- 1.
Yang, Z.; Cao, J.; He, Y.; Yang, J.H.; Kim, T.; Peng, X.; Kim, J.S. Macro-/micro-environment-sensitive chemosensing and biological imaging. Chem. Soc. Rev. 2014, 43, 4563–4601.
- 2.
Stender, A.S.; Marchuk, K.; Liu, C.; Sander, S.; Meyer, M.W.; Smith, E.A.; Neupane, B.; Wang, G.; Li, J.; Cheng, J.-X.; et al. Single Cell Optical Imaging and Spectroscopy. Chem. Rev. 2013, 113, 2469–2527.
- 3.
Yang, S.K.; Shi, X.; Park, S.; Ha, T.; Zimmerman, S.C. A dendritic single-molecule fluorescent probe that is monovalent, photostable and minimally blinking. Nat. Chem. 2013, 5, 692–697.
- 4.
Zhu, M.; Yang, C. Blue fluorescent emitters: Design tactics and applications in organic light-emitting diodes. Chem. Soc. Rev. 2013, 42, 4963–4976.
- 5.
Maggini, L.; Bonifazi, D. Hierarchised luminescent organic architectures: Design, synthesis, self-assembly, self-organisation and functions. Chem. Soc. Rev. 2012, 41, 211–241.
- 6.
Ma, L.; Feng, X.; Wang, S.; Wang, B. Recent advances in AIEgen-based luminescent metal–organic frameworks and covalent organic frameworks. Mater. Chem. Front. 2017, 1, 2474–2486.
- 7.
Herwig, L.; Rice, A.J.; Bedbrook, C.N.; Zhang, R.K.; Lignell, A.; Cahn, J.K.B.; Renata, H.; Dodani, S.C.; Cho, I.; Cai, L.; et al. Directed Evolution of a Bright Near-Infrared Fluorescent Rhodopsin Using a Synthetic Chromophore. Cell Chem. Biol. 2017, 24, 415–425.
- 8.
Mei, J.; Leung, N.L.C.; Kwok, R.T.K.; Lam, J.W.Y.; Tang, B.Z. Aggregation-Induced Emission: Together We Shine, United We Soar! Chem. Rev. 2015, 115, 11718–11940.
- 9.
Aly, K.I.; Younis, O.; Mahross, M.H.; Orabi, E.A.; Abdel-Hakim, M.; Tsutsumi, O.; Mohamed, M.G.; Sayed, M.M. Conducting copolymers nanocomposite coatings with aggregation-controlled luminescence and efficient corrosion inhibition properties. Progress. Org. Coat. 2019, 135, 525–535.
- 10.
Sayed, M.; Younis, O.; Hassanien, R.; Ahmed, M.; Mohammed, A.A.K.; Kamal, A.M.; Tsutsumi, O. Design and Synthesis of Novel Indole Derivatives with Aggregation-Induced Emission and Antimicrobial Activity. J. Photochem. Photobiol. A: Chem. 2019, 383, 111969–111979.
- 11.
Younis, O.; Orabi, E.A.; Kamal, A.M.; Sayed, M.; Hassanien, R.; Davis, R.L.; Tsutsumi, O.; Ahmed, M. Aggregation-induced emission with white, green, or blue luminescence from biologically-active indole derivatives. Opt. Mater. 2020, 100, 109713.
- 12.
Younis, O.; Tolba, M.S.; Orabi, E.A.; Kamal, A.M.; Hassanien, R.; Tsutsumi, O.; Ahmed, M. Biologically-Active Heterocyclic Molecules with Aggregation-Induced Blue-Shifted Emission and Efficient Luminescence both in Solution and Solid States. J. Photochem. Photobiol. A Chem. 2020, 400, 112642.
- 13.
Hong, Y.; Lam, J.W.Y.; Tang, B.Z. Aggregation-induced emission. Chem. Soc. Rev. 2011, 40, 5361–5388.
- 14.
- 15.
Asad, M.; Anwar, M.I.; Abbas, A.; Younas, A.; Hussain, S.; Gao, R.; Li, L.-K.; Shahid, M.; Khan, S. AIE based luminescent porous materials as cutting-edge tool for environmental monitoring: State of the art advances and perspectives. Coord. Chem. Rev. 2022, 463, 214539.
- 16.
Castilla, A.M.; Ramsay, W.J.; Nitschke, J.R. Stereochemistry in Subcomponent Self-Assembly. Acc. Chem. Res. 2014, 47, 2063–2073.
- 17.
