- 1.
Prisell, E. The scramjet: A solution for hypersonic aerodynamic propulsion. In Proceedings of the 41st AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Tucson, AZ, USA, 10–13 July 2005; American Institute of Aeronautics and Astronautics: Tucson, AZ, USA, 2005.
- 2.
Liu, X. Scramjet technology. Aerosp. Technol. 2003, 2, 38–42.
- 3.
Berglund, M.; Fedina, E.; Fureby, C.; et al. Finite rate chemistry large-eddy simulation of self-ignition in supersonic combustion ramjet. AIAA J. 2010, 48, 540–550.
- 4.
Baurle, R.A.; Edwards, J.R. Hybrid reynolds-averaged/large-eddy simulations of a coaxial supersonic freejet experiment. AIAA J. 2010, 48, 551–571.
- 5.
Liu, Y.; He, X.; Feng, L.; et al. Numerical simulation of the interaction between shock train and combustion in three-dimensional M12-02 scramjet model. Int. J. Hydrogen Energy 2022, 47, 8026–8036.
- 6.
Feng, Y.; Luo, S.; Song, J.; et al. Numerical investigation on the combustion characteristics of powder fuel under different regulation parameters. Aerosp. Sci. Technol. 2023, 142, 108608.
- 7.
Konnov, A.A. On the role of excited species in hydrogen combustion. Combust. Flame 2015, 162, 3755–3772.
- 8.
Miller, J.A.; Sivaramakrishnan, R.; Tao, Y.; et al. Combustion chemistry in the twenty-first century: Developing theory-informed chemical kinetics models. Prog. Energy Combust. Sci. 2021, 83, 100886.
- 9.
Turányi, T. Applications of sensitivity analysis to combustion chemistry. Reliab. Eng. Syst. Saf. 1997, 57, 41–48.
- 10.
Sutherland, J.C.; Parente, A. Combustion modeling using principal component analysis. Proc. Combust. Inst. 2009, 32, 1563–1570.
- 11.
Turányi, T.; Bérces, T.; Vajda, S. Reaction rate analysis of complex kinetic systems. Int. J. Chem. Kinet. 2004, 21, 83–99.
- 12.
Liao, A.; Li, Y.; Mao, Y.; et al. Combustion mechanism construction based on minimized reaction network: Combustion of jp-10. Chem. J. Chin. Univ. 2023, 44, 51–59.
- 13.
Xia, W.; Yu, H.; Wang, S.; et al. Combustion mechanism construction based on minimized reaction network: Combustion of aromatic hydrocarbon. Chem. J. Chin. Univ. 2023, 44, 149–160.
- 14.
Wang, H.; Sheen, D.A. Combustion kinetic model uncertainty quantification, propagation and minimization. Prog. Energy Combust. Sci. 2015, 47, 1–31.
- 15.
Sun, W.; Lin, S.; Zhang, H.; et al. A reduced combustion mechanism of ammonia/diesel optimized with multi-objective genetic algorithm. Def. Technol. 2024, 34, 187–200.
- 16.
Wu, Y.; Li, J.; Tang, X.; et al. Optimization of simplified combustion mechanism of n-butanol based on shuffled frog leaping algorithm. Fuel 2024, 357, 129810.
- 17.
Li, J.; Huang, X.; Fang, X.; et al. Construction of simplified combustion mechanism of diesel from direct coal liquefaction-pode3. Fuel 2022, 313, 122660.
- 18.
Zeppieri, S.P.; Klotz, S.D.; Dryer, F.L. Modeling concepts for larger carbon number alkanes: A partially reduced skeletal mechanism for n-decane oxidation and pyrolysis. Proc. Combust. Inst. 2000, 28, 1587–1595.
- 19.
Wang, Q.-D.; Wang, J.-B.; Li, J.-Q.; et al. Reactive molecular dynamics simulation and chemical kinetic modeling of pyrolysis and combustion of n-dodecane. Combust. Flame 2011, 158, 217–226.
