuronal Firing Modulation by a Membrane-Targeted Photoswitch. Nat. Nanotechnol. 2020, 15, 296–306. https://doi.org/10.1038/s41565-019-0632-6.

  • 13.

    Venturino, I.; Vurro, V.; Bonfadini, S.; et al. Skeletal Muscle Cells Opto-Stimulation by Intramembrane Molecular Transducers. Commun. Biol. 2023, 6, 1148. https://doi.org/10.1038/s42003-023-05538-y.

  • 14.

    Florindi, C.; Simoncini, G.; Lanzani, G.; et al. Shining Light in a Heartbeat: Controlling Cardiac Bioelectricity with Membrane-Targeted Photoswitches. Appl. Phys. Lett. 2025, 126, 230501. https://doi.org/10.1063/5.0270696.

  • 15.

    de Souza-Guerreiro, T.C.; Bondelli, G.; Grobas, I.; et al. Membrane Targeted Azobenzene Drives Optical Modulation of Bacterial Membrane Potential. Adv. Sci. 2023, 10, 2205007. https://doi.org/10.1002/advs.202205007.

  • 16.

    Moschetta, M.; Vurro, V.; Sesti, V.; et al. Modulation of Mechanosensitive Potassium Channels by a Membrane-Targeted Nongenetic Photoswitch. J. Phys. Chem. B 2023, 127, 8869–8878. https://doi.org/10.1021/acs.jpcb.3c04551.

  • 17.

    Tummala, G.K.; Felde, N.; Gustafsson, S.; et al. Light Scattering in Poly(Vinyl Alcohol) Hydrogels Reinforced with Nanocellulose for Ophthalmic Use. Opt. Mater. Express OME 2017, 7, 2824–2837. https://doi.org/10.1364/OME.7.002824.

  • 18.

    Magni, A.; Bondelli, G.; Paterno, G.M.; et al. Azobenzene Photoisomerization Probes Cell Membrane Nanoviscosity. Phys. Chem. Chem. Phys. 2022, 24, 8716–8723. https://doi.org/10.1039/D1CP05881A.

  • 19.

    Paternò, G.M.; Colombo, E.; Vurro, V.; et al. Membrane Environment Enables Ultrafast Isomerization of Amphiphilic Azobenzene. Adv. Sci. 2020, 7, 1903241. https://doi.org/10.1002/advs.201903241.

Share this article:
How to Cite
Pianetti, A.; Venturino , I.; Simoncini, G.; Sardar, S.; Aloisio, L.; Moretti, P.; Paternò, G. M.; Bertarelli, C.; D’Andrea, C.; Lanzani, G. Optical Characterization of 3D Bio-Hybrid Actuators. Photochemistry and Spectroscopy 2026, 2 (1), 4. https://doi.org/10.53941/ps.2026.100004.
RIS
BibTex
Copyright & License
article copyright Image
Copyright (c) 2026 by the authors.