- 1.
Pignatello, R.; Corsaro, R.; Bonaccorso, A.; et al. Soluplus ((R)) Polymeric Nanomicelles Improve Solubility of BCS-class II Drugs. Drug Deliv. Transl. Res. 2022, 12, 1991–2006.
- 2.
Matsui, K.; Tsume, Y.; Amidon, G.E.; et al. In Vitro Dissolution of Fluconazole and Dipyridamole in Gastrointestinal Simulator (GIS), Predicting in Vivo Dissolution and Drug–drug Interaction Caused by Acid-reducing Agents. Mol. Pharm. 2015, 12, 2418–2428.
- 3.
Eedara, B.B.; Nyavanandi, D.; Narala, S.; et al. Improved Dissolution Rate and Intestinal Absorption of Fexofenadine Hydrochloride by the Preparation of Solid Dispersions: In Vitro and In Situ Evaluation. Pharmaceutics 2021, 13, 310.
- 4.
Liu, X.W.; Zhao, L.M.; Wu, B.J.; et al. Improving Solubility of Poorly Watersoluble Drugs by Protein-based Strategy: A review. Int. J. Pharm. 2023, 634, 122704.
- 5.
Savjani, K.T.; Gajjar, A.K.; Savjani, J.K. Drug Solubility: Importance and Enhancement Techniques. ISRN Pharm. 2012, 1, 195727.
- 6.
Calmet, H.; Dosimont, D.; Oks, D.; et al. Machine Learning and Sensitivity Analysis for Predicting Nasal Drug Delivery for Targeted Deposition. Int. J. Pharm. 2023, 642, 123098.
- 7.
Galata, D.L.; Konyves, Z.; Nagy, B.; et al. Real-time Release Testing of Dissolution based on Surrogate Models Developed by Machine Learning Algorithms Using NIR Spectra, Compression Force and Particle Size Distribution as Input Data. Int. J. Pharm. 2021, 597, 120338.
- 8.
Song, Y.; Ding, Y.; Su, J.; et al. Unlocking the Potential of Machine Learning in Co-crystal Prediction by a Novel Approach Integrating Molecular Thermodynamics. Angew. Chem. Int. Ed. 2025, 64, e202502410.
- 9.
Cysewski, P.; Przybyłek, M.; Jeliński, T. Intermolecular Interactions as a Measure of Dapsone Solubility in Neat Solvents and Binary Solvent Mixtures. Materials 2023, 16, 6336.
- 10.
Ge, K.; Ji, Y. Novel Computational Approach by Combining Machine Learning with Molecular Thermodynamics for Predicting Drug Solubility in Solvents. Ind. Eng. Chem. Res. 2021, 60, 9259–9268.
- 11.
Li, J.E.; Chien, S.C.; Hsieh, C.M. Modeling Solid Solute Solubility in Supercritical Carbon Dioxide by Machine Learning Algorithms Using Molecular Sigma Profiles. J. Mol. Liq. 2024, 395, 123884.
- 12.
Boobier, S.; Hose, D.R.; Blacker, A.J.; et al. Machine Learning with Physicochemical Relationships: Solubility Prediction in Organic Solvents and Water. Nat. Commun. 2020, 11, 5753.
- 13.
Wang, T.; Su, C.H. Medium Gaussian SVM, Wide Neural Network and Stepwise Linear Method in Estimation of Lornoxicam Pharmaceutical Solubility in Supercritical Solvent. J. Mol. Liq. 2022, 349, 118120.
- 14.
Zhao, L.; Wang, Q.; Ma, K. Solubility Parameter of Ionic Liquids: A Comparative Study of Inverse Gas Chromatography and Hansen Solubility Sphere. Acs. Sustain. Chem. Eng. 2019, 7, 10544–10551.
- 15.
Yap, C.W. PaDEL-descriptor: An Open Source Software to Calculate Molecular Descriptors and Fingerprints. J. Comput. Chem. 2011, 32, 1466–1474.