Custelcean, R. Anion encapsulation and dynamics in self-assembled coordination cages. Chem. Soc. Rev. 2014, 43, 1813–1824.
- 18.
Amouri, H.; Desmarets, C.; Moussa, J. Confined Nanospaces in Metallocages: Guest Molecules, Weakly Encapsulated Anions, and Catalyst Sequestration. Chem. Rev. 2012, 112, 2015–2041.
- 19.
Yoshizawa, M.; Tamura, M.; Fujita, M. Diels-Alder in Aqueous Molecular Hosts: Unusual Regioselectivity and Efficient Catalysis. Science 2006, 312, 251–254.
- 20.
Zhu, C.-Y.; Pan, M.; Su, C.-Y. Metal-Organic Cages for Biomedical Applications. Isr. J. Chem. 2019, 59, 209–219.
- 21.
Lustig, W.P.; Mukherjee, S.; Rudd, N.D.; Desai, A.V.; Li, J.; Ghosh, S.K. Metal–organic frameworks: Functional luminescent and photonic materials for sensing applications. Chem. Soc. Rev. 2017, 46, 3242–3285.
- 22.
Hu, Z.; Deibert, B.J.; Li, J. Luminescent metal–organic frameworks for chemical sensing and explosive detection. Chem. Soc. Rev. 2014, 43, 5815–5840.
- 23.
Longhi, G.; Castiglioni, E.; Koshoubu, J.; Mazzeo, G.; Abbate, S. Circularly Polarized Luminescence: A Review of Experimental and Theoretical Aspects. Chirality 2016, 28, 696–707.
- 24.
Ikeda, T.; Masuda, T.; Hirao, T.; Yuasa, J.; Tsumatori, H.; Kawai, T.; Haino, T. Circular dichroism and circularly polarized luminescence triggered by self-assembly of tris(phenylisoxazolyl)benzenes possessing a perylenebisimide moiety. Chem. Commun. 2012, 48, 6025–6027.
- 25.
Carr, R.; Evans, N.H.; Parker, D. Lanthanide complexes as chiral probes exploiting circularly polarized luminescence. Chem. Soc. Rev. 2012, 41, 7673–7686.
- 26.
Xu, Y.; Yang, G.; Xia, H.; Zou, G.; Zhang, Q.; Gao, J. Enantioselective synthesis of helical polydiacetylene by application of linearly polarized light and magnetic field. Nat. Commun. 2014, 5, 5050.
- 27.
Kim, J.; Lee, J.; Kim, W.Y.; Kim, H.; Lee, S.; Lee, H.C.; Lee, Y.S.; Seo, M.; Kim, S.Y. Induction and control of supramolecular chirality by light in self-assembled helical nanostructures. Nat. Commun. 2015, 6, 6959.
- 28.
David, A.H.G.; Casares, R.; Cuerva, J.M.; Campaña, A.G.; Blanco, V. A [2]Rotaxane-Based Circularly Polarized Luminescence Switch. J. Am. Chem. Soc. 2019, 141, 18064–18074.
- 29.
Tanaka, H.; Inoue, Y.; Mori, T. Circularly Polarized Luminescence and Circular Dichroisms in Small Organic Molecules: Correlation between Excitation and Emission Dissymmetry Factors. ChemPhotoChem 2018, 2, 386–402.
- 30.
He, C.; Yang, G.; Kuai, Y.; Shan, S.; Yang, L.; Hu, J.; Zhang, D.; Zhang, Q.; Zou, G. Dissymmetry enhancement in enantioselective synthesis of helical polydiacetylene by application of superchiral light. Nat. Commun. 2018, 9, 5117.
- 31.
Tang, X.; Jiang, H.; Si, Y.; Rampal, N.; Gong, W.; Cheng, C.; Kang, X.; Fairen-Jimenez, D.; Cui, Y.; Liu, Y. Endohedral functionalization of chiral metal-organic cages for encapsulating achiral dyes to induce circularly polarized luminescence. Chem 2021, 7, 2771–2786.
- 32.
Li, R.-J.; Holstein, J.J.; Hiller, W.G.; Andréasson, J.; Clever, G.H. Mechanistic Interplay between Light Switching and Guest Binding in Photochromic [Pd2Dithienylethene4] Coordination Cages. J. Am. Chem. Soc. 2019, 141, 2097–2103.
- 33.
Luo, X.-Y.; Pan, M. Metal-organic materials with circularly polarized luminescence. Coord. Chem. Rev. 2022, 468, 214640.
- 34.
