- 1.
Kulova, T.L.; Fateev, V.N.; Seregina, E.A.; Grigoriev, A.S. A Brief Review of Post-Lithium-Ion Batteries. Int. J. Electrochem. Sci. 2020, 15 (8), 7242–7259.
- 2.
Xiao, J.; Li, Q.; Bi, Y.; Cai, M.; Dunn, B.; Glossmann, T.; Liu, J.; Osaka, T.; Sugiura, R.; Wu, B.; et al. Understanding and applying coulombic efficiency in lithium metal batteries. Nat. Energy 2020, 5 (8), 561–568.
- 3.
Ma, S.; Jiang, M.; Tao, P.; Song, C.; Wu, J.; Wang, J.; Deng, T.; Shang, W. Temperature effect and thermal impact in lithium-ion batteries: A review. Prog. Nat. Sci. : Mater. Int. 2018, 28 (6), 653–666.
- 4.
Lei, Z.; Zhang, Y.; Lei, X. Temperature uniformity of a heated lithium-ion battery cell in cold climate. Appl. Therm. Eng. 2018, 129, 148–154.
- 5.
Zhao, R.; Zhang, S.; Liu, J.; Gu, J. A review of thermal performance improving methods of lithium ion battery: Electrode modification and thermal management system. J. Power Sources 2015, 299, 557–577.
- 6.
Ohzuku, T.; Brodd, R.J. An overview of positive-electrode materials for advanced lithium-ion batteries. J. Power Sources 2007, 174 (2), 449–456.
- 7.
Yu, Z.; Gao, T.; Le, T.; Wang, W.; Wang, L.; Yang, Y. A homemade self-healing material utilized as multi-functional binder for long-lifespan lithium–sulfur batteries. J. Mater. Sci. : Mater. Electron. 2019, 30 (6), 5536–5543.
- 8.
Jiao, X.; Yin, J.; Xu, X.; Wang, J.; Liu, Y.; Xiong, S.; Zhang, Q.; Song, J. Highly Energy‐Dissipative, Fast Self‐Healing Binder for Stable Si Anode in Lithium‐Ion Batteries. Adv. Funct. Mater. 2020, 31 (3), 2005699.
- 9.
Wu, S.; Di, F.; Zheng, J.-g.; Zhao, H.-w.; Zhang, H.; Li, L.-x.; Geng, X.; Sun, C.-g.; Yang, H.-m.; Zhou, W.-m.; et al. Self-healing polymer binders for the Si and Si/carbon anodes of lithium-ion batteries. New Carbon Mater. 2022, 37 (5), 802–826.
- 10.
Kwon, T. w.; Jeong, Y.K.; Lee, I.; Kim, T.S.; Choi, J.W.; Coskun, A. Systematic Molecular‐Level Design of Binders Incorporating Meldrum's Acid for Silicon Anodes in Lithium Rechargeable Batteries. Adv. Mater. 2014, 26 (47), 7979–7985.
- 11.
Li, J.; Liu, S.; Cui, Y.; Zhang, S.; Wu, X.; Xiang, J.; Li, M.; Wang, X.; Xia, X.; Gu, C.; et al. Potassium Hexafluorophosphate Additive Enables Stable Lithium–Sulfur Batteries. ACS Appl. Mater. Interfaces 2020, 12 (50), 56017–56026.
- 12.
Liu, M.; Chen, P.; Pan, X.; Pan, S.; Zhang, X.; Zhou, Y.; Bi, M.; Sun, J.; Yang, S.; Vasiliev, A.L.; et al. Synergism of Flame‐Retardant, Self‐Healing, High‐Conductive and Polar to a Multi‐Functional Binder for Lithium–Sulfur Batteries. Adv. Funct. Mater. 2022, 32 (36), 2205031.
- 13.
Ren, D.S.; Xie, L.Q.; Wang, L.; He, X.M. A practical approach to predict volume deformation of lithium-ion batteries from crystal structure changes of electrode materials. Int. J. Energy Res. 2021, 45 (5), 7732–7740.
- 14.
Shimizu, M.; Yamanaka, R.; Teranishi, T.; Wang, J.; Sakai, K.; Tsukada, K.; Kiwa, T. Development of impedance measurement of lithium ion batteries electrode using terahertz chemical microscope. Electr. Eng. Jpn. 2021, 214 (4), e23355.
- 15.
Nagahama, K.; Aoyama, S.; Ueda, N.; Kimura, Y.; Katayama, T.; Ono, K. Biological Tissue-Inspired Living Self-Healing Hydrogels Based on Cadherin-Mediated Specific Cell–Cell Adhesion. ACS Macro Lett. 2021, 10 (8), 1073–1079.
- 16.
Peng, Y.; Liu, H.; Peng, H.; Zhang, J. Biological self-healing strategies from mechanically robust heterophasic liquid metals. Matter 2023, 6 (1), 226–238.
- 17.
Wang, W.; Zeng, Z.; Xiang, L.; Liu, C.; Diaz-Dussan, D.; Du, Z.; Asha, A.B.; Yang, W.; Peng, Y.-Y.; Pan, M.; et al. Injectable Self-Healing Hydrogel via Biological Environment-Adaptive Supramolecular Assembly for Gastric Perforation Healing. ACS Nano 2021, 15 (6), 9913–9923.
- 18.
Yao, Y.; Qu, X.; Zhou, L.; Liu, Y.; Hong, Z.; Wu, Y.; Huang, Z.; Hu, J.; Gao, M.; Pan, H. Rational Design of Robust and Universal Aqueous Binders to Enable Highly Stable Cyclability of High‐Capacity Conversion and Alloy‐Type Anodes. Energy Environ. Mater. 2023, 6 (5), e12429.
- 19.
Gavel, P.K.; Dev, D.; Parmar, H.S.; Bhasin, S.; Das, A.K. Investigations of Peptide-Based Biocompatible Injectable Shape-Memory Hydrogels: Differential Biological Effects on Bacterial and Human Blood Cells. ACS Appl. Mater. Interfaces 2018, 10 (13), 10729–10740.
- 20.
Zheng, R.; Wang, Y.; Jia, C.; Wan, Z.; Luo, J.; Malik, H.A.; Weng, X.; Xie, J.; Deng, L. Intelligent Biomimetic Chameleon Skin with Excellent Self-Healing and Electrochromic Properties. ACS Appl. Mater. Interfaces 2018, 10 (41), 35533–35538.
- 21.
Zhong, J.-H.; Zhou, Y.; Tian, X.-X.; Sun, Y.-L.; Shi, B.-R.; Zhang, Z.-Y.; Zhang, W.-H.; Liu, X.-D.; Yang, Y.-M. The Addition of an Ultra-Small Amount of Black Phosphorous Quantum Dots Endow Self-Healing Polyurethane with a Biomimetic Intelligent Response. Macromol. Rapid Commun. 2023, 44 (19), 2300286.