- 20.
Wu, K.; Yao, W.; Fan, X. Development and fidelity evaluation of a skeletal ethylene mechanism under scramjet-relevant conditions. Energy Fuels 2017, 31, 14296–14305.
- 21.
Wan, Z.; Zheng, Z.; Wang, Y.; et al. A shock tube study of ethylene/air ignition characteristics over a wide temperature range. Combust. Sci. Technol. 2019, 192, 2297–2305.
- 22.
Shao, J.; Davidson, D.F.; Hanson, R.K. A shock tube study of ignition delay times in diluted methane, ethylene, propene and their blends at elevated pressures. Fuel 2018, 225, 370–380.
- 23.
Mathieu, O.; Goulier, J.; Gourmel, F.; et al. Experimental study of the effect of cf3i addition on the ignition delay time and laminar flame speed of methane, ethylene, and propane. Proc. Combust. Inst. 2015, 35, 2731–2739.
- 24.
Kalitan, D.M.; Hall, J.M.; Petersen, E.L. Ignition and oxidation of ethylene-oxygen-diluent mixtures with and without silane. J. Propul. Power 2005, 21, 1045–1056.
- 25.
Deng, F.; Pan, Y.; Sun, W.; et al. Comparative study of the effects of nitrous oxide and oxygen on ethylene ignition. Energy Fuels 2017, 31, 14116–14128.
- 26.
Colket, M.B.; Spadaccini, L.J. Scramjet fuels autoignition study. J. Propul. Power 2001, 17, 315–323.
- 27.
Egolfopoulos, F.N.; Zhu, D.L.; Law, C.K. Experimental and numerical determination of laminar flame speeds: Mixtures of c2-hydrocarbons with oxygen and nitrogen. Symp. (Int.) Combust. 1991, 23, 471–478.
- 28.
Hassan, M.I.; Aung, K.T.; Kwon, O.C.; et al. Properties of laminar premixed hydrocarbon/air flames at various pressures. J. Propul. Power 1998, 14, 479–488.
- 29.
Konnov, A.A.; Dyakov, I.V.; De Ruyck, J. The effects of composition on the burning velocity and no formation in premixed flames of c2h4+o2+n2. Exp. Therm Fluid Sci. 2008, 32, 1412–1420.
- 30.
Kumar, K.; Mittal, G.; Sung, C.; et al. An experimental investigation of ethylene/o2/diluent mixtures: Laminar flame speeds with preheat and ignition delays at high pressures. Combust. Flame 2008, 153, 343–354.
- 31.
Ravi, S.; Sikes, T.G.; Morones, A.; et al. Comparative study on the laminar flame speed enhancement of methane with ethane and ethylene addition. Proc. Combust. Inst. 2015, 35, 679–686.
- 32.
Huo, J.; Shu, T.; Ren, Z.; et al. Extrapolation of laminar ethylene/air flame speeds at elevated pressures with flame chemistry analysis. J. Propul. Power 2019, 35, 424–431.
- 33.
Lubrano Lavadera, M.; Brackmann, C.; Konnov, A.A. Experimental and modeling study of laminar burning velocities and nitric oxide formation in premixed ethylene/air flames. Proc. Combust. Inst. 2021, 38, 395–404.
- 34.
Ma, S.; Zhang, X.; Dmitriev, A.; et al. Revisit laminar premixed ethylene flames at elevated pressures: A mass spectrometric and laminar flame propagation study. Combust. Flame 2021, 230, 111422.
- 35.
Wang, L.; Hou, R.; Zhang, Z.; et al. Laminar flame speed measurement and combustion mechanism optimization for ethylene–air mixtures. Asia-Pac. J. Chem. Eng. 2024, 19, e3060.
- 36.
Cong, T.L.; Emma, B.; and Dagaut, P. Oxidation of ethylene and propene in the presence of co2 and h2o: Experimental and detailed kinetic modeling study. Combust. Sci. Technol. 2010, 182, 333–349.
