- 1.
Zhang, Q.; Chen, Y.; Pan, J.; Daiyan, R.; Lovell, E.C.; Yun, J.; Amal, R.; Lu, X. Electrosynthesis of Hydrogen Peroxide through Selective Oxygen Reduction: A Carbon Innovation from Active Site Engineering to Device Design. Small 2023, 19(40), 2302338.
- 2.
- 3.
Xia, C.; Kim, J.Y.; Wang, H. Recommended Practice to Report Selectivity in Electrochemical Synthesis of H2O2. Nat. Catal. 2020, 3(8), 605.
- 4.
Yang, S.; Verdaguer-Casadevall, A.; Arnarson, L.; Silvioli, L.; Čolić, V.; Frydendal, R.; Rossmeisl, J.; Chorkendorff, I.; Stephens, I.E.L. Toward the Decentralized Electrochemical Production of H2O2: A Focus on the Catalysis. ACS Catal. 2018, 8(5), 4064.
- 5.
Wei, Z.; Zhao, S.; Li, W.; Zhao, X.; Chen, C.; Phillips, D.L.; Zhu, Y.; Choi, W. Artificial Photosynthesis of H2O2 through Reversible Photoredox Transformation between Catechol and o-Benzoquinone on Polydopamine-coated CdS. ACS Catal. 2022, 12(18), 11436.
- 6.
Li, W.; Wei, Z.; Sheng, Y.; Xu, J.; Ren, Y.; Jing, J.; Yang, J.; Li, J.; Zhu, Y. Dual Cocatalysts Synergistically Promote Perylene Diimide Polymer Charge Transfer for Enhanced Photocatalytic Water Oxidation. ACS Energy Lett. 2023, 8(6), 2652.
- 7.
Wei, Z.; Liu, M.; Zhang, Z.; Yao, W.; Tan, H.; Zhu, Y. Efficient Visible-light-driven Selective Oxygen Reduction to Hydrogen Peroxide by Oxygen-enriched Graphitic Carbon Nitride Polymers. Energy Environ. Sci. 2018, 11(9), 2581.
- 8.
Zhang, L.; Liang, J.; Yue, L.; Xu, Z.; Dong, K.; Liu, Q.; Luo, Y.; Li, T.; Cheng, X.; Cui, G.; et al. N-doped Carbon Nanotubes Supported CoSe2 Nanoparticles: A Highly Efficient and Stable Catalyst for H2O2 Electrosynthesis in Acidic Media. Nano Res. 2022, 15(1), 304.
- 9.
Tian, Y.; Deng, D.; Xu, L.; Li, M.; Chen, H.; Wu, Z.; Zhang, S. Strategies for Sustainable Production of Hydrogen Peroxide via Oxygen Reduction Reaction: From Catalyst Design to Device Setup. Nanomicro Lett 2023, 15(1), 122.
- 10.
Wang, D.; Li, S.; Zhang, X.; Feng, B.; Pei, Y.; Zhu, Y.; Xu, W.; Li, Z.-H.; Qiao, M.; Zong, B. Pyrolyzed Polydopamine-modified Carbon Black for Selective and Durable Electrocatalytic Oxygen Reduction to Hydrogen Peroxide in Acidic Medium. Appl. Catal. B 2022, 305, 121036.
- 11.
Sa, Y.J.; Kim, J.H.; Joo, S.H. Active Edge-Site-Rich Carbon Nanocatalysts with Enhanced Electron Transfer for Efficient Electrochemical Hydrogen Peroxide Production. Angew. Chem. Int. Ed. 2019, 58(4), 1100.
- 12.
Zhang, D.; Wang, Z.; Liu, F.; Yi, P.; Peng, L.; Chen, Y.; Wei, L.; Li, H. Unraveling the pH-Dependent Oxygen Reduction Performance on Single-Atom Catalysts: From Single- to Dual-Sabatier Optima. J. Am. Chem. Soc. 2024, 146, 3210–3219.
https://doi.org/10.1021/jacs.3c11246 10.1021/jacs.3c11246.
- 13.