- 16.
Hansen, C.M. Hansen Solubility Parameters: A User’s Handbook; CRC Press: Boca Raton, FL, USA, 2007.
- 17.
Prasad, V.; Bequette, B.W. Nonlinear System Identification and Model Reduction Using Artificial Neural Networks. Comput. Chem. Eng. 2003, 27, 1741–1754.
- 18.
Noor, R.M.; Ahmad, Z.; Don, M.M.; et al. Modelling and Control of Different Types of Polymerization Processes Using Neural Networks Technique: A Review. Can. J. Chem. Eng. 2010, 88, 1065–1084.
- 19.
Kiss, I.Z.; Gaspar, V. Controlling Chaos with Artificial Neural Network: Numerical Studies and Experiments. J. Phys. Chem. C. 2000, 104, 8033–8037.
- 20.
Ou, J.; Luo, X.; Liu, J.; et al. Predicting Microbial Extracellular Electron Transfer Activity in Paddy Soils with Soil Physicochemical Properties Using Machine Learning. Sci. China Technol. Sc. 2024, 67, 259–270.
- 21.
Were, K.; Bui, D.T.; Dick, Ø.B.; et al. A Comparative Assessment of Support Vector Regression, Artificial Neural Networks, and Random Forests for Predicting and Mapping Soil Organic Carbon Stocks Across an Afromontane Landscape. Ecol. Ind. 2015, 52, 394–403.
- 22.
Gao, Y.; Han, H.; Lu, H.; et al. Knowledge Mining for Chiller Faults Based on Explanation of Data-driven Diagnosis. Appl. Therm. Eng. 2022, 205, 118032.
- 23.
Sheykhmousa, M.; Mahdianpari, M.; Ghanbari, H.; et al. Support Vector Machine Versus Random Forest for Remote Sensing Image Classification: A Meta-Analysis and Systematic Review. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 6308–6325.
- 24.
Li, Z. Extracting Spatial Effects from Machine Learning Model Using Local Interpretation Method: An Example of SHAP and XGBoost. Comput. Environ. Urban Syst. 2022, 96, 101845.
- 25.
Yang, Y.; Yuan, Y.; Han, Z.; et al. Interpretability Analysis for Thermal Sensation Machine Learning Models: An Exploration Based on the SHAP Approach. Indoor Air. 2022, 32, e12984.
- 26.
Goldstein, A.; Kapelner, A.; Bleich, J.; et al. Peeking Inside the Black Box: Visualizing Statistical Learning With Plots of Individual Conditional Expectation. J. Comput. Graph. Stat. 2015, 24, 44–65.
- 27.
Huang, Z.; Sha, J.; Chang, Y.; et al. Solubility Measurement, Model Evaluation and Hansen Solubility Parameter of Ipriflavone in Three Binary Solvents. J. Chem. Thermodyn. 2021, 152, 106285.
- 28.
Yang, Z.; Shao, D.; Zhou, G. Solubility Parameter of lenalidomide for Predicting the Type of Solubility Profile and Application of Thermodynamic Model. J. Chem. Thermodyn. 2019, 132, 268–275.
- 29.
Gao, Z.; Li, Z.; Li, M.; et al. Solubility Measurement and Thermodynamic Model Correlation of Propyl Gallate in Pure and Binary Solvents from T = (293.15 to 333.15) K. J. Mol. Liq. 2020, 318, 114035.
- 30.
Khorsandi, M.; Shekaari, H.; Mokhtarpour, M.; et al. Cytotoxicity of Some Choline-based Deep Eutectic Solvents and Their Effect on Solubility of Coumarin Drug. European J. Pharm. Sci. 2021, 167, 106022.
- 31.
Patel, K.G.; Maynard, R.K.; Ferguson IV, L.S.; et al. Experimentally Determined Hansen Solubility Parameters of Biobased and Biodegradable Polyesters. ACS Sustain. Chem. Eng. 2024, 12, 2386–2393.