- 22.
Liu, Z.; Zhang, L.; Guan, Q.; Guo, Y.; Lou, J.; Lei, D.; Wang, S.; Chen, S.; Sun, L.; Xuan, H.; et al. Biomimetic Materials with Multiple Protective Functionalities. Adv. Funct. Mater. 2019, 29 (28), 1901058.
- 23.
Wang, Y.; Guo, Q.; Su, G.; Cao, J.; Liu, J.; Zhang, X. Hierarchically Structured Self-Healing Actuators with Superfast Light- and Magnetic-Response. Adv. Funct. Mater. 2019, 29 (50), 1906198.
- 24.
Liu, Y.; Lin, S.-H.; Chuang, W.-T.; Dai, N.-T.; Hsu, S.-h. Biomimetic Strain-Stiffening in Chitosan Self-Healing Hydrogels. ACS Appl. Mater. Interfaces 2022, 14 (14), 16032–16046.
- 25.
Song, Y.; Liu, Y.; Qi, T.; Li, G.L. Towards Dynamic but Supertough Healable Polymers through Biomimetic Hierarchical Hydrogen-Bonding Interactions. Angew. Chem. Int. Ed. 2018, 57 (42), 13838–13842.
- 26.
Je, P.C.; Sultan, M.T.H.; Selvan, C.P.; Irulappasamy, S.; Mustapha, F.; Basri, A.A.; Safri, S.N.A. Manufacturing challenges in self-healing technology for polymer composites—A review. J. Mater. Res. Technol. 2020, 9 (4), 7370–7379.
- 27.
Prajer, M.; Wu, X.; Garcia, S.J.; van der Zwaag, S. Direct and indirect observation of multiple local healing events in successively loaded fibre reinforced polymer model composites using healing agent-filled compartmented fibres. Compos. Sci. Technol. 2015, 106, 127–133.
- 28.
Thakur, V.K.; Kessler, M.R. Self-healing polymer nanocomposite materials: A review. Polymer 2015, 69, 369–383.
- 29.
Coope, T.S.; Wass, D.F.; Trask, R.S.; Bond, I.P. Repeated self-healing of microvascular carbon fibre reinforced polymer composites. Smart Mater. Struct. 2014, 23 (11), 115002.
- 30.
Mu, P.; Zhang, H.; Dong, T.; Jiang, H.; Zhang, S.; Wang, C.; Li, J.; Dong, S.; Cui, G. A melatonin-inspired coating as an electrolyte preservative for layered oxide cathode-based lithium batteries. Chem. Eng. J. 2022, 437, 135032.
- 31.
Xie, C.; Yang, R.; Liu, F.; Hu, T.; Zhao, H. Simulation Study on Stress-Strain and Deformation of Separator Under Battery Temperature Field. J. Electrochem. Soc. 2023, 170 (10), 100530.
- 32.
Ferg, E.E.; Schuldt, F.; Schmidt, J. The challenges of a Li-ion starter lighting and ignition battery: A review from cradle to grave. J. Power Sources 2019, 423, 380–403.
- 33.
Fu, Y.; Lu, S.; Shi, L.; Cheng, X.; Zhang, H. Ignition and combustion characteristics of lithium ion batteries under low atmospheric pressure. Energy 2018, 161, 38–45.
- 34.
Zhao, J.; Wei, D.; Wang, J.; Yang, K.; Wang, Z.; Chen, Z.; Zhang, S.; Zhang, C.; Yang, X. Inorganic crosslinked supramolecular binder with fast Self-Healing for high performance silicon based anodes in Lithium-Ion batteries. J. Colloid Interface Sci. 2022, 625, 373–382.
- 35.
Lopez, J.; Chen, Z.; Wang, C.; Andrews, S.C.; Cui, Y.; Bao, Z. The Effects of Cross-Linking in a Supramolecular Binder on Cycle Life in Silicon Microparticle Anodes. ACS Appl. Mater. Interfaces 2016, 8 (3), 2318–2324.
- 36.
Munaoka, T.; Yan, X.; Lopez, J.; To, J.W.F.; Park, J.; Tok, J.B.-H.; Cui, Y.; Bao, Z. Ionically Conductive Self-Healing Binder for Low Cost Si Microparticles Anodes in Li-Ion Batteries. Adv. Energy Mater. 2018, 8 (14), 1703138.
- 37.
Shojaei, A.; Sharafi, S.; Li, G. A multiscale theory of self-crack-healing with solid healing agent assisted by shape memory effect. Mech. Mater. 2015, 81, 25–40.
- 38.
Wang, W.; Zuo, F.; Li, Y. Research on Influencing Factors About Temperature of Short Circuit Area in Lithium-Ion Power Battery. J. Electrochem. Energy Convers. Storage 2021, 18 (2), 020910.
- 39.
Blaiszik, B.J.; Kramer, S.L.B.; Olugebefola, S.C.; Moore, J.S.; Sottos, N.R.; White, S.R. Self-Healing Polymers and Composites. Annu. Rev. Mater. Res. 2010, 40, 179–211.
- 40.
Thangavel, G.; Tan, M.W.M.; Lee, P.S. Advances in self-healing supramolecular soft materials and nanocomposites. Nano Converg. 2019, 6 (1), 29.
- 41.
Hu, R.; Zhao, J.; Wang, Y.; Li, Z.; Zheng, J. A highly stretchable, self-healing, recyclable and interfacial adhesion gel: Preparation, characterization and applications. Chem. Eng. J. 2019, 360, 334–341.
- 42.
Magaletti, R.; Pizzetti, F.; Masi, M.; Rossi, F. Biobased Materials as Promising Tools for the Slow-Release of Urea. ACS Agric. Sci. Technol. 2023, 3 (11), 957–969.
- 43.
Yan, H.; Xu, X.; Fu, B.; Fan, X.; Kan, Y.; Yao, X. Constitutive model and damage of self-healing 3D braided composites with microcapsules. Compos. Commun. 2023, 40, 101586.
- 44.
Hao, W.; Hao, H.; Kanwal, H.; Jiang, S. Evaluation of Self-Healing Efficiency of Microcapsule-Based Self-Healing Cementitious Composites Based on Acoustic Emission. J. Renew. Mater. 2023, 11 (4), 1687–1697.
- 45.
Ji, Z.; Wang, H.; Chen, Z.; Wang, P.; Liu, J.; Wang, J.; Hu, M.; Fei, J.; Nie, N.; Huang, Y. A both microscopically and macroscopically intrinsic self-healing long lifespan yarn battery. Energy Storage Mater. 2020, 28, 334–341.