Zhang, T.; Wu, J.; Wang, Z.; Wei, Z.; Liu, J.; Gong, X. Transfer of Molecular Oxygen and Electrons Improved by the Regulation of C-N/C=O for Highly Efficient 2e-ORR. Chem. Eng. J. 2022, 433, 133591.
- 14.
Wang, Z.; Li, Q.-K.; Zhang, C.; Cheng, Z.; Chen, W.; McHugh, E.A.; Carter, R.A.; Yakobson, B.I.; Tour, J.M. Hydrogen Peroxide Generation with 100% Faradaic Efficiency on Metal-Free Carbon Black. ACS Catal. 2021, 11(4), 2454.
- 15.
Chang, Q.; Zhang, P.; Mostaghimi, A.H.B.; Zhao, X.; Denny, S.R.; Lee, J.H.; Gao, H.; Zhang, Y.; Xin, H.L.; Siahrostami, S.; et al. Promoting H2O2 Production via 2-electron Oxygen Reduction by Coordinating Partially Oxidized Pd with Defect Carbon. Nat. Commun. 2020, 11(1), 2178.
- 16.
Du, J.; Jiang, S.; Zhang, R.; Wang, P.; Ma, C.; Zhao, R.; Cui, C.; Zhang, Y.; Kang, Y. Generation of Pd–O for Promoting Electrochemical H2O2 Production. ACS Catal. 2023, 13(10), 6887.
- 17.
Yang, H.; Wang, B.; Li, H.; Ni, B.; Wang, K.; Zhang, Q.; Wang, X. Trimetallic Sulfide Mesoporous Nanospheres as Superior Electrocatalysts for Rechargeable Zn–Air Batteries. Adv. Energy Mater. 2018, 8(34), 1801839.
- 18.
Xia, F.; Li, B.; Liu, Y.; Liu, Y.; Gao, S.; Lu, K.; Kaelin, J.; Wang, R.; Marks, T.J.; Cheng, Y. Carbon Free and Noble Metal Free Ni2Mo6S8 Electrocatalyst for Selective Electrosynthesis of H2O2. Adv. Funct. Mater. 2021, 31(47), 2104716.
- 19.
Zhang, L.; Liang, J.; Yue, L.; Dong, K.; Xu, Z.; Li, T.; Liu, Q.; Luo, Y.; Liu, Y.; Gao, S.; et al. CoTe Nanoparticle-Embedded N-doped Hollow Carbon Polyhedron: An Efficient Catalyst for H2O2 Electrosynthesis in Acidic Media. J. Mater. Chem. A 2021, 9(38), 21703.
- 20.
Song, M.; Liu, W.; Zhang, J.; Zhang, C.; Huang, X.; Wang, D. Single-Atom Catalysts for H2O2 Electrosynthesis via Two-Electron Oxygen Reduction Reaction. Adv. Funct. Mater. 2023, 33(15), 2212087.
- 21.
Xiao, C.; Cheng, L.; Zhu, Y.; Wang, G.; Chen, L.; Wang, Y.; Chen, R.; Li, Y.; Li, C. Super-Coordinated Nickel N4Ni1O2 Site Single-Atom Catalyst for Selective H2O2 Electrosynthesis at High Current Densities. Angew. Chem. Int. Ed. 2022, 61(38), e202206544.
- 22.
Wang, N.; Ma, S.; Zuo, P.; Duan, J.; Hou, B. Recent Progress of Electrochemical Production of Hydrogen Peroxide by Two-Electron Oxygen Reduction Reaction. Adv. Sci. 2021, 8(15), 2100076.
- 23.
Zhao, H.; Yuan, Z.-Y. Design Strategies of Non-Noble Metal-Based Electrocatalysts for Two-Electron Oxygen Reduction to Hydrogen Peroxide. ChemSusChem 2021, 14(7), 1616.
- 24.
Bu, Y.; Wang, Y.; Han, G.-F.; Zhao, Y.; Ge, X.; Li, F.; Zhang, Z.; Zhong, Q.; Baek, J.-B. Carbon-Based Electrocatalysts for Efficient Hydrogen Peroxide Production. Adv. Mater. 2021, 33(49), 2103266.
- 25.
