- 1.
Rao, K.K.; Nott, P.R.; Sundaresan, S. An Introduction to Granular Flow; Cambridge University Press: Cambridge, UK, 2008.
- 2.
Jaeger, H.M.; Nagel, S.R.; Behringer, R.P. Granular solids, liquids, and gases. Rev. Mod. Phys. 1996, 68, 1259–1273.
- 3.
Kadanoff, L.P. Built upon sand: Theoretical ideas inspired by granular flows. Rev. Mod. Phys. 1999, 71, 435–444.
- 4.
Wang, J. Continuum theory for dense gas-solid flow: A state-of-the-art review. Chem. Eng. Sci. 2020, 215, 115428.
- 5.
Gidaspow, D. Multiphase Flow and Fluidization: Continuum and Kinetic Theory Descriptions; Academic Press: San Diego, CA, USA, 1994.
- 6.
Zhao, B.; Wang, J. Kinetic theory of polydisperse gas–solid flow: Navier–Stokes transport coefficients. Phys. Fluids 2021, 33, 103322.
- 7.
Luding, S. On the relevance of molecular chaos for granular flows. J. Appl. Math. Mech. 2000, 80, 9–12.
- 8.
Costantini, G.; Puglisi, A. Role of Molecular Chaos in Granular FluctuatingHydrodynamics. Math. Model. Nat. Phenom. 2011, 6, 2–18.
- 9.
He, M.; Zhao, B.; Xu, J.; et al. Assessment of kinetic theory for gas–solid flows using discrete particle method. Phys. Fluids 2022, 34, 093315.
- 10.
Cundall, P.A.; Strack, O.D. A discrete numerical model for granular assemblies. Geotechnique 1979, 29, 47–65.
- 11.
Guo, Y.; Curtis, J.S. Discrete element method simulations for complex granular flows. Annu. Rev. Fluid Mech. 2015, 47, 21–46.
- 12.
Zhang, S.; Ge, W.; Liu, C. Spatial–temporal multiscale discrete–continuum simulation of granular flow. Phys. Fluids 2023, 35, 053319.
- 13.
Brunton, S.L.; Noack, B.R.; Koumoutsakos, P. Machine learning for fluid mechanics. Annu. Rev. Fluid Mech. 2020, 52, 477–508.
- 14.
Zhu, L.T.; Chen, X.Z.; Ouyang, B.; et al. Review of Machine Learning for Hydrodynamics, Transport, and Reactions in Multiphase Flows and Reactors. Ind. Eng. Chem. Res. 2022, 61, 9901–9949.
- 15.
Guan, S.; Qu, T.; Feng, Y.; et al. A machine learning-based multi-scale computational framework for granular materials. Acta Geotech. 2023, 18, 1699–1720.
- 16.
Cheng, C.H.; Lin, C.C. Prediction of force chains for dense granular flows using machine learning approach. Phys. Fluids 2024, 36, 083306.
- 17.
Raissi, M.; Perdikaris, P.; Karniadakis, G.E. Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. J. Comput. Phys. 2019, 378, 686–707.
- 18.
Raissi, M.; Yazdani, A.; Karniadakis, G.E. Hidden fluid mechanics: Learning velocity and pressure fields from flow visualizations. Science 2020, 367, 1026–1030.
- 19.
Karniadakis, G.E.; Kevrekidis, I.G.; Lu, L.; et al. Physics-informed machine learning. Nat. Rev. Phys. 2021, 3, 422–440.
- 20.
Cai, S.; Mao, Z.; Wang, Z.; et al. Physics-informed neural networks (PINNs) for fluid mechanics: A review. Acta Mech. Sin. 2021, 37, 1727–1738.
- 21.
Jin, X.; Cai, S.; Li, H.; et al. NSFnets (Navier-Stokes flow nets): Physics-informed neural networks for the incompressible Navier-Stokes equations. J. Comput. Phys. 2021, 426, 109951.
- 22.
Brito, R.; Ernst, M. Extension of Haff’s cooling law in granular flows. Europhys. Lett. 1998, 43, 497.
- 23.
Miller, S.; Luding, S. Cluster growth in two-and three-dimensional granular gases. Phys. Rev. E 2004, 69, 031305.
- 24.
Zhao, B.; He, M.; Wang, J. Data-driven discovery of the governing equation of granular flow in the homogeneous cooling state using sparse regression. Phys. Fluids 2023, 35, 013315.