Downloads

Jia, L., & Li, F. Carbon Dioxide and Nitrate Electrocatalytic C-N Coupling for Sustainable Production of Urea. Science for Energy and Environment. 2024, 1(1). doi: Retrieved from https://www.sciltp.com/journals/see/article/view/309

Review

Carbon Dioxide and Nitrate Electrocatalytic C-N Coupling for Sustainable Production of Urea

Litao Jia, and Fanghua Li *

School of Environment, Harbin Institute of Technology, Harbin 150090, China

* Correspondence: fanghuahope01@hit.edu.cn

Received: 15 December 2023; Revised: 17 January 2024; Accepted: 19 February 2024; Published: 5 March 2024

 

Abstract:

The electrocatalytic co-reduction of carbon dioxide (CO2) and nitrate (NO3) for urea synthesis under environmental conditions offers a promising solution for achieving sustainable environmental management. Besides, electrochemical urea synthesis is an alternative approach for cleaner production of urea compared to the conventional urea industrial production process with high energy consumption and pollution. However, lower urea yield, lower selectivity and unclear C-N coupling reaction mechanism are still the main challenges to its large-scale application. In this review, we focus on accurate and reliable detection methods and evaluation criteria for urea products, recent progress on CO2 and NO3 electrocatalytic co-reduction synthesis of urea, rational design of high-performance electrocatalysts, and C-N coupling reaction mechanism of urea electrochemical synthesis under atmospheric conditions. This review could contribute to the development of electrochemical urea synthesis via effective remediation of CO2 and NO3.

Keywords:

urea synthesis C-N coupled system electrocatalytic co-reduction reaction mechanism multiphase electrocatalysts