- 46.
Xu, J.; Ding, C.; Chen, P.; Tan, L.; Chen, C.; Fu, J. Intrinsic self-healing polymers for advanced lithium-based batteries: Advances and strategies. Appl. Phys. Rev. 2020, 7 (3), 031304.
- 47.
Cheng, Y.; Wang, C.; Kang, F.; He, Y.-B. Self-Healable Lithium-Ion Batteries: A Review. Nanomaterials 2022, 12 (20), 3656.
- 48.
Liao, H.; Zhong, W.; Li, T.; Han, J.; Sun, X.; Tong, X.; Zhang, Y. A review of self-healing electrolyte and their applications in flexible/stretchable energy storage devices. Electrochim. Acta 2022, 404, 105907.
- 49.
Ezeigwe, E.R.; Dong, L.; Manjunatha, R.; Tan, M.; Yan, W.; Zhang, J. A review of self-healing electrode and electrolyte materials and their mitigating degradation of Lithium batteries. Nano Energy 2021, 84, 105907.
- 50.
Gao, X.; Su, J.-F.; Wang, S.; Yang, P. Smart Self-Nourishing and Self-Healing Artificial Skin Composite Using Bionic Microvascular Containing Liquid Agent. Polymers 2022, 14 (19), 3941.
- 51.
Yang, P.; Wang, L.-Q.; Gao, X.; Wang, S.; Su, J.-F. Smart Self-Healing Capability of Asphalt Material Using Bionic Microvascular Containing Oily Rejuvenator. Materials 2021, 14 (21), 6431.
- 52.
Kato, Y.; Minakuchi, S.; Ogihara, S.; Takeda, N. Self-healing composites structure using multiple through-thickness microvascular channels. Adv. Compos. Mater. 2021, 30 (sup1), 1–18.
- 53.
Caruso, M.M.; Blaiszik, B.J.; White, S.R.; Sottos, N.R.; Moore, J.S. Full Recovery of Fracture Toughness Using a Nontoxic Solvent-Based Self-Healing System. Adv. Funct. Mater. 2008, 18 (13), 1898–1904.
- 54.
Lin, C.; Yuan, L.; Gu, A.; Liang, G.; Wu, J. High performance self-healing bismaleimide/diallylbisphenol a/poly(phenylene oxide) microcapsules composites with low temperature processability. Polym. Compos. 2013, 34 (3), 335–342.
- 55.
Yuan, L.; Huang, S.; Gu, A.; Liang, G.; Chen, F.; Hu, Y.; Nutt, S. A cyanate ester/microcapsule system with low cure temperature and self-healing capacity. Compos. Sci. Technol. 2013, 87, 111–117.
- 56.
Majchrzak, M.; Hine, P.J.; Khosravi, E. An autonomous self-healing system based on ROMP of norbornene dicarboximide monomers. Polymer 2012, 53 (23), 5251–5257.
- 57.
Yin, T.; Rong, M.Z.; Zhang, M.Q.; Yang, G.C. Self-healing epoxy composites – Preparation and effect of the healant consisting of microencapsulated epoxy and latent curing agent. Compos. Sci. Technol. 2007, 67 (2), 201–212.
- 58.
Rule, J.D.; Brown, E.N.; Sottos, N.R.; White, S.R.; Moore, J.S. Wax-Protected Catalyst Microspheres for Efficient Self-Healing Materials. Adv. Mater. 2005, 17 (2), 205–208.
- 59.
Liu, X.; Sheng, X.; Lee, J.K.; Kessler, M.R. Synthesis and Characterization of Melamine-Urea-Formaldehyde Microcapsules Containing ENB-Based Self-Healing Agents. Macromol. Mater. Eng. 2009, 294 (6–7), 389–395.
- 60.
Cho, S.H.; Andersson, H.M.; White, S.R.; Sottos, N.R.; Braun, P.V. Polydimethylsiloxane-Based Self-Healing Materials. Adv. Mater. 2006, 18 (8), 997–1000.
- 61.
Xiao, D.S.; Yuan, Y.C.; Rong, M.Z.; Zhang, M.Q. A Facile Strategy for Preparing Self-Healing Polymer Composites by Incorporation of Cationic Catalyst-Loaded Vegetable Fibers. Adv. Funct. Mater. 2009, 19 (14), 2289–2296.
- 62.
Cho, S.H.; White, S.R.; Braun, P.V. Self-Healing Polymer Coatings. Adv. Mater. 2009, 21 (6), 645–649.
- 63.
Keller, M.W.; White, S.R.; Sottos, N.R. A Self-Healing Poly(Dimethyl Siloxane) Elastomer. Adv. Funct. Mater. 2007, 17 (14), 2399–2404.
- 64.
Wilson, G.O.; Henderson, J.W.; Caruso, M.M.; Blaiszik, B.J.; McIntire, P.J.; Sottos, N.R.; White, S.R.; Moore, J.S. Evaluation of peroxide initiators for radical polymerization-based self-healing applications. J. Polym. Sci. Part A: Polym. Chem. 2010, 48 (12), 2698–2708.
- 65.
Li, Q.; Siddaramaiah; Kim, N.H.; Hui, D.; Lee, J.H. Effects of dual component microcapsules of resin and curing agent on the self-healing efficiency of epoxy. Compos. Part B: Eng. 2013, 55, 79–85.
- 66.
Jin, H.; Mangun, C.L.; Stradley, D.S.; Moore, J.S.; Sottos, N.R.; White, S.R. Self-healing thermoset using encapsulated epoxy-amine healing chemistry. Polymer 2012, 53 (2), 581–587.
- 67.
Zhang, H.; Wang, P.; Yang, J. Self-healing epoxy via epoxy–amine chemistry in dual hollow glass bubbles. Compos. Sci. Technol. 2014, 94, 23–29.
- 68.
Yuan, Y.C.; Rong, M.Z.; Zhang, M.Q.; Chen, J.; Yang, G.C.; Li, X.M. Self-Healing Polymeric Materials Using Epoxy/Mercaptan as the Healant. Macromolecules 2008, 41 (14), 5197–5202.
- 69.
Gragert, M.; Schunack, M.; Binder, W.H. Azide/Alkyne-“Click”-Reactions of Encapsulated Reagents: Toward Self-Healing Materials. Macromol. Rapid Commun. 2011, 32 (5), 419–425.
- 70.
Rule, J.D.; Sottos, N.R.; White, S.R. Effect of microcapsule size on the performance of self-healing polymers. Polymer 2007, 48 (12), 3520–3529.
- 71.
Dry, C. Procedures developed for self-repair of polymer matrix composite materials. Compos. Struct. 1996, 35 (3), 263–269.