Chen, G.-H.; He, Y.-P.; Yu, Y.; Li, Q.-H.; Zhang, J. Homochiral design of titanium-organic cage for circularly polarized luminescence-based molecular detection. Sci. China Chem. 2023, 66, 2558–2562.
- 35.
Yu, S.; Yan, W.; Long, W.; Yuan, Y.; Ouyang, H.; He, Z.; Tian, J.; Liu, M.; Zhang, X.; Wei, Y. A facile strategy to fabricate fluorescent polymeric nanoparticles with aggregation-induced emission feature via oxygen-tolerated light-induced living polymerization. Dye. Pigment. 2021, 192, 109454.
- 36.
Chen, G.-H.; He, Y.-P.; Yu, Y.; Lv, H.; Li, S.; Wang, F.; Gu, Z.-G.; Zhang, J. Post-Assembly Modification of Homochiral Titanium–Organic Cages for Recognition and Separation of Molecular Isomers. Angew. Chem. Int. Ed. 2023, 62, e202300726.
- 37.
McTernan, C.T.; Ronson, T.K.; Nitschke, J.R. Post-assembly Modification of Phosphine Cages Controls Host–Guest Behavior. J. Am. Chem. Soc. 2019, 141, 6837–6842.
- 38.
Briggs, M.E.; Cooper, A.I. A Perspective on the Synthesis, Purification, and Characterization of Porous Organic Cages. Chem. Mater. 2017, 29, 149–157.
- 39.
Pilgrim, B.S.; Champness, N.R. Metal-Organic Frameworks and Metal-Organic Cages—A Perspective. Chempluschem 2020, 85, 1842–1856.
- 40.
Zhu, Q.; Qu, H.; Avci, G.; Hafizi, R.; Zhao, C.; Day, G.M.; Jelfs, K.E.; Little, M.A.; Cooper, A.I. Computationally guided synthesis of a hierarchical [4[2+3]+6] porous organic ‘cage of cages’. Nat. Synth. 2024, 3, 825–834.
- 41.
Jia, L.; Tang, X.; Cui, Y.; Liu, Y. Porous metal-organic cage-based membranes. Sci. China Chem. 2023, 66, 2169–2180.
- 42.
Qin, Y.; Ling, Q.-H.; Wang, Y.-T.; Hu, Y.-X.; Hu, L.; Zhao, X.; Wang, D.; Yang, H.-B.; Xu, L.; Tang, B.Z. Construction of Covalent Organic Cages with Aggregation-Induced Emission Characteristics from Metallacages for Mimicking Light-Harvesting Antenna. Angew. Chem. Int. Ed. 2023, 62, e202308210.
- 43.
Zhang, X.; Shi, J.; Shen, G.; Gou, F.; Cheng, J.; Zhou, X.; Xiang, H. Non-conjugated fluorescent molecular cages of salicylaldehyde-based tri-Schiff bases: AIE, enantiomers, mechanochromism, anion hosts/probes, and cell imaging properties. Mater. Chem. Front. 2017, 1, 1041–1050.
- 44.
Sun, Y.-L.; Wang, Z.; Ren, C.; Zhang, J.; Zhang, H.; Zhang, C.; Tang, B.Z. Highly Emissive Organic Cage in Single-Molecule and Aggregate States by Anchoring Multiple Aggregation-Caused Quenching Dyes. ACS Appl. Mater. Interfaces 2022, 14, 53567–53574.
- 45.
Zou, D.; Li, Z.; Long, D.; Dong, X.; Qu, H.; Yang, L.; Cao, X. Molecular Cage with Dual Outputs of Photochromism and Luminescence Both in Solution and the Solid State. ACS Appl. Mater. Interfaces 2023, 15, 13545–13553.
- 46.
Zhao, J.; Zhou, Z.; Li, G.; Stang, P.J.; Yan, X. Light-emitting self-assembled metallacages. Natl. Sci. Rev. 2021, 8, nwab045.
- 47.
Yan, X.; Cook, T.R.; Wang, P.; Huang, F.; Stang, P.J. Highly emissive platinum(II) metallacages. Nat. Chem. 2015, 7, 342–348.
- 48.
Yan, X.; Wang, M.; Cook, T.R.; Zhang, M.; Saha, M.L.; Zhou, Z.; Li, X.; Huang, F.; Stang, P.J. Light-Emitting Superstructures with Anion Effect: Coordination-Driven Self-Assembly of Pure Tetraphenylethylene Metallacycles and Metallacages. J. Am. Chem. Soc. 2016, 138, 4580–4588.