References

  1. Kawai, E.; Ozawa, A.; Leibowicz, B.D. Role of carbon capture and utilization (CCU) for decarbonization of industrial sector: A case study of Japan. Appl. Energy 2022, 328, 120183.
  2. Ravikumar, D.; Zhang, D.; Keoleian, G.; Miller, S.; Sick, V.; Li, V. Carbon dioxide utilization in concrete curing or mixing might not produce a net climate benefit. Nat. Commun. 2021, 12, 855.
  3. Gao, W.; Liang, S.; Wang, R.; Jiang, Q.; Zhang, Y.; Zheng, Q.; Xie, B.; Toe, C.Y.; Zhu, X.; Wang, J.; et al. Industrial carbon dioxide capture and utilization: State of the art and future challenges. Chem. Soc. Rev. 2020, 49, 8584–8686.
  4. Mac Dowell, N.; Fennell, P.S.; Shah, N.; Maitland, G.C. The role of CO2 capture and utilization in mitigating climate change. Nat. Clim. Chang. 2017, 7, 243–249.
  5. Chen, C.; Li, S.; Zhu, X.; Bo, S.; Cheng, K.; He, N.; Qiu, M.; Xie, X.; Song, D.; Liu, Y.; et al. Balancing sub-reaction activity to boost electrocatalytic urea synthesis using a metal-free electrocatalyst. Carbon Energy 2023, e345.
  6. Wu, Y.; Jiang, Z.; Lin, Z.; Liang, Y.; Wang, H. Direct electrosynthesis of methylamine from carbon dioxide and nitrate. Nat. Sustain. 2021, 4, 725–730.
  7. Li, J.; Zhang, Y.; Kuruvinashetti, K.; Kornienko, N. Construction of C-N bonds from small-molecule precursors through heterogeneous electrocatalysis. Nat. Rev. Chem. 2022, 6, 303–319.
  8. Liu, X.; Jiao, Y.; Zheng, Y.; Jaroniec, M.; Qiao, S.-Z. Mechanism of C-N bonds formation in electrocatalytic urea production revealed by ab initio molecular dynamics simulation. Nat. Commun. 2022, 13, 5471.
  9. Lv, C.; Zhong, L.; Liu, H.; Fang, Z.; Yan, C.; Chen, M.; Kong, Y.; Lee, C.; Liu, D.; Li, S.; et al. Selective electrocatalytic synthesis of urea with nitrate and carbon dioxide. Nat. Sustain. 2021, 4, 868–876.
  10. Yuan, M.; Chen, J.; Bai, Y.; Liu, Z.; Zhang, J.; Zhao, T.; Wang, Q.; Li, S.; He, H.; Zhang, G. Unveiling electrochemical urea synthesis by co-activation of CO2 and N2 with Mott-Schottky heterostructure catalysts. Angew. Chem. Int. Ed. 2021, 60, 10910–10918.
  11. Wei, X.; Liu, Y.; Zhu, X.; Bo, S.; Xiao, L.; Chen, C.; Nga, T.T.T.; He, Y.; Qiu, M.; Xie, C.; et al. Dynamic reconstitution between copper single atoms and clusters for electrocatalytic urea synthesis. Adv. Mater. 2023, 35, 2300020.
  12. Wang, H.; Jiang, Y.; Li, S.; Gou, F.; Liu, X.; Jiang, Y.; Luo, W.; Shen, W.; He, R.; Li, M. Realizing efficient C-N coupling via electrochemical co-reduction of CO2 and NO3− on AuPd nanoalloy to form urea: Key C-N coupling intermediates. Appl. Catal. B 2022, 318, 121819.
  13. Huang, Y.; Wang, Y.; Liu, Y.; Ma, A.; Gui, J.; Zhang, C.; Yu, Y.; Zhang, B. Unveiling the quantification minefield in electrocatalytic urea synthesis. Chem. Eng. J. 2023, 453, 139836.
  14. Li, N.; Gao, H.; Liu, Z.; Zhi, Q.; Li, B.; Gong, L.; Chen, B.; Yang, T.; Wang, K.; Jin, P.; Jiang, J. Metalphthalocyanine frameworks grown on TiO2 nanotubes for synergistically and efficiently electrocatalyzing urea production from CO2 and nitrate. Sci. China Chem. 2023, 66, 1417–1424.
  15. Mei, Z.; Zhou, Y.; Lv, W.; Tong, S.; Yang, X.; Chen, L.; Zhang, N. Recent progress in electrocatalytic urea synthesis under ambient conditions, ACS Sustain. Chem. Eng. 2022, 10, 12477–12496.
  16. Martín, A.J.; Veenstra, F.L.P.; Lüthi, J.; Verel, R.; Pérez-Ramírez, J. Toward reliable and accessible ammonia quantification in the electrocatalytic reduction of nitrogen. Chem Catalysis 2021, 1, 1505–1518.