Hu, C.; Paul, R.; Dai, Q.; Dai, L. Carbon-based Metal-free Electrocatalysts: From Oxygen Reduction to Multifunctional Electrocatalysis. Chem. Soc. Rev. 2021, 50(21), 11785.
- 26.
Long, Y.; Lin, J.; Ye, F.; Liu, W.; Wang, D.; Cheng, Q.; Paul, R.; Cheng, D.; Mao, B.; Yan, R.; et al. Tailoring the Atomic-Local Environment of Carbon Nanotube Tips for Selective H2O2 Electrosynthesis at High Current Densities. Adv. Mater. 2023, 35(46), 2303905.
- 27.
He, H.; Liu, S.; Liu, Y.; Zhou, L.; Wen, H.; Shen, R.; Zhang, H.; Guo, X.; Jiang, J.; Li, B. Review and Perspectives on Carbon-based Electrocatalysts for the Production of H2O2 via Two-electron Oxygen Reduction. Green Chem. 2023, 25(23), 9501.
- 28.
Wei, L.; Dong, Z.; Chen, R.; Wu, Q.; Li, J. Review of Carbon-based Nanocomposites as Electrocatalyst for H2O2 Production from Oxygen. Ionics 2022, 28(9), 4045.
- 29.
Peng, W.; Liu, J.; Liu, X.; Wang, L.; Yin, L.; Tan, H.; Hou, F.; Liang, J. Facilitating Two-electron Oxygen Reduction with Pyrrolic Nitrogen Sites for Electrochemical Hydrogen Peroxide Production. Nat. Commun. 2023, 14(1), 4430.
- 30.
Yang, Y.; He, F.; Shen, Y.; Chen, X.; Mei, H.; Liu, S.; Zhang, Y. A Biomass Derived N/C-catalyst for the Electrochemical Production of Hydrogen Peroxide. Chem. Commun. 2017, 53(72), 9994.
- 31.
Zhang, J.; Zhang, G.; Jin, S.; Zhou, Y.; Ji, Q.; Lan, H.; Liu, H.; Qu, J. Graphitic N in Nitrogen-Doped Carbon Promotes Hydrogen Peroxide Synthesis from Electrocatalytic Oxygen Reduction. Carbon 2020, 163, 154.
- 32.
Chen, G.; Liu, J.; Qingqing, l.; Guan, P.; Yu, X.; Xing, L.; Zhang, J.; Che, R. A Direct H2O2 Production Based on Hollow Porous Carbon Sphere-sulfur Nanocrystal Composites by Confinement Effect as Oxygen Reduction Electrocatalysts. Nano Res. 2019, 12, 2614–2622.
- 33.
Jia, N.; Yang, T.; Shi, S.; Chen, X.; An, Z.; Chen, Y.; Yin, S.; Chen, P. N,F-codoped Carbon Nanocages: An Efficient Electrocatalyst for Hydrogen Peroxide Electroproduction in Alkaline and Acidic Solutions. ACS Sustain. Chem. Eng. 2020, 8(7), 2883.
- 34.
Li, L.; Tang, C.; Zheng, Y.; Xia, B.; Zhou, X.; Xu, H.; Qiao, S.-Z. Tailoring Selectivity of Electrochemical Hydrogen Peroxide Generation by Tunable Pyrrolic-Nitrogen-Carbon. Adv. Energy Mater. 2020, 10(21), 2000789.
- 35.
Wan, J.; Zhang, G.; Hongrun, J.; Wu, J.; Zhang, N.; Yao, B.; Liu, K.; Liu, M.; Liu, T.; Huang, L. Microwave-assisted Synthesis of Well-defined Nitrogen Doping Configuration with High Centrality in Carbon to Identify the Active Sites for Electrochemical Hydrogen Peroxide Production. Carbon 2022, 191, 340–349.
- 36.
Ri, K.; Pak, S.; Sun, D.; Zhong, Q.; Yang, S.; Sin, S.; Wu, L.; Sun, Y.; Cao, H.; Han, C.; et al. Boron-doped rGO Electrocatalyst for High Effective Generation of Hydrogen Peroxide: Mechanism and Effect of Oxygen-enriched Air. Appl. Catal. B 2024, 343, 123471.
- 37.