- 49.
XYan; Wei, P.; Liu, Y.; Wang, M.; Chen, C.; Zhao, J.; Li, G.; Saha, M.L.; Zhou, Z.; An, Z.; Li, X.; et al. Endo- and Exo-Functionalized Tetraphenylethylene M12L24 Nanospheres: Fluorescence Emission inside a Confined Space. J. Am. Chem. Soc. 2019, 141, 9673–9679.
- 50.
Li, H.; Xie, T.-Z.; Liang, Z.; Dahal, D.; Shen, Y.; Sun, X.; Yang, Y.; Pang, Y.; Liu, T. Conformational change due to intramolecular hydrophobic interaction leads to large blue-shifted emission from single molecular cage solutions. Chem. Commun. 2019, 55, 330–333.
- 51.
Zhang, M.; Saha, M.L.; Wang, M.; Zhou, Z.; Song, B.; Lu, C.; Yan, X.; Li, X.; Huang, F.; Yin, S.; et al. Multicomponent Platinum(II) Cages with Tunable Emission and Amino Acid Sensing. J. Am. Chem. Soc. 2017, 139, 5067–5074.
- 52.
Zhou, Z.; Yan, X.; Saha, M.L.; Zhang, M.; Wang, M.; Li, X.; Stang, P.J. Immobilizing Tetraphenylethylene into Fused Metallacycles: Shape Effects on Fluorescence Emission. J. Am. Chem. Soc. 2016, 138, 13131–13134.
- 53.
Li, M.; Jiang, S.; Zhang, Z.; Hao, X.-Q.; Jiang, X.; Yu, H.; Wang, P.; Xu, B.; Wang, M.; Tian, W. Tetraphenylethylene-Based Emissive Supramolecular Metallacages Assembled by Terpyridine Ligands. CCS Chem. 2020, 2, 337–348.
- 54.
Sun, N.; Qi, D.; Jin, Y.; Wang, H.; Wang, C.; Qu, C.; Liu, J.; Jin, Y.; Zhang, W.; Jiang, J. Porous Pyrene Organic Cage with Unusual Absorption Bathochromic-Shift Enables Visible Light Photocatalysis. CCS Chem. 2021, 4, 2588–2596.
- 55.
Song, H.; Guo, Y.; Zhang, G.; Shi, L. Tailored Water-Soluble Covalent Organic Cages for Encapsulation of Pyrene and Information Encryption. International Journal of Molecular Sciences, 2023.
- 56.
Luis, E.T.; Iranmanesh, H.; Arachchige, K.S.A.; Donald, W.A.; Quach, G.; Moore, E.G.; Beves, J.E. Luminescent Tetrahedral Molecular Cages Containing Ruthenium(II) Chromophores. Inorg. Chem. 2018, 57, 8476–8486.
- 57.
Martir, D.R.; Pizzolante, A.; Escudero, D.; Jacquemin, D.; Warriner, S.L.; Zysman-Colman, E. Photoinduced Energy and Electron Transfer Between a Photoactive Cage Based on a Thermally Activate Delayed Fluorescence Ligand and Encapsulated Fluorescent Dyes. ACS Appl. Energy Mater. 2018, 1, 2971–2978.
- 58.
Elliott, A.B.S.; Lewis, J.E.M.; van der Salm, H.; McAdam, C.J.; Crowley, J.D.; Gordon, K.C. Luminescent Cages: Pendant Emissive Units on [Pd2L4]4+ “Click” Cages. Inorg. Chem. 2016, 55, 3440–3447.
- 59.
Luo, D.; Li, M.; Zhou, X.-P.; Li, D. Boosting Luminescence of Planar-Fluorophore-Tagged Metal–Organic Cages Via Weak Supramolecular Interactions. Chem. A Eur. J. 2018, 24, 7108–7113.
- 60.
El-Sayed, E.-S.M.; Yuan, D. Metal-Organic Cages (MOCs): From Discrete to Cage-based Extended Architectures. Chem. Lett. 2020, 49, 28–53.
- 61.
Zarra, S.; Wood, D.M.; Roberts, D.A.; Nitschke, J.R. Molecular containers in complex chemical systems. Chem. Soc. Rev. 2015, 44, 419–432.
- 62.
Wang, X.-Z.; Sun, M.-Y.; Huang, Z.; Xie, M.; Huang, R.; Lu, H.; Zhao, Z.; Zhou, X.-P.; Li, D. Turn-On Circularly Polarized Luminescence in Metal–Organic Frameworks. Adv. Opt. Mater. 2021, 9, 2002096.