  17. Francis, P.S.; Lewis, S.W.; Lim, K.F. Analytical methodology for the determination of urea: Current practice and future trends. Trends Analyt. Chem. 2002, 21, 389–400.
  18. Lv, C.; Lee, C.; Zhong, L.; Liu, H.; Liu, J.; Yang, L.; Yan, C.; Yu, W.; Hng, H.H.; Qi, Z.; et al. A defect engineered electrocatalyst that promotes high-efficiency urea synthesis under ambient conditions. ACS Nano 2022, 16, 8213–8222.
  19. Huang, Y.; Yang, R.; Wang, C.; Meng, N.; Shi, Y.; Yu, Y.; Zhang, B. Direct electrosynthesis of urea from carbon dioxide and nitric oxide. ACS Energy Lett. 2022, 7, 284–291.
  20. Wei, X.; Wen, X.; Liu, Y.; Chen, C.; Xie, C.; Wang, D.; Qiu, M.; He, N.; Zhou, P.; Chen, W.; et al. Oxygen vacancy-mediated selective C–N coupling toward electrocatalytic urea synthesis. J. Am. Chem. Soc. 2022, 144, 11530–11535.
  21. Wang, H.; Jiang, Y.; Li, S.; Gou, F.; Liu, X.; Jiang, Y.; Luo, W.; Shen, W.; He, R.; Li, M. Realizing efficient C-N coupling via electrochemical co-reduction of CO2 and NO3− on AuPd nanoalloy to form urea: Key C-N coupling intermediates. Appl. Catal. B. 2022, 318, 121819.
  22. Huang, Y.; Wang, Y.; Liu, Y.; Ma, A.; Gui, J.; Zhang, C.; Yu, Y.; Zhang, B. Unveiling the quantification minefield in electrocatalytic urea synthesis. Chemical Engineering Journal 2023, 453, 139836.
  23. Chen, G.-F.; Yuan, Y.; Jiang, H.; Ren, S.-Y.; Ding, L.-X.; Ma, L.; Wu, T.; Lu, J.; Wang, H. Electrochemical reduction of nitrate to ammonia via direct eight-electron transfer using a copper–molecular solid catalyst. Nature Energy 2020, 5, 605–613.
  24. Chen, C.; Zhu, X.; Wen, X.; Zhou, Y.; Zhou, L.; Li, H.; Tao, L.; Li, Q.; Du, S.; Liu, T.; et al. Coupling N2 and CO2 in H2O to synthesize urea under ambient conditions. Nat. Chem. 2020, 12, 717–724.
  25. Kraft, B.; Tegetmeyer, H.E.; Sharma, R.; Klotz, M.G.; Ferdelman, T.G.; Hettich, R.L.; Geelhoed, J.S.; Strous, M. The environmental controls that govern the end product of bacterial nitrate respiration. Science 2014, 345, 676–679.
  26. Chen, F.-Y.; Wu, Z.-Y.; Gupta, S.; Rivera, D.J.; Lambeets, S.V.; Pecaut, S.; Kim, J.Y.T.; Zhu, P.; Finfrock, Y.Z.; Meira, D.M.; et al. Efficient conversion of low-concentration nitrate sources into ammonia on a Ru-dispersed Cu nanowire electrocatalyst. Nat. Nanotechnol. 2022, 17, 759–767.
  27. Wang, J.; Chu, L. Biological nitrate removal from water and wastewater by solid-phase denitrification process. Biotechnol. Adv. 2016, 34, 1103–1112.
  28. Wang, Y.; Li, H.; Zhou, W.; Zhang, X.; Zhang, B.; Yu, Y. Structurally disordered RuO2 nanosheets with rich oxygen vacancies for enhanced nitrate electroreduction to ammonia. Angew. Chem. Int. Ed. 2022, 61, e202202604.
  29. Garcia-Segura, S.; Lanzarini-Lopes, M.; Hristovski, K.; Westerhoff, P. Electrocatalytic reduction of nitrate: Fundamentals to full-scale water treatment applications. Appl. Catal. B 2018, 236, 546–568.
  30. Zhang, X.; Wang, Y.; Liu, C.; Yu, Y.; Lu, S.; Zhang, B. Recent advances in non-noble metal electrocatalysts for nitrate reduction. Chem. Eng. J. 2021, 403, 126269.
  31. De Luna, P.; Hahn, C.; Higgins, D.; Jaffer, S.A.; Jaramillo, T.F.; Sargent, E.H. What would it take for renewably powered electrosynthesis to displace petrochemical processes? Science 2019, 364, 6438.
  32. Shin, H.; Hansen, K.U.; Jiao, F. Techno-economic assessment of low-temperature carbon dioxide electrolysis. Nat. Sustain. 2021, 4, 911–919.