Xiang, F.; Zhao, X.; Yang, J.; Li, N.; Gong, W.; Liu, Y.; Burguete-Lopez, A.; Li, Y.; Niu, X.; Fratalocchi, A. Enhanced Selectivity in the Electroproduction of H2O2 via F/S Dual-Doping in Metal-Free Nanofibers. Adv. Mater. 2023, 35(7), 2208533.
- 38.
Xia, Y.; Zhao, X.; Xia, C.; Wu, Z.-Y.; Zhu, P.; Kim, J.Y.; Bai, X.; Gao, G.; Hu, Y.; Zhong, J.; et al. Highly Active and Selective Oxygen Reduction to H2O2 on Boron-doped Carbon for High Production Rates. Nat. Commun. 2021, 12(1), 4225.
- 39.
Chen, S.; Chen, Z.; Siahrostami, S.; Kim, T.R.; Nordlund, D.; Sokaras, D.; Nowak, S.; To, J.W.F.; Higgins, D.; Sinclair, R.; et al. Defective Carbon-Based Materials for the Electrochemical Synthesis of Hydrogen Peroxide. ACS Sustain. Chem. Eng. 2018, 6(1), 311.
- 40.
Lee, K.; Lim, J.; Lee, M.J.; Ryu, K.; Lee, H.; Kim, J.Y.; Ju, H.; Cho, H.-S.; Kim, B.-H.; Hatzell, M.C.; et al. Structure-controlled Graphene Electrocatalysts for High-performance H2O2 Production. Energy Environ. Sci. 2022, 15(7), 2858.
- 41.
Zhang, C.; Shen, W.; Guo, K.; Xiong, M.; Zhang, J.; Lu, X. A Pentagonal Defect-Rich Metal-Free Carbon Electrocatalyst for Boosting Acidic O2 Reduction to H2O2 Production. J. Am. Chem. Soc. 2023, 145(21), 11589.
- 42.
Shen, W.; Zhang, C.; Wang, X.; Huang, Y.; Du, Z.; Alomar, M.; Wang, J.; Lv, J.; Zhang, J.; Lu, X. Sulfur-Doped Defective Nanocarbons Derived from Fullerenes as Electrocatalysts for Efficient and Selective H2O2 Electroproduction. ACS Mater. Lett. 2024, 6(1), 17.
- 43.
Wu, Q.; Zou, H.; Mao, X.; He, J.; Shi, Y.; Chen, S.; Yan, X.; Wu, L.; Lang, C.; Zhang, B.; et al. Unveiling the Dynamic Active Site of Defective Carbon-based Electrocatalysts for Hydrogen Peroxide Production. Nat. Commun. 2023, 14(1), 6275.
- 44.
Wang, W.; Zheng, Y.; Hu, Y.; Liu, Y.; Chen, S. Intrinsic Carbon Defects for the Electrosynthesis of H2O2. The J. Phys. Chem. Lett. 2022, 13(38), 8914.
- 45.
Dong, K.; Liang, J.; Wang, Y.; Xu, Z.; Liu, Q.; Luo, Y.; Li, T.; Li, L.; Shi, X.; Asiri, A.M.; et al. Honeycomb Carbon Nanofibers: A Superhydrophilic O2-Entrapping Electrocatalyst Enables Ultrahigh Mass Activity for the Two-Electron Oxygen Reduction Reaction. Angew. Chem. Int. Ed. 2021, 60(19), 10583.
- 46.
Fan, M.; Wang, Z.; Sun, K.; Wang, A.; Zhao, Y.; Yuan, Q.; Wang, R.; Raj, J.; Wu, J.; Jiang, J.; et al. N-B-OH Site-Activated Graphene Quantum Dots for Boosting Electrochemical Hydrogen Peroxide Production. Adv. Mater. 2023, 35(17), 2209086.
- 47.
Jing, L.; Tian, Q.; Li, X.; Sun, J.; Wang, W.; Yang, H.; Chai, X.; Hu, Q.; He, C. Dual-Engineering of Porous Structure and Carbon Edge Enables Highly Selective H2O2 Electrosynthesis. Adv. Funct. Mater. 2023, 33(47), 2305795.
