- 1.
Zhu, Q.; Zhang, F.; Huang, Y.; et al. An all-round AI-Chemist with a scientific mind. Natl. Sci. Rev. 2022, 9, nwac190.
- 2.
Venkatasubramanian, V.J.A.J. The promise of artificial intelligence in chemical engineering: Is it here, finally? AlChE J. 2019, 65, 466.
- 3.
Tao, F.; Liu, W.; Liu, J.; et al. Digital twin and its potential application exploration. Comput. Integr. Manuf. Syst. 2018, 24, 1–18.
- 4.
Thebelt, A.; Wiebe, J.; Kronqvist, J.; et al. Maximizing information from chemical engineering data sets: Applications to machine learning. Chem. Eng. Sci. 2022, 252, 117469.
- 5.
Merchant, A.; Batzner, S.; Schoenholz, S.S.; et al. Scaling deep learning for materials discovery. Nature 2023, 624, 80–85.
- 6.
Szymanski, N.J.; Rendy, B.; Fei, Y.; et al. An autonomous laboratory for the accelerated synthesis of novel materials. Nature 2023, 624, 86–91.
- 7.
Zhang, J.; Li, C.; Deng, C.; et al. Toward digital twins for intelligence manufacturing: Self-adaptive control in assisted equipment through multi-sensor fusion smart tool real-time machine condition monitoring. J. Manuf. Syst. 2025, 82, 301–318.
- 8.
Yang, X.; Wang, Y.; Byrne, R.; et al. Concepts of artificial intelligence for computer-assisted drug discovery. Chem. Rev. 2019, 119, 10520–10594.
- 9.
Jamali, M.; Hajialigol, N.; Fattahi, A. An insight into the application and progress of artificial intelligence in the hydrogen production industry: A review. Mater. Today Sustain. 2025, 30, 101098.
- 10.
Peng, C.; Wang, B.; Wu, L.; et al. AI-Driven Discovery and Molecular Engineering Design for Enhancing Interface Stability of Black Phosphorus. Angew. Chem. Int. Ed. 2025, 64, e202508454.