- 1.
Bi, H.; Grace, J.J. Flow Regime Diagrams for Gas-Solid Fluidization and Upward Transport. Int. J. Multiph. Flow 1995, 21, 1229–1236.
- 2.
Gidaspow, D. Multiphase Flow and Fluidization: Continuum and Kinetic Theory Descriptions; Academic Press: San Diego, CA, USA, 1994.
- 3.
Francia, V.; Wu, K.; Coppens, M.-O. Dynamically Structured Fluidization: Oscillating the Gas Flow and Other Opportunities to Intensify Gas-Solid Fluidized Bed Operation. Chem. Eng. Process. 2021, 159, 108143.
- 4.
Sykes, J.A.; Weston, D.; Adio, N.; et al. Validation of Simulations of Particulate, Fluid and Multiphase Systems Using Positron Emission Particle Tracking: A Review. Particuology 2025, 101, 117–145.
- 5.
Yang, W.Q.; Spink, D.M.; York, T.A.; et al. An Image-Reconstruction Algorithm Based on Landweber’s Iteration Method for Electrical-Capacitance Tomography. Meas. Sci. Technol. 1999, 10, 1065–1069.
- 6.
Zhang, C.; Li, A.; Li, C.; et al. Combing Mobile Electrical Capacitance Tomography with Fourier Neural Operator for 3D Fluidized Beds Measurement. AIChE J. 2025, 71, e18641.
- 7.
Liu, Z.; Wang, H.; Sun, S.; et al. Investigation of Wetting and Drying Process in a Spout-Fluid Bed Using Acoustic Sensor and Electrical Capacitance Tomography. Chem. Eng. Sci. 2023, 281, 119160.
- 8.
Wang, H.; Fu, T.; Du, Y.; et al. Scientific Discovery in the Age of Artificial Intelligence. Nature 2023, 620, 47–60.
- 9.
Zeni, C.; Pinsler, R.; Zügner, D.; et al. A Generative Model for Inorganic Materials Design. Nature 2025, 625, 281–286.
- 10.
Li, Z.; Han, W.; Zhang, Y.; et al. Learning Spatiotemporal Dynamics with a Pretrained Generative Model. Nat. Mach. Intell. 2024, 6, 1566–1579.
- 11.
Shaham, T.R.; Dekel, T.; Michaeli, T. SinGAN: Learning a Generative Model from a Single Natural Image. arXiv 2019, arXiv:1905.01164.
- 12.
Hinz, T.; Fisher, M.; Wang, O.; et al. Improved Techniques for Training Single-Image GANs. In Proceedings of the 2021 IEEE Winter Conference on Applications of Computer Vision (WACV), Waikoloa, HI, USA, 3–8 January 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 1300–1309.
- 13.
Ouyang, X.; Chen, Y.; Zhu, K.; et al. Image Restoration Refinement with Uformer GAN. In Proceedings of the 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Seattle, WA, USA, 17–21 June 2024; IEEE: Piscataway, NJ, USA, 2024; pp. 1234–1243.
- 14.
Xia, Z.; Cui, Z.; Chen, Y.; et al. Generative Adversarial Networks for Dual-Modality Electrical Tomography in Multi-Phase Flow Measurement. Measurement 2021, 173, 108608.
- 15.
Zhang, C.; Li, C.; Li, X.; et al. A General Physics-Informed Neural Network Approach for Deriving Fluid Flow Fields from Temperature Distribution. Chem. Eng. Sci. 2025, 302, 120950.
- 16.
Rao, C.; Ren, P.; Wang, Q.; et al. Encoding Physics to Learn Reaction–Diffusion Processes. Nat. Mach. Intell. 2023, 5, 765–779.
- 17.
Zhang, T.; Xiang, J.; Li, X.; et al. 3D Reconstruction of Fluidized Bed Phase Distribution Based on Multi-Scale Conditional Generative Adversarial Network. Eng. Appl. Artif. Intell. 2025, submitted.
- 18.
Bohling, G. GSLIB: Geostatistical Software Library and User’s Guide; Computers & Geosciences: Oxford, UK, 1994; pp. 1063–1064.
- 19.
Huang, K.; Meng, S.; Guo, Q.; et al. Effect of Electrode Length of an Electrical Capacitance Tomography Sensor on Gas–Solid Fluidized Bed Measurements. Ind. Eng. Chem. Res. 2019, 58, 21827–21841.
- 20.
Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; et al. Generative Adversarial Nets. In Advances in Neural Information Processing Systems 27; Ghahramani, Z., Welling, M., Cortes, C., et al., Eds.; Curran Associates: Red Hook, NY, USA, 2014; pp. 2672–2680.
- 21.
Adler, J.; Lunz, S. Banach Wasserstein GAN. In Proceedings of the 32nd International Conference on Neural Information Processing Systems (NeurIPS 2018), Montréal, QC, Canada, 2–8 December 2018; Curran Associates: Red Hook, NY, USA, 2018; pp. 6755–6764.
- 22.
Clift, R.; Grace, J.R. Continuous Bubbling and Slugging. In Fluidization, 2nd ed.; Davidson, J.F., Clift, R., Harrison, D., Eds.; Academic Press: London, UK, 1985; pp. 73–131.
- 23.
Mori, S.; Wen, C.Y. Estimation of Bubble Diameter in Gaseous Fluidized Beds. AIChE J. 1975, 21, 109–115.
- 24.
Xu, G.; Sun, G.; Gao, S. Estimating Radial Voidage Profiles for All Fluidization Regimes in Circulating Fluidized Bed Risers. Powder Technol. 2004, 139, 186–192.