- 72.
Bekas, D.G.; Baltzis, D.; Paipetis, A.S. Nano-reinforced polymeric healing agents for vascular self-repairing composites. Mater. Des. 2017, 116, 538–544.
- 73.
Xue, C.; Li, W.; Li, J.; Tam, V.W.Y.; Ye, G. A review study on encapsulation-based self-healing for cementitious materials. Struct. Concr. 2019, 20 (1), 198–212.
- 74.
Huang, Z.X.; Xie, Z.H.; Zhang, Z.P.; Zhang, T.; Rong, M.Z.; Zhang, M.Q. Highly ionic conductive, self-healable solid polymer electrolyte based on reversibly interlocked macromolecule networks for lithium metal batteries workable at room temperature. J. Mater. Chem. A 2022, 10 (36), 18895–18906.
- 75.
Yu, Y.; Yin, Y.-B.; Ma, J.-L.; Chang, Z.-W.; Sun, T.; Zhu, Y.-H.; Yang, X.-Y.; Liu, T.; Zhang, X.-B. Designing a self-healing protective film on a lithium metal anode for long-cycle-life lithium-oxygen batteries. Energy Storage Mater. 2019, 18, 382–388.
- 76.
Fan, Q.; Nie, Y.; Sun, Q.; Wang, W.; Bai, L.; Chen, H.; Yang, L.; Yang, H.; Wei, D. Nanocomposite Hybrid Biomass Hydrogels as Flexible Strain Sensors with Self-Healing Ability in Harsh Environments. ACS Appl. Polym. Mater. 2022, 4 (3), 1626–1635.
- 77.
Wang, C.; Li, R.; Chen, P.; Fu, Y.; Ma, X.; Shen, T.; Zhou, B.; Chen, K.; Fu, J.; Bao, X.; et al. Highly stretchable, non-flammable and notch-insensitive intrinsic self-healing solid-state polymer electrolyte for stable and safe flexible lithium batteries. J. Mater. Chem. A 2021, 9 (8), 4758–4769.
- 78.
Wan, X.; Mu, T.; Yin, G. Intrinsic Self-Healing Chemistry for Next-Generation Flexible Energy Storage Devices. Nano-Micro Lett. 2023, 15 (1), 99.
- 79.
Gu, C.; Wang, M.; Zhang, K.; Li, J.; Lu, Y.-L.; Cui, Y.; Zhang, Y.; Liu, C.-S. A Full-Device Autonomous Self-Healing Stretchable Soft Battery from Self-Bonded Eutectogels. Adv. Mater. 2023, 35 (6), 2208392.
- 80.
Gao, Y.; Zhou, J.; Xu, F.; Huang, W.; Ma, X.; Dou, Q.; Fang, Y.; Wu, L. Highly Stretchable, Self-Healable and Self-Adhesive Double-Network Eutectogel Based on Gellan Gum and Polymerizable Deep Eutectic Solvent for Strain Sensing. ChemistrySelect 2023, 8 (12), e202204463.
- 81.
Liu, Y.-L.; Hsieh, C.-Y.; Chen, Y.-W. Thermally reversible cross-linked polyamides and thermo-responsive gels by means of Diels–Alder reaction. Polymer 2006, 47 (8), 2581–2586.
- 82.
Liu, Y.-L.; Chuo, T.-W. Self-healing polymers based on thermally reversible Diels–Alder chemistry. Polym. Chem. 2013, 4 (7), 2194–2205.
- 83.
Canary, S.A.; Stevens, M.P. Thermally reversible crosslinking of polystyrene via the furan–maleimide Diels–Alder reaction. J. Polym. Sci. Part A: Polym. Chem. 2003, 30 (8), 1755–1760.
- 84.
Yoshie, N.; Saito, S.; Oya, N. A thermally-stable self-mending polymer networked by Diels–Alder cycloaddition. Polymer 2011, 52 (26), 6074–6079.
- 85.
Wang, Y.; Wang, Z.; Jin, B.; Ye, D.; Fan, W.; Ye, X. PolySchiff based self-healing solid-state electrolytes for lithium ion battery. Eur. Polym. J. 2023, 193, 112098.
- 86.
Gu, W.; Li, F.; Liu, T.; Gong, S.; Gao, Q.; Li, J.; Fang, Z. Recyclable, Self‐Healing Solid Polymer Electrolytes by Soy Protein‐Based Dynamic Network. Adv. Sci. 2022, 9 (11), 2103623.
- 87.
Deng, K.; Zhou, S.; Xu, Z.; Xiao, M.; Meng, Y. A high ion-conducting, self-healing and nonflammable polymer electrolyte with dynamic imine bonds for dendrite-free lithium metal batteries. Chem. Eng. J. 2022, 428, 131224.
- 88.
Song, Y.; Jiang, Y.; Deng, L.; Yang, G. Self‐Repairable and Flexible Polymer Network Electrolyte with Enhanced Lithium‐Ion Conduction for Lithium Metal Batteries. Chem.––A Eur. J. 2022, 28 (72), e202202717.
- 89.
Zhou, S.; Wang, X.; Xu, Z.; Guan, T.; Mo, D.; Deng, K. Rapid self-healing, highly conductive and near-single-ion conducting gel polymer electrolytes based on dynamic boronic ester bonds for high-safety lithium metal batteries. J. Energy Storage 2024, 75, 109712.
- 90.
Zhou, B.; Deng, T.; Yang, C.; Wang, M.; Yan, H.; Yang, Z.; Wang, Z.; Xue, Z. Self‐Healing and Recyclable Polymer Electrolyte Enabled with Boronic Ester Transesterification for Stabilizing Ion Deposition. Adv. Funct. Mater. 2023, 33 (13), 2212005.
- 91.
Wan, L.; Tan, X.; Du, X.; Xue, X.; Tong, Y.; Zhou, D.; Ling, Y.; Xie, Y.; Zhao, J. Self-healing polymer electrolytes with dynamic-covalent borate for solid-state lithium metal batteries. Eur. Polym. J. 2023, 195, 112191.
- 92.
Grubbs, R.H. Olefin metathesis. Tetrahedron 2004, 60 (34), 7117–7140.
- 93.
Zhou, B.; Yang, M.; Zuo, C.; Chen, G.; He, D.; Zhou, X.; Liu, C.; Xie, X.; Xue, Z. Flexible, Self-Healing, and Fire-Resistant Polymer Electrolytes Fabricated via Photopolymerization for All-Solid-State Lithium Metal Batteries. ACS Macro Lett. 2020, 9 (4), 525–532.
- 94.