- 48.
Zhang, D.; Tsounis, C.; Ma, Z.; Djaidiguna, D.; Bedford, N.M.; Thomsen, L.; Lu, X.; Chu, D.; Amal, R.; Han, Z. Highly Selective Metal-Free Electrochemical Production of Hydrogen Peroxide on Functionalized Vertical Graphene Edges. Small 2022, 18(1), 2105082.
- 49.
Kim, H.W.; Ross, M.B.; Kornienko, N.; Zhang, L.; Guo, J.; Yang, P.; McCloskey, B.D. Efficient Hydrogen Peroxide Generation Using Reduced Graphene Oxide-based Oxygen Reduction Electrocatalysts. Nat. Catal. 2018, 1(4), 282.
- 50.
Lu, Z.; Chen, G.; Siahrostami, S.; Chen, Z.; Liu, K.; Xie, J.; Liao, L.; Wu, T.; Lin, D.; Liu, Y.; et al. High-efficiency Oxygen Reduction to Hydrogen Peroxide Catalysed by Oxidized Carbon Materials. Nat. Catal. 2018, 1(2), 156.
- 51.
Han, G.-F.; Li, F.; Zou, W.; Karamad, M.; Jeon, J.-P.; Kim, S.-W.; Kim, S.-J.; Bu, Y.; Fu, Z.; Lu, Y.; et al. Building and Identifying Highly Active Oxygenated Groups in Carbon Materials for Oxygen Reduction to H2O2. Nat. Commun. 2020, 11(1), 2209.
- 52.
Zhang, H.; Li, Y.; Zhao, Y.; Li, G.; Zhang, F. Carbon Black Oxidized by Air Calcination for Enhanced H2O2 Generation and Effective Organics Degradation. ACS Appl. Mater. Interfaces 2019, 11(31), 27846.
- 53.
Su, J.; Jiang, L.; Xiao, B.; Liu, Z.; Wang, H.; Zhu, Y.; Wang, J.; Zhu, X. Dipole–Dipole Tuned Electronic Reconfiguration of Defective Carbon Sites for Efficient Oxygen Reduction into H
2O
2. Small.
https://doi.org/10.1002/smll.202310317, 2310317.
- 54.
Wu, K.-H.; Wang, D.; Lu, X.; Zhang, X.; Xie, Z.; Liu, Y.; Su, B.-J.; Chen, J.-M.; Su, D.-S.; Qi, W.; et al. Highly Selective Hydrogen Peroxide Electrosynthesis on Carbon: In Situ Interface Engineering with Surfactants. Chem 2020, 6(6), 1443.
- 55.
Zhang, Q.; Zhou, M.; Ren, G.; Li, Y.; Li, Y.; Du, X. Highly Efficient Electrosynthesis of Hydrogen Peroxide on a Superhydrophobic Three-phase Interface by Natural Air Diffusion. Nat. Commun. 2020, 11(1), 1731.
- 56.
Zhang, X.; Zhao, X.; Zhu, P.; Adler, Z.; Wu, Z.-Y.; Liu, Y.; Wang, H. Electrochemical Oxygen Reduction to Hydrogen Peroxide at Practical Rates in Strong Acidic Media. Nat. Commun. 2022, 13(1), 2880.
- 57.
Cui, L.; Chen, B.; Zhang, L.; He, C.; Shu, C.; Kang, H.; Qiu, J.; Jing, W.; Ostrikov, K.; Zhang, Z. An Anti-electrowetting Carbon Film Electrode with Self-sustained Aeration for Industrial H
2O
2 Electrosynthesis. Energy Environ. Sci. 2024, 17, 655–667.
https://doi.org/10.1039/D3EE03223J 10.1039/D3EE03223J.
- 58.
Zhu, X.; Hu, C.; Amal, R.; Dai, L.; Lu, X. Heteroatom-doped Carbon Catalysts for Zinc–Air Batteries: Progress, Mechanism, and Opportunities. Energy Environ. Sci. 2020, 13(12), 4536.
- 59.