- 32.
Petříková, E.; Patera, J.; Gorlová, O. Influence of Active Pharmaceutical Ingredient Structures on Hansen Solubility Parameters. Eur. J. Pharm. Sci. 2021, 167, 106016.
- 33.
Oktay, A.N.; Polli, J.E. Screening of Polymers for Oral Ritonavir Amorphous Solid Dispersions by Film Casting. Pharm. 2024, 16, 1373.
- 34.
Braga, D.; Casali, L.; Grepioni, F. The Relevance of Crystal Forms in the Pharmaceutical Field: Sword of Damocles or Innovation Tools? Int. J. Mol. Sci. 2022, 23, 9013.
- 35.
Huang, Z.; Staufenbiel, S.; Bodmeier, R. Kinetic Solubility Improvement and Influence of Polymers on Controlled Supersaturation of Itraconazole-succinic Acid Nano-co-crystals. Int. J. Pharm. 2022, 616, 121536.
- 36.
Shakeel, F.; Al-Shdefat, R.; Ali, M.; et al. Temperature-dependent Solubilization and Thermodynamic Characteristics of Ribociclib in varied {PEG 400 + Water} Combinations. BMC Chem. 2025, 19, 79.
- 37.
Chang, S.C.; Chu, C.L.; Chen, C.K.; et al. The Comparison and Interpretation of Machine-Learning Models in Post-Stroke Functional Outcome Prediction. Diagnostics 2021, 11, 1784.
- 38.
Li, H.X.; Xie, Y.; Xue, Y.; et al. Comprehensive Insight into Solubility, Dissolution Properties and Solvation Behaviour of Dapsone in Co-solvent Solutions. J. Mole. Liq. 2021, 341, 117403.
- 39.
Rivas-Ozuna, D.A.; Medina, R.; Sánchez, M.; et al. Solubility of Pyrazinamide in 1,4-Dioxane + Water and Ethanol + Water Mixtures: Preferential Solvation and Non-Linear Trends. J. Solution Chem. 2024, 53, 2027–2041.
- 40.
El Hamd, M.A.; El-Toukhy, M.S. Hydrotropy and Solubility Maxima in Pharmaceutical Systems: Insights into Hydrogen-Bond and Dispersion Network Modulation. Sustain. Chem. Pharm. 2024, 25, 100593.
- 41.
Xu, C.; Li, H.; Yang, J.; et al. Interpretable Prediction of 3-year All-cause Mortality in Patients with Chronic heart Failure Based on Machine Learning. BMC Med. Inform. Decis. 2023, 23, 267.
- 42.
Wang, C.; Cheng, Y.; Ma, Y.; et al. Prediction of Enhanced Drug Solubility Related to Clathrate Compositions and Operating Conditions: Machine Learning Study. Int. J. Pharm. 2023, 646, 123458.
- 43.
Sun, J.; Sun, C.K.; Tang, Y.X.; et al. Application of SHAP for Explainable Machine Learning on Age-Based Subgrou Mammography Questionnaire Data for Positive Mammography Prediction and Risk Factor Identification. Healthcare 2023, 11, 2000.
- 44.
Li, Y.; Li, C.; Gao, X.; et al. Equilibrium Solubility, Inter-and Intra-molecular Interactions and Solvation Performance of Flutamide in Some Aqueous Blended Co-solvents. J. Chem. Thermodyn. 2021, 163, 106611.
- 45.
Volkova, T.V.; Simonova, O.R.; Levshin, I.B.; et al. Physicochemical Profile of New Antifungal Compound: pH-dependent Solubility, Distribution, Permeability and Ionization Assay. J. Mole. Liq. 2021, 336, 116535.
- 46.
Aydi, A.; Achoura, K.; Bellakhal, N.; et al. Solubility Profile of Amygdalin in Aqueous Ethanol Mixtures: Cooperative Hydrogen-Bonding and Dispersion Contributions. Crystals 2023, 13, 112.