Chen, P.; Li, L.; Wang, C.; Yi, H.; Wu, Q.; Song, L.; Wu, X.; Tan, L. Self-healing artificial solid electrolyte interphase enhanced by quadruple hydrogen bonding for stable lithium metal anode. Appl. Surf. Sci. 2022, 604, 154468.
- 95.
Li, C.; Bhandary, R.; Marinow, A.; Ivanov, D.; Du, M.; Androsch, R.; Binder, W.H. Synthesis and Characterization of Quadrupolar-Hydrogen-Bonded Polymeric Ionic Liquids for Potential Self-Healing Electrolytes. Polymers 2022, 14 (19), 4090.
- 96.
Burnworth, M.; Tang, L.; Kumpfer, J.R.; Duncan, A.J.; Beyer, F.L.; Fiore, G.L.; Rowan, S.J.; Weder, C. Optically healable supramolecular polymers. Nature 2011, 472 (7343), 334–337.
- 97.
Guo, P.; Su, A.; Wei, Y.; Liu, X.; Li, Y.; Guo, F.; Li, J.; Hu, Z.; Sun, J. Healable, Highly Conductive, Flexible, and Nonflammable Supramolecular Ionogel Electrolytes for Lithium-Ion Batteries. ACS Appl. Mater. Interfaces 2019, 11 (21), 19413–19420.
- 98.
Yu, C.; Wang, C.F.; Chen, S. Robust Self‐Healing Host–Guest Gels from Magnetocaloric Radical Polymerization. Adv. Funct. Mater. 2013, 24 (9), 1235–1242.
- 99.
Zhou, S.; Deng, K.; Xu, Z.; Xiao, M.; Meng, Y. Highly conductive self-healing polymer electrolytes based on synergetic dynamic bonds for highly safe lithium metal batteries. Chem. Eng. J. 2022, 442, 136083.
- 100.
Cao, X.; Zhang, P.; Guo, N.; Tong, Y.; Xu, Q.; Zhou, D.; Feng, Z. Self-healing solid polymer electrolyte based on imine bonds for high safety and stable lithium metal batteries. RSC Adv. 2021, 11 (5), 2985–2994.
- 101.
Grocke, G.L.; Zhang, H.; Kopfinger, S.S.; Patel, S.N.; Rowan, S.J. Synthesis and Characterization of Redox-Responsive Disulfide Cross-Linked Polymer Particles for Energy Storage Applications. ACS Macro Lett. 2021, 10 (12), 1637–1642.
- 102.
Kitada, S.; Takahashi, M.; Yamaguchi, Y.; Okada, Y.; Chiba, K. Soluble-support-assisted Electrochemical Reactions: Application to Anodic Disulfide Bond Formation. Org. Lett. 2012, 14 (23), 5960–5963.
- 103.
Wang, H.; Huang, Y.; Shi, Z.; Zhou, X.; Xue, Z. Disulfide Metathesis-Assisted Lithium-Ion Conduction for PEO-Based Polymer Electrolytes. ACS Macro Lett. 2022, 11 (8), 991–998.
- 104.
Rahman, S.S.; Arshad, M.; Qureshi, A.; Ullah, A. Fabrication of a Self-Healing, 3D Printable, and Reprocessable Biobased Elastomer. ACS Appl. Mater. Interfaces 2020, 12 (46), 51927–51939.
- 105.
Huang, Y.; Wang, J.; Shi, Z.; Wang, H.; Xue, Z. Disulfide bond-embedded polyurethane solid polymer electrolytes with self-healing and shape-memory performance. Polym. Chem. 2022, 13 (42), 6002–6009.
- 106.
Jo, Y.H.; Li, S.; Zuo, C.; Zhang, Y.; Gan, H.; Li, S.; Yu, L.; He, D.; Xie, X.; Xue, Z. Self-Healing Solid Polymer Electrolyte Facilitated by a Dynamic Cross-Linked Polymer Matrix for Lithium-Ion Batteries. Macromolecules 2020, 53 (3), 1024–1032.
- 107.
Shigenobu, K.; Philippi, F.; Tsuzuki, S.; Kokubo, H.; Dokko, K.; Watanabe, M.; Ueno, K. On the concentration polarisation in molten Li salts and borate-based Li ionic liquids. Phys. Chem. Chem. Phys. 2023, 25 (9), 6970–6978.
- 108.
Du, P.; Liu, X.; Zheng, Z.; Wang, X.; Joncheray, T.; Zhang, Y. Synthesis and characterization of linear self-healing polyurethane based on thermally reversible Diels–Alder reaction. RSC Adv. 2013, 3 (35), 15475–15482.
- 109.
Lee, Y.-H.; Cheng, C.-L.; Chiang, C.-H.; Tong, Z.-H.; Wang, L.-Y.; Lee, C.-W. Highly self-healable and recyclable graphene nanocomposites composed of a Diels–Alder crosslinking/P3HT nanofibrils dual-network for electromagnetic interference shielding. J. Mater. Chem. C 2021, 9 (43), 15622–15640.
- 110.
Peterson, A.; Roy, M.; Fagerlund, J.; Lo Re, G.; Müller, C. Synergistic reinforcement of a reversible Diels–Alder type network with nanocellulose. Mater. Adv. 2021, 2 (15), 5171–5180.
- 111.
Chen, L.; Cai, X.; Sun, Z.; Zhang, B.; Bao, Y.; Liu, Z.; Han, D.; Niu, L. Self-Healing of a Covalently Cross-Linked Polymer Electrolyte Membrane by Diels-Alder Cycloaddition and Electrolyte Embedding for Lithium Ion Batteries. Polymers 2021, 13 (23), 4155.
- 112.
Lu, Y.-X.; Guan, Z. Olefin Metathesis for Effective Polymer Healing via Dynamic Exchange of Strong Carbon–Carbon Double Bonds. J. Am. Chem. Soc. 2012, 134 (34), 14226–14231.
- 113.
Liu, W.-C.; Chung, C.-H.; Hong, J.-L. Highly Stretchable, Self-Healable Elastomers from Hydrogen-Bonded Interpolymer Complex (HIPC) and Their Use as Sensitive, Stable Electric Skin. ACS Omega 2018, 3 (9), 11368–11382.
- 114.
Gaile, A.; Belyakov, S.; Dūrena, R.; Griščenko, Ņ.; Zukuls, A.; Batenko, N. Studies of the Functionalized α-Hydroxy-p-Quinone Imine Derivatives Stabilized by Intramolecular Hydrogen Bond. Molecules 2024, 29 (7), 1613.
- 115.
Zhou, B.; He, D.; Hu, J.; Ye, Y.; Peng, H.; Zhou, X.; Xie, X.; Xue, Z. A flexible, self-healing and highly stretchable polymer electrolyte via quadruple hydrogen bonding for lithium-ion batteries. J. Mater. Chem. A 2018, 6 (25), 11725–11733.