  33. Geng, J.; Ji, S.; Jin, M.; Zhang, C.; Xu, M.; Wang, G.; Liang, C.; Zhang, H. Ambient electrosynthesis of urea with nitrate and carbon dioxide over Iron-based dual-sites. Angew. Chem. Int. Ed. 2023, 62, e2022109.
  34. Li, N.; Gao, H.; Liu, Z.; Zhi, Q.; Li, B.; Gong, L.; Chen, B.; Yang, T.; Wang, K.; Jin, P.; et al. Metalphthalocyanine frameworks grown on TiO2 nanotubes for synergistically and efficiently electrocatalyzing urea production from CO2 and nitrate. Sci. China Chem. 2023, 66, 1417–1424.
  35. Liu, X.; Kumar, P.V.; Chen, Q.; Zhao, L.; Ye, F.; Ma, X.; Liu, D.; Chen, X.; Dai, L.; Hu, C. Carbon nanotubes with fluorine-rich surface as metal-free electrocatalyst for effective synthesis of urea from nitrate and CO2. Appl. Catal. B 2022, 316, 121618.
  36. Shin, S.; Sultan, S.; Chen, Z.-X.; Lee, H.; Choi, H.; Wi, T.-U.; Park, C.; Kim, T.; Lee, C.; Jeong, J.; et al. Copper with an atomic-scale spacing for efficient electrocatalytic co-reduction of carbon dioxide and nitrate to urea. Energy Environ. Sci. 2023, 16, 2003–2013.
  37. Sun, M.; Wu, G.; Jiang, J.; Yang, Y.; Du, A.; Dai, L.; Mao, X.; Qin, Q. Carbon-anchored molybdenum oxide nanoclusters as efficient catalysts for the electrosynthesis of ammonia and urea. Angew. Chem. Int. Ed. 2023, 62, e2023019.
  38. Qin, J.; Liu, N.; Chen, L.; Wu, K.; Zhao, Q.; Liu, B.; Ye, Z. Selective electrochemical urea synthesis from nitrate and CO2 using in situ Ru anchoring onto a three-dimensional copper electrode. ACS Sustain. Chem. Eng. 2022, 10, 15869–15875.
  39. Meng, N.; Ma, X.; Wang, C.; Wang, Y.; Yang, R.; Shao, J.; Huang, Y.; Xu, Y.; Zhang, B.; Yu, Y. Oxide-derived core-shell Cu@Zn nanowires for urea electrosynthesis from carbon dioxide and nitrate in water. ACS Nano 2022, 16, 9095–9104.
  40. Wei, X.; Liu, Y.; Zhu, X.; Bo, S.; Xiao, L.; Chen, C.; Nga, T.T.T.; He, Y.; Qiu, M.; Xie, C.; et al. Dynamic reconstitution between copper single atoms and clusters for electrocatalytic urea synthesis. Adv. Mater. 2023, 35, e2300020.
  41. Zhang, X.; Zhu, X.; Bo, S.; Chen, C.; Qiu, M.; Wei, X.; He, N.; Xie, C.; Chen, W.; Zheng, J.; et al. Identifying and tailoring C-N coupling site for efficient urea synthesis over diatomic Fe-Ni catalyst. Nat. Commun. 2022, 13, 5337.
  42. Leverett, J.; Tran-Phu, T.; Yuwono, J.A.; Kumar, P.; Kim, C.; Zhai, Q.; Han, C.; Qu, J.; Cairney, J.; Simonov, A.N.; et al. R.K. Tuning the coordination structure of Cu-N-C single atom catalysts for simultaneous electrochemical reduction of CO2 and NO3– to urea. Adv. Energy Mater. 2022, 12, 2201500.
  43. Malapit, C.A.; Prater, M.B.; Cabrera-Pardo, J.R.; Li, M.; Pham, T.D.; McFadden, T.P.; Blank, S.; Minteer, S.D. Advances on the merger of electrochemistry and transition metal catalysis for organic synthesis. Chem. Rev. 2022, 122, 3180–3218.
  44. Sun, H.; Yan, Z.; Liu, F.; Xu, W.; Cheng, F.; Chen, J. Self-supported transition-metal-based electrocatalysts for hydrogen and oxygen evolution. Adv. Mater. 2020, 32, 1806326.
  45. Luo, Y.; Xie, K.; Ou, P.; Lavallais, C.; Peng, T.; Chen, Z.; Zhang, Z.; Wang, N.; Li, X.-Y.; Grigioni, I.; et al. Selective electrochemical synthesis of urea from nitrate and CO2 via relay catalysis on hybrid catalysts. Nature Catalysis 2023, 6, 939–948.
  46. Zhao, Y.; Ding, Y.; Li, W.; Liu, C.; Li, Y.; Zhao, Z.; Shan, Y.; Li, F.; Sun, L.; Li, F. Efficient urea electrosynthesis from carbon dioxide and nitrate via alternating Cu–W bimetallic C–N coupling sites. Nat. Commun. 2023, 14, 4491.