- 63.
Zhou, Y.; Li, H.; Zhu, T.; Gao, T.; Yan, P. A Highly Luminescent Chiral Tetrahedral Eu4L4(L′)4 Cage: Chirality Induction, Chirality Memory, and Circularly Polarized Luminescence. J. Am. Chem. Soc. 2019, 141, 19634–19643.
- 64.
Chen, H.; Gu, Z.-G.; Zhang, J. Surface chiroselective assembly of enantiopure crystalline porous films containing bichiral building blocks. Chem. Sci. 2021, 12, 12346–12352.
- 65.
Ding, Y.; Shen, C.; Gan, F.; Wang, J.; Zhang, G.; Li, L.; Shu, M.; Zhu, B.; Crassous, J.; Qiu, H. Tunable construction of transition metal-coordinated helicene cages. Chin. Chem. Lett. 2021, 32, 3988–3992.
- 66.
Li, C.; Liu, Y.; Wang, Y.; Guo, J.; Pan, M. Assembly and properties of Pd4Ru8 metal-organic cages based on polypyridine Ru (II)-metalloligand. Sci. Sin. Chim. 2020, 50, 687–694.
- 67.
Zhang, Z.; Zhao, Z.; Wu, L.; Lu, S.; Ling, S.; Li, G.; Xu, L.; Ma, L.; Hou, Y.; Wang, X.; et al. Emissive Platinum(II) Cages with Reverse Fluorescence Resonance Energy Transfer for Multiple Sensing. J. Am. Chem. Soc. 2020, 142, 2592–2600.
- 68.
Li, C.; Zhang, B.; Dong, Y.; Li, Y.; Wang, P.; Yu, Y.; Cheng, L.; Cao, L. A tetraphenylethene-based Pd2L4 metallacage with aggregation-induced emission and stimuli-responsive behavior. Dalton Trans. 2020, 49, 8051–8055.
- 69.
Meng, Z.; Yang, F.; Wang, X.; Shan, W.-L.; Liu, D.; Zhang, L.; Yuan, G. Trefoil-Shaped Metal–Organic Cages as Fluorescent Chemosensors for Multiple Detection of Fe3+ , Cr2O72–, and Antibiotics. Inorg. Chem. 2023, 62, 1297–1305.
- 70.
Gao, Z.; Jia, J.; Fan, W.; Liao, T.; Zhang, X. Zirconium metal organic cages: From phosphate selective sensing to derivate forming. Chin. Chem. Lett. 2022, 33, 4415–4420.
- 71.
Dai, C.; Gu, B.; Tang, S.-P.; Deng, P.-H.; Liu, B. Fluorescent porous organic cage with good water solubility for ratiometric sensing of gold(III) ion in aqueous solution. Anal. Chim. Acta 2022, 1192, 339376.
- 72.
Sun, Y.-L.; Wang, Z.; Ma, H.; Zhang, Q.-P.; Yang, B.-B.; Meng, X.; Zhang, Y.; Zhang, C. Chiral emissive porous organic cages. Chem. Commun. 2023, 59, 302–305.
- 73.
Liu, Y.; Jia, J.; Liao, T.; Luo, J.; Zhang, X. Porous organic cage for enantiomeric fluorescence recognition of amino acid and hydroxy acid. Luminescence 2021, 36, 2022–2027.
- 74.
Li, T.; Pan, Y.; Song, H.; Jiang, H.; Guo, Y.; Shi, L.; Hao, X.; Song, M.-P. Luminescent covalent organic cages with a C3-symmetric structure for effective enantioseparation. New J. Chem. 2023, 47, 22320–22325.
- 75.
Ghorai, S.; Natarajan, R. Chiral Self-Sorting, Spontaneous Resolution, and Hierarchical Self-Assembly in Metal–Organic Cages. Small 2024, 20, 2400842.
- 76.
Li, T.; Pan, Y.; Ding, L.; Kang, Y.; Hao, X.-Q.; Guo, Y.; Shi, L. Chiral cage materials with tailored functionalities for enantioselective recognition and separation. Chem. Synth. 2024, 4, 35.
- 77.
Liu, C.; Li, J.; Lu, M.; Jia, X.; Yu, A.; Zhang, S. Chiral metal-organic cage modified polyvinylidene fluoride membrane via metal phenolic networks for enantioseparation. Sep. Purif. Technol. 2024, 332, 125765.