- 116.
Li, R.; Fang, Z.; Wang, C.; Zhu, X.; Fu, X.; Fu, J.; Yan, W.; Yang, Y. Six-armed and dicationic polymeric ionic liquid for highly stretchable, nonflammable and notch-insensitive intrinsic self-healing solid-state polymer electrolyte for flexible and safe lithium batteries. Chem. Eng. J. 2022, 430, 132706.
- 117.
Panja, S.; Mondal, S.; Ghosh, S.; Ghosh, U.; Ghosh, K. Effect of Substitution at Amine Functionality of 2,6-Diaminopyridine-Coupled Rhodamine on Metal-Ion Interaction and Self-Assembly. ACS Omega 2020, 5 (23), 13984–13993.
- 118.
Rao, Y.L.; Chortos, A.; Pfattner, R.; Lissel, F.; Chiu, Y.C.; Feig, V.; Xu, J.; Kurosawa, T.; Gu, X.; Wang, C.; et al. Stretchable Self-Healing Polymeric Dielectrics Cross-Linked Through Metal-Ligand Coordination. J Am Chem Soc 2016, 138 (18), 6020–6027.
- 119.
Sun, Y.; Ren, Y.-Y.; Li, Q.; Shi, R.-W.; Hu, Y.; Guo, J.-N.; Sun, Z.; Yan, F. Conductive, Stretchable, and Self-healing Ionic Gel Based on Dynamic Covalent Bonds and Electrostatic Interaction. Chin. J. Polym. Sci. 2019, 37 (11), 1053–1059.
- 120.
Guo, Y.-D.; Xie, X.-M.; Su, J.-F.; Mu, R.; Wang, X.-F.; Jin, H.-P.; Fang, Y.; Ding, Z.; Lv, L.-Y.; Han, N.-X. Mechanical experiment evaluation of the microvascular self-healing capability of bitumen using hollow fibers containing oily rejuvenator. Constr. Build. Mater. 2019, 225, 1026–1035.
- 121.
Su, J.-F.; Zhang, X.-L.; Guo, Y.-D.; Wang, X.-F.; Li, F.-L.; Fang, Y.; Ding, Z.; Han, N.-X. Experimental observation of the vascular self-healing hollow fibers containing rejuvenator states in bitumen. Constr. Build. Mater. 2019, 201, 715–727.
- 122.
Zhang, X.-L.; Su, J.-F.; Guo, Y.-D.; Wang, X.-Y.; Fang, Y.; Ding, Z.; Han, N.-X. Novel vascular self-nourishing and self-healing hollow fibers containing oily rejuvenator for bitumen. Constr. Build. Mater. 2018, 183, 150–162.
- 123.
Xue, X.; Cao, X.; Wan, L.; Tong, Y.; Li, T.; Xie, Y. Crosslinked network solid polymer electrolyte with self‐healing ability and high stability for lithium metal battery. Polym. Int. 2022, 71 (10), 1201–1209.
- 124.
Jing, B.B.; Evans, C.M. Catalyst-Free Dynamic Networks for Recyclable, Self-Healing Solid Polymer Electrolytes. J. Am. Chem. Soc. 2019, 141 (48), 18932–18937.
- 125.
Tian, X.; Yang, P.; Yi, Y.; Liu, P.; Wang, T.; Shu, C.; Qu, L.; Tang, W.; Zhang, Y.; Li, M.; et al. Self-healing and high stretchable polymer electrolytes based on ionic bonds with high conductivity for lithium batteries. J. Power Sources 2020, 450, 227629.
- 126.
Chen, K.; Sun, Y.; Zhang, X.; Liu, J.; Xie, H. A Self‐Healing and Nonflammable Cross‐Linked Network Polymer Electrolyte with the Combination of Hydrogen Bonds and Dynamic Disulfide Bonds for Lithium Metal Batteries. Energy Environ. Mater. 2023, 6 (4), e12568.
- 127.
Wu, N.; Shi, Y.R.; Lang, S.Y.; Zhou, J.M.; Liang, J.Y.; Wang, W.; Tan, S.J.; Yin, Y.X.; Wen, R.; Guo, Y.G. Self-Healable Solid Polymeric Electrolytes for Stable and Flexible Lithium Metal Batteries. Angew Chem Int Ed Engl 2019, 58 (50), 18146–18149.
- 128.
Ahmed, F.; Choi, I.; Rahman, M.M.; Jang, H.; Ryu, T.; Yoon, S.; Jin, L.; Jin, Y.; Kim, W. Remarkable Conductivity of a Self-Healing Single-Ion Conducting Polymer Electrolyte, Poly(ethylene-co-acrylic lithium (fluoro sulfonyl)imide), for All-Solid-State Li-Ion Batteries. ACS Appl Mater Interfaces 2019, 11 (38), 34930–34938.
- 129.
Chen, X.; Yi, L.; Zou, C.; Liu, J.; Yu, J.; Zang, Z.; Tao, X.; Luo, Z.; Guo, X.; Chen, G.; et al. High-Performance Gel Polymer Electrolyte with Self-Healing Capability for Lithium-Ion Batteries. ACS Appl. Energy Mater. 2022, 5 (4), 5267–5276.
- 130.
Li, C.-H.; Wang, C.; Keplinger, C.; Zuo, J.-L.; Jin, L.; Sun, Y.; Zheng, P.; Cao, Y.; Lissel, F.; Linder, C.; et al. A highly stretchable autonomous self-healing elastomer. Nat. Chem. 2016, 8 (6), 618–624.
- 131.
Kang, J.; Son, D.; Wang, G.-J. N.; Liu, Y.; Lopez, J.; Kim, Y.; Oh, J.Y.; Katsumata, T.; Mun, J.; Lee, Y.; et al. Tough and Water-Insensitive Self-Healing Elastomer for Robust Electronic Skin. Adv. Mater. 2018, 30 (13), 1706846.
- 132.
Wang, Y.; Huang, F.; Chen, X.; Wang, X.-W.; Zhang, W.-B.; Peng, J.; Li, J.; Zhai, M. Stretchable, Conductive, and Self-Healing Hydrogel with Super Metal Adhesion. Chem. Mater. 2018, 30 (13), 4289–4297.
- 133.
Yang, J.; Lu, Z.; Zhou, X.; Sun, Z.; Hu, Y.; Zhang, T.; Wu, C.; Zhang, G.; Jiang, W. Current Self-Healing Binders for Energetic Composite Material Applications. Molecules 2023, 28 (1), 428.
- 134.