Wohlgemuth, S.-A.; White, R.J.; Willinger, M.-G.; Titirici, M.-M.; Antonietti, M. A One-pot Hydrothermal Synthesis of Sulfur and Nitrogen Doped Carbon Aerogels with Enhanced Electrocatalytic Activity in the Oxygen Reduction Reaction. Green Chem. 2012, 14(5), 1515.
- 60.
Sheng, X.; Daems, N.; Geboes, B.; Kurttepeli, M.; Bals, S.; Breugelmans, T.; Hubin, A.; Vankelecom, I.F.J.; Pescarmona, P.P. N-doped Ordered Mesoporous Carbons Prepared by a Two-step Nanocasting Strategy as Highly Active and Selective Electrocatalysts for the Reduction of O2 to H2O2. Appl. Catal. B 2015, 176–177, 212–224.
- 61.
Singh, S.K.; Takeyasu, K.; Nakamura, J. Active Sites and Mechanism of Oxygen Reduction Reaction Electrocatalysis on Nitrogen-Doped Carbon Materials. Adv. Mater. 2019, 31(13), 1804297.
- 62.
Fellinger, T.-P.; Hasché, F.; Strasser, P.; Antonietti, M. Mesoporous Nitrogen-Doped Carbon for the Electrocatalytic Synthesis of Hydrogen Peroxide. J. Am. Chem. Soc. 2012, 134(9), 4072.
- 63.
Miao, H.; Li, S.H.; Wang, Z.H.; Sun, S.S.; Kuang, M.; Liu, Z.P.; Yuan, J.L. Enhancing the Pyridinic N Content of Nitrogen-doped Graphene and Improving its Catalytic Activity for Oxygen Reduction Reaction. Int. J. Hydrogen Energy 2017, 42(47), 28298.
- 64.
Wu, J.J.; Ma, L.L.; Yadav, R.M.; Yang, Y.C.; Zhang, X.; Vajtai, R.; Lou, J.; Ajayan, P.M. Nitrogen-Doped Graphene with Pyridinic Dominance as a Highly Active and Stable Electrocatalyst for Oxygen Reduction. ACS Appl. Mater. Interfaces 2015, 7(27), 14763.
- 65.
Kong, F.; Cui, X.; Huang, Y.; Yao, H.; Chen, Y.; Tian, H.; Meng, G.; Chen, C.; Chang, Z.; Shi, J. N-Doped Carbon Electrocatalyst: Marked ORR Activity in Acidic Media without the Contribution from Metal Sites? Angew. Chem. Int. Ed. 2022, 61(15), e202116290.
- 66.
Zhang, J.; Sun, Y.; Zhu, J.; Kou, Z.; Hu, P.; Liu, L.; Li, S.; Mu, S.; Huang, Y. Defect and Pyridinic Nitrogen Engineering of Carbon-based Metal-free Nanomaterial Toward Oxygen Reduction. Nano Energy 2018, 52, 307.
- 67.
Tuci, G.; Zafferoni, C.; D’Ambrosio, P.; Caporali, S.; Ceppatelli, M.; Rossin, A.; Tsoufis, T.; Innocenti, M.; Giambastiani, G. Tailoring Carbon Nanotube N-Dopants while Designing Metal-Free Electrocatalysts for the Oxygen Reduction Reaction in Alkaline Medium. ACS Catal. 2013, 3(9), 2108.
- 68.
Wan, K.; Long, G.-F.; Liu, M.-Y.; Du, L.; Liang, Z.-X.; Tsiakaras, P. Nitrogen-doped Ordered Mesoporous Carbon: Synthesis and Active sites for Electrocatalysis of Oxygen Reduction Reaction. Appl. Catal. B 2015, 165, 566.
- 69.
Iglesias, D.; Giuliani, A.; Melchionna, M.; Marchesan, S.; Criado, A.; Nasi, L.; Bevilacqua, M.; Tavagnacco, C.; Vizza, F.; Prato, M.; et al. N-Doped Graphitized Carbon Nanohorns as a Forefront Electrocatalyst in Highly Selective O2 Reduction to H2O2. Chem 2018, 4(1), 106.
- 70.