  47. Hou, C.-C.; Zou, L.; Sun, L.; Zhang, K.; Liu, Z.; Li, Y.; Li, C.; Zou, R.; Yu, J.; Xu, Q. Single-atom Iron catalysts on overhang-eave carbon cages for high-performance oxygen reduction reaction. Angew. Chem. Int. Ed. 2020, 59, 7384–7389.
  48. Hung, S.-F.; Xu, A.; Wang, X.; Li, F.; Hsu, S.-H.; Li, Y.; Wicks, J.; Cervantes, E.G.; Rasouli, A.S.; Li, Y.C.; et al. A metal-supported single-atom catalytic site enables carbon dioxide hydrogenation. Nat. Commun. 2022, 13, 819.
  49. Zhu, C.; Fu, S.; Shi, Q.; Du, D.; Lin, Y. Single-atom electrocatalysts. Angew. Chem. Int. Ed. 2017, 56, 13944–13960.
  50. Kessler, F.K.; Zheng, Y.; Schwarz, D.; Merschjann, C.; Schnick, W.; Wang, X.; Bojdys, M.J. Functional carbon nitride materials design strategies for electrochemical devices. Nat. Rev. Mater. 2017, 2, 1–17.
  51. Sun, L.; Gong, Y.; Li, D.; Pan, C. Biomass-derived porous carbon materials: Synthesis, designing, and applications for supercapacitors. Green Chem. 2022, 24, 3864–3894.
  52. Musa, A.B.; Tabish, M.; Kumar, A.; Selvaraj, M.; Khan, M.A.; Al-Shehri, B.M.; Arif, M.; Mushtaq, M.A.; Ibraheem, S.; Slimani, Y.; et al. Microenvironment engineering of Fe-single-atomic-site with nitrogen coordination anchored on carbon nanotubes for boosting oxygen electrocatalysis in alkaline and acidic media. Chem. Eng. J. 2023, 451, 138684.
  53. Yan, Y.; Miao, J.; Yang, Z.; Xiao, F.-X.; Yang, H.B.; Liu, B.; Yang, Y. Carbon nanotube catalysts: Recent advances in synthesis, characterization and applications. Chem. Soc. Rev. 2015, 44, 3295–3346.
  54. Mao, Y.; Jiang, Y.; Liu, H.; Jiang, Y.; Li, M.; Su, W.; He, R. Ambient electrocatalytic synthesis of urea by co-reduction of NO3− and CO2 over graphene-supported In2O3. Chinese Chemical Letters 2023, 35, 108540.
  55. Deng, K.; Zhou, T.; Mao, Q.; Wang, S.; Wang, Z.; Xu, Y.; Li, X.; Wang, H.; Wang, L. Surface engineering of defective and porous Ir metallene with polyallylamine for hydrogen evolution electrocatalysis. Adv. Mater. 2022, 34, 2110680.
  56. Li, W.; Wang, D.; Zhang, Y.; Tao, L.; Wang, T.; Zou, Y.; Wang, Y.; Chen, R.; Wang, S. Defect engineering for fuel-cell electrocatalysts. Adv. Mater. 2020, 32, 1907879.
  57. Zhu, Y.; Liu, X.; Jin, S.; Chen, H.; Lee, W.; Liu, M.; Chen, Y. Anionic defect engineering of transition metal oxides for oxygen reduction and evolution reactions. J. Mater. Chem. A 2019, 7, 5875–5897.
  58. Cao, N.; Quan, Y.; Guan, A.; Yang, C.; Ji, Y.; Zhang, L.; Zheng, G. Oxygen vacancies enhanced cooperative electrocatalytic reduction of carbon dioxide and nitrite ions to urea. J. Colloid Interface Sci. 2020, 577, 109–114.
  59. Gao, X.; Bai, X.; Wang, P.; Jiao, Y.; Davey, K.; Zheng, Y.; Qiao, S.-Z. Boosting urea electrooxidation on oxyanion-engineered nickel sites via inhibited water oxidation. Nat. Commun. 2023, 14, 5842.
  60. Wei, X.; Wen, X.; Liu, Y.; Chen, C.; Xie, C.; Wang, D.; Qiu, M.; He, N.; Zhou, P.; Chen, W.; et al. Oxygen vacancy-mediated selective C-N coupling toward electrocatalytic urea synthesis. J. Am. Chem. Soc. 2022, 144, 11530–11535.
  61. Yu, K.; Wang, H.; Yu, W.; Li, S.; Zhang, X.; Bian, Z. Resource utilization of carbon dioxide and nitrate to produce value-added organonitrogen compounds through an electrochemical approach. Applied Catalysis B: Environmental 2024, 341, 123292.