Huang, S.; Ren, J.; Liu, R.; Yue, M.; Huang, Y.; Yuan, G. The progress of novel binder as a non-ignorable part to improve the performance of Si-based anodes for Li-ion batteries. Int. J. Energy Res. 2018, 42 (3), 919–935.
- 135.
Miglietta, F.; Tsantilis, L.; Baglieri, O.; Santagata, E. A new approach for the evaluation of time–temperature superposition effects on the self-healing of bituminous binders. Constr. Build. Mater. 2021, 287, 122987.
- 136.
Sun, D.; Sun, G.; Zhu, X.; Ye, F.; Xu, J. Intrinsic temperature sensitive self-healing character of asphalt binders based on molecular dynamics simulations. Fuel 2018, 211, 609–620.
- 137.
Tang, J.; Liu, Q.; Wu, S.; Ye, Q.; Sun, Y.; Schlangen, E. Investigation of the optimal self-healing temperatures and healing time of asphalt binders. Constr. Build. Mater. 2016, 113, 1029–1033.
- 138.
Qiu, X.; Cheng, W.; Xu, W.; Xiao, S.; Yang, Q. Fatigue evolution characteristic and self-healing behaviour of asphalt binders. Int. J. Pavement Eng. 2022, 23 (5), 1459–1470.
- 139.
Sun, W.; Wang, H. Self-healing of asphalt binder with cohesive failure: Insights from molecular dynamics simulation. Constr. Build. Mater. 2020, 262, 120538.
- 140.
Liu, M.R.; Ye, C.X.; Peng, L.B.; Weng, J.Z. Influence of Binder on Impedance of Lithium Batteries: A Mini-review. J. Electr. Eng. Technol. 2022, 17 (2), 1281–1291.
- 141.
Gong, Y.; Xu, J.; Yan, E.-h.; Cai, J.-h. The Self-Healing Performance of Carbon-Based Nanomaterials Modified Asphalt Binders Based on Molecular Dynamics Simulations. Front. Mater. 2021, 7, 599551.
- 142.
Chen, W.; Lei, T.; Qian, T.; Lv, W.; He, W.; Wu, C.; Liu, X.; Liu, J.; Chen, B.; Yan, C.; et al. A New Hydrophilic Binder Enabling Strongly Anchoring Polysulfides for High-Performance Sulfur Electrodes in Lithium-Sulfur Battery. Adv. Energy Mater. 2018, 8 (12), 1702889.
- 143.
Qiu, L.; Shao, Z.; Wang, D.; Wang, W.; Wang, F.; Wang, J. Enhanced electrochemical properties of LiFePO4 (LFP) cathode using the carboxymethyl cellulose lithium (CMC-Li) as novel binder in lithium-ion battery. Carbohydr. Polym. 2014, 111, 588–591.
- 144.
Trivedi, S.; Pamidi, V.; Bautista, S.P.; Shamsudin, F.N.A.; Weil, M.; Barpanda, P.; Bresser, D.; Fichtner, M. Water-Soluble Inorganic Binders for Lithium-Ion and Sodium-Ion Batteries. Adv. Energy Mater. 2024, 14 (9), 2303338.
- 145.
Guo, R.; Yang, Y.; Huang, X.L.; Zhao, C.; Hu, B.; Huo, F.; Liu, H.K.; Sun, B.; Sun, Z.; Dou, S.X. Recent Advances in Multifunctional Binders for High Sulfur Loading Lithium-Sulfur Batteries. Adv. Funct. Mater. 2024, 34 (1), 2307108.
- 146.
Zhang, T.; Mao, R.; Jiang, W.; Li, B.; Song, Z.; Liu, S.; Jian, X.; Hu, F. Dynamic cross-linking of zwitterionic polymer binder based on host–guest interactions for Li-S batteries with enhanced safety and electrochemical performance. Nano Energy 2023, 114, 108603.
- 147.
Ramdhiny, M.N.; Jeon, J.-W. Design of multifunctional polymeric binders in silicon anodes for lithium-ion batteries. Carbon Energy 2024, 6 (4), e356.
- 148.
Gupta, A.; Badam, R.; Matsumi, N. Heavy-Duty Performance from Silicon Anodes Using Poly(BIAN)/Poly(acrylic acid)-Based Self-Healing Composite Binder in Lithium-Ion Secondary Batteries. ACS Appl. Energy Mater. 2022, 5 (7), 7977–7987.
- 149.
Hu, S.; Wang, L.; Huang, T.; Yu, A. A conductive self-healing hydrogel binder for high-performance silicon anodes in lithium-ion batteries. J. Power Sources 2020, 449, 227472.
- 150.
Zhang, J.; Wang, N.; Zhang, W.; Fang, S.; Yu, Z.; Shi, B.; Yang, J. A cycling robust network binder for high performance Si-based negative electrodes for lithium-ion batteries. J Colloid Interface Sci 2020, 578, 452–460.
- 151.
Rajeev, K.K.; Nam, J.; Jang, W.; Kim, Y.; Kim, T.-H. Polysaccharide-based self-healing polymer binder via Schiff base chemistry for high-performance silicon anodes in lithium-ion batteries. Electrochim. Acta 2021, 384, 138364.
- 152.
Kim, J.; Choi, J.; Park, K.; Kim, S.; Nam, K.W.; Char, K.; Choi, J.W. Host–Guest Interlocked Complex Binder for Silicon–Graphite Composite Electrodes in Lithium Ion Batteries. Adv. Energy Mater. 2022, 12 (11), 2103718.
- 153.
Zhu, Y.; Shen, Q.; Wei, L.; Fu, X.; Huang, C.; Zhu, Y.; Zhao, L.; Huang, G.; Wu, J. Ultra-Tough, Strong, and Defect-Tolerant Elastomers with Self-Healing and Intelligent-Responsive Abilities. ACS Appl. Mater. Interfaces 2019, 11 (32), 29373–29381.
- 154.
Nam, J.; Jang, W.; Rajeev, K.K.; Lee, J.-H.; Kim, Y.; Kim, T.-H. Ion-conductive self-healing polymer network based on reversible imine bonding for Si electrodes. J. Power Sources 2021, 499, 229968.
- 155.
Qi, Y.; Shen, C.; Hou, Q.; Ren, Z.; Jin, T.; Xie, K. A self-healing liquid metal anode for lithium-ion batteries. J. Energy Chem. 2022, 72, 522–531.
- 156.
Gong, Y.; Yao, M.; Nie, J.; He, Y. Healing Strategy Based on Space Adjustment for Cross-Linked Polymer Networks. Langmuir 2022, 38 (40), 12229–12234.
- 157.
Hu, Y.H.; Zhao, X.H.; Suo, Z.G. Averting cracks caused by insertion reaction in lithium-ion batteries. J. Mater. Res. 2010, 25 (6), 1007–1010.