Sun, Y.; Li, S.; Jovanov, Z.P.; Bernsmeier, D.; Wang, H.; Paul, B.; Wang, X.; Kühl, S.; Strasser, P. Structure, Activity, and Faradaic Efficiency of Nitrogen-Doped Porous Carbon Catalysts for Direct Electrochemical Hydrogen Peroxide Production. ChemSusChem 2018, 11(19), 3388.
- 71.
Rao, C.V.; Cabrera, C.R.; Ishikawa, Y. In Search of the Active Site in Nitrogen-Doped Carbon Nanotube Electrodes for the Oxygen Reduction Reaction. J. Phys. Chem. Lett. 2010, 1, 2622.
- 72.
Yu, S.-S.; Zheng, W.-T. Effect of N/B Doping on the Electronic and Field Emission Properties for Carbon Nanotubes, Carbon Nanocones, and Graphene Nanoribbons. Nanoscale 2010, 2(7), 1069.
- 73.
Meyer, J.C.; Kurasch, S.; Park, H.J.; Skakalova, V.; Künzel, D.; Groß, A.; Chuvilin, A.; Algara-Siller, G.; Roth, S.; Iwasaki, T.; et al. Experimental Analysis of Charge Redistribution due to Chemical Bonding by High-Resolution Transmission Electron Microscopy. Nat. Mater. 2011, 10(3), 209.
- 74.
Kondo, T.; Casolo, S.; Suzuki, T.; Shikano, T.; Sakurai, M.; Harada, Y.; Saito, M.; Oshima, M.; Trioni, M.I.; Tantardini, G. F.; et al. Atomic-scale Characterization of Nitrogen-doped Graphite: Effects of Dopant Nitrogen on the Local Electronic Structure of the Surrounding Carbon Atoms. Phys. Rev. B 2012, 86(3), 035436.
- 75.
Roldán, L.; Truong-Phuoc, L.; Ansón-Casaos, A.; Pham-Huu, C.; García-Bordejé, E. Mesoporous Carbon Doped with N,S Heteroatoms Prepared by One-pot Auto-assembly of Molecular Precursor for Electrocatalytic Hydrogen Peroxide Synthesis. Catal. Today 2018, 301, 2–10.
- 76.
He, W.; Wang, Y.; Jiang, C.; Lu, L. Structural Effects of a Carbon Matrix in Non-precious Metal O2-reduction Electrocatalysts. Chem. Soc. Rev. 2016, 45(9), 2396.
- 77.
Zhao, K.; Su, Y.; Quan, X.; Liu, Y.; Chen, S.; Yu, H. Enhanced H2O2 Production by Selective Electrochemical Reduction of O2 on Fluorine-doped Hierarchically Porous Carbon. J. Catal. 2018, 357, 118.
- 78.
Wang, W.; Lu, X.; Su, P.; Li, Y.; Cai, J.; Zhang, Q.; Zhou, M.; Arotiba, O. Enhancement of Hydrogen Peroxide Production by Electrochemical Reduction of Oxygen on Carbon Nanotubes Modified with Fluorine. Chemosphere 2020, 259, 127423.
- 79.
Jang, A.R.; Lee, Y.-W.; Lee, S.-S.; Hong, J.; Beak, S.-H.; Pak, S.; Lee, J.; Shin, H.S.; Ahn, D.; Hong, W.-K.; et al. Electrochemical and Electrocatalytic Reaction Characteristics of Boron-incorporated Graphene via a Simple Spin-on Dopant Process. J. Mater. Chem. A 2018, 6(17), 7351.
- 80.
Yu, X.; Han, P.; Wei, Z.; Huang, L.; Gu, Z.; Peng, S.; Ma, J.; Zheng, G. Boron-Doped Graphene for Electrocatalytic N2 Reduction. Joule 2018, 2(8), 1610.
- 81.
Vineesh, T.V.; Kumar, M.P.; Takahashi, C.; Kalita, G.; Alwarappan, S.; Pattanayak, D.K.; Narayanan, T.N. Bifunctional Electrocatalytic Activity of Boron-Doped Graphene Derived from Boron Carbide. Adv. Energy Mater. 2015, 5(17), 1500658.
- 82.
Liu, L.; Yan, C.; Luo, X.; Li, C.; Zhang, D.; Peng, H.; Wang, H.