- 37.
Jallais, S.; Bonneau, L.; Auzanneau, M.; et al. An experimental and kinetic study of ethene oxidation at a high equivalence ratio. Ind. Eng. Chem. Res. 2002, 41, 5659–5667.
- 38.
Lopez, J.G.; Rasmussen, C.L.; Alzueta, M.U.; et al. Experimental and kinetic modeling study of c2h4 oxidation at high pressure. Proc. Combust. Inst. 2009, 32, 367–375.
- 39.
Su, B.; Papp, M.; Zsély, I.G.; et al. Comparison of the performance of ethylene combustion mechanisms. Combust. Flame 2024, 260, 113201.
- 40.
Mechanical and Aerospace Engineering (Combustion Research) University of California at San Diego, San Diego Mechanism. Available online: https://web.eng.ucsd.edu/mae/groups/combustion/mechanism.html (accessed on 16 March 2024).
- 41.
Pang, G.A.; Davidson, D.F.; Hanson, R.K. Experimental study and modeling of shock tube ignition delay times for hydrogen–oxygen–argon mixtures at low temperatures. Proc. Combust. Inst. 2009, 32, 181–188.
- 42.
Combustion Dynamics, Sichuan, Cds, Center for Combustion Dynamics, Sichuan University. Available online: http://cds.scu.edu.cn/ (accessed on 16 July 2024).
- 43.
Cao, S.; Zhang, H.; Liu, H.; et al. Optimization of kinetic mechanism for hydrogen combustion based on machine learning. Front. Chem. Sci. Eng. 2024, 18, 136.
- 44.
Cao, S.; Huang, J.; Li, W.; et al. Optimization of kinetic mechanism for methane combustion based on machine learning. Chem. J. Chin. Univ. 2024, 45, 20240296.
- 45.
Ihme, M.; Chung, W.T.; Mishra, A.A. Combustion machine learning: Principles, progress and prospects. Prog. Energy Combust. Sci. 2022, 91, 101010.
- 46.
Holland, J.H. Genetic algorithms and the optimal allocation of trials. SIAM J. Comput. 1973, 2, 88–105.
- 47.
Varatharajan, B.; Williams, F.A. Ethylene ignition and detonation chemistry, part 1: Detailed modeling and experimental comparison. J. Propul. Power 2002, 18, 344–351.
- 48.
Brown, C.J.; Thomas, G.O. Experimental studies of shock-induced ignition and transition to detonation in ethylene and propane mixtures. Combust. Flame 1999, 117, 861–870.
- 49.
Weber, B.W.; Kumar, K.; Zhang, Y.; et al. Autoignition of n-butanol at elevated pressure and low-to-intermediate temperature. Combust. Flame 2011, 158, 809–819.
- 50.
Baigmohammadi, M.; Patel, V.; Nagaraja, S.; et al. Comprehensive experimental and simulation study of the ignition delay time characteristics of binary blended methane, ethane, and ethylene over a wide range of temperature, pressure, equivalence ratio, and dilution. Energy Fuels 2020, 34, 8808–8823.
- 51.
Zhou, C.-W.; Li, Y.; Burke, U.; et al. An experimental and chemical kinetic modeling study of 1,3-butadiene combustion: Ignition delay time and laminar flame speed measurements. Combust. Flame 2018, 197, 423–438.
- 52.
Bagheri, G.; Ranzi, E.; Pelucchi, M.; et al. Comprehensive kinetic study of combustion technologies for low environmental impact: Mild and oxy-fuel combustion of methane. Combust. Flame 2020, 212, 142–155.
- 53.
Usc Mech Version ii. High-Temperature Combustion Reaction Model of h2/co/c1-c4 Compounds. Available online: http://ignis.usc.edu/USC_Mech_II.html (accessed on 16 March 2024).