- 158.
Song, K.; Hu, D.; Tong, Y.; Yue, X.G. Remaining life prediction of lithium-ion batteries based on health management: A review. J. Energy Storage 2023, 57, 106193.
- 159.
Guo, J.; Gao, F.; Li, D.; Luo, X.; Sun, Y.; Wang, X.; Ran, Z.; Wu, Q.; Li, S. Novel Strategy of Constructing Hollow Ga2O3@N-CQDs as a Self-Healing Anode Material for Lithium-Ion Batteries. ACS Sustain. Chem. Eng. 2020, 8 (36), 13692–13700.
- 160.
Jeong, Y.K.; Choi, J.W. Mussel-Inspired Self-Healing Metallopolymers for Silicon Nanoparticle Anodes. ACS Nano 2019, 13 (7), 8364–8373.
- 161.
Chen, D.; Wang, D.; Yang, Y.; Huang, Q.; Zhu, S.; Zheng, Z. Self-Healing Materials for Next-Generation Energy Harvesting and Storage Devices. Adv. Energy Mater. 2017, 7 (23), 1700890.
- 162.
Ma, W.; Wan, S.; Cui, X.; Hou, G.; Xiao, Y.; Rong, J.; Chen, S. Exploration and Application of Self-Healing Strategies in Lithium Batteries. Adv. Funct. Mater. 2023, 33 (15), 2212821.
- 163.
Li, J.; Geng, L.; Wang, G.; Chu, H.; Wei, H. Self-Healable Gels for Use in Wearable Devices. Chem. Mater. 2017, 29 (21), 8932–8952.
- 164.
Kidanu, W.G.; Hur, J.; Kim, I.T. Gallium-Indium-Tin Eutectic as a Self-Healing Room-Temperature Liquid Metal Anode for High-Capacity Lithium-Ion Batteries. Materials 2021, 15 (1), 168.
- 165.
Deshpande, R.D.; Li, J.; Cheng, Y.-T.; Verbrugge, M.W. Liquid Metal Alloys as Self-Healing Negative Electrodes for Lithium Ion Batteries. J. Electrochem. Soc. 2011, 158 (8), A845.
- 166.
Huang, Y.; Wang, H.; Jiang, Y.; Jiang, X. Preparation of room temperature liquid metal negative electrode for lithium ion battery in one step stirring. Mater. Lett. 2020, 276, 128261.
- 167.
Huang, C.; Wang, X.; Cao, Q.; Zhang, D.; Jiang, J.-Z. A Self-Healing Anode for Li-Ion Batteries by Rational Interface Modification of Room-Temperature Liquid Metal. ACS Appl. Energy Mater. 2021, 4 (11), 12224–12231.
- 168.
Meng, F.; Wang, F.; Yu, H.; Zhao, Z.; Lv, Y.; Ma, C.; Zhang, D.; Liu, X. Liquid Metal-Modified Nanoporous SiGe Alloy as an Anode for Li-Ion Batteries and Its Self-Healing Performance. ACS Appl. Energy Mater. 2021, 4 (12), 14575–14581.
- 169.
Dai, W.; Wang, J.; Xiang, K.; Hu, W.; Sun, J.; Zhang, H.; Wang, L. Highly Stretchable, Ultra-Sensitive, and Self-Healable Multifunctional Flexible Conductive Hydrogel Sensor for Motion Detection and Information Transmission. ACS Appl. Mater. Interfaces 2023, 15 (24), 29499–29510.
- 170.
Zhang, Z.; Abidi, N.; Lucia, L.A. Dual Crosslinked-Network Self-Healing Composite Hydrogels Exhibit Enhanced Water Adaptivity and Reinforcement. Ind. Eng. Chem. Res. 2022, 61 (49), 17876–17884.
- 171.
Sahoo, S.D.; Vasudha, T.K.; Muthuvijayan, V.; Prasad, E. Chitosan-Based Self-Healable and Adhesive Hydrogels for Flexible Strain Sensor Application. ACS Appl. Polym. Mater. 2022, 4 (12), 9176–9185.
- 172.
Liu, S.; Zhang, R.; Wang, C.; Mao, J.; Chao, D.; Zhang, C.; Zhang, S.; Guo, Z. Zinc ion Batteries: Bridging the Gap from Academia to Industry for Grid-Scale Energy Storage. Angew. Chem. Int. Ed. 2024, 63 (17), e202400045.
- 173.
Liu, Z.; Li, G.; Xi, M.; Huang, Y.; Li, H.; Jin, H.; Ding, J.; Zhang, S.; Zhang, C.; Guo, Z. Interfacial Engineering of Zn Metal via a Localized Conjugated Layer for Highly Reversible Aqueous Zinc Ion Battery. Angew. Chem. Int. Ed. 2024, 63 (14), e202319091.
- 174.
Li, G.; Zhao, Z.; Zhang, S.; Sun, L.; Li, M.; Yuwono, J.A.; Mao, J.; Hao, J.; Vongsvivut, J.; Xing, L.; et al. A biocompatible electrolyte enables highly reversible Zn anode for zinc ion battery. Nat. Commun. 2023, 14 (1), 6526.
- 175.
Liu, H.; Zhang, W.; Tu, J.; Han, Q.; Guo, Y.; Sha, W.; Wang, F.; Tian, J.; Zhao, Y.; Tang, S.; et al. A room-temperature liquid-metal composite anode for dendrite-free lithium-ion batteries. Mater. Today Commun. 2022, 30, 103062.
- 176.
Zhang, Y.; Tan, L.; Wu, Y.; An, Y.; Liu, Y.; Wang, Y.; Wei, C.; Xi, B.; Xiong, S.; Feng, J. Self-healing and ultrastable anode based on room temperature liquid metal reinforced two-dimensional siloxene for high-performance lithium-ion batteries. Appl. Mater. Today 2022, 26, 101300.
- 177.
Yu, J.; Xia, J.; Guan, X.; Xiong, G.; Zhou, H.; Yin, S.; Chen, L.; Yang, Y.; Zhang, S.; Xing, Y.; et al. Self-healing liquid metal confined in carbon nanofibers/carbon nanotubes paper as a free-standing anode for flexible lithium-ion batteries. Electrochim. Acta 2022, 425, 140721.
- 178.
Zhu, J.; Wu, Y.; Huang, X.; Huang, L.; Cao, M.; Song, G.; Guo, X.; Sui, X.; Ren, R.; Chen, J. Self-healing liquid metal nanoparticles encapsulated in hollow carbon fibers as a free-standing anode for lithium-ion batteries. Nano Energy 2019, 62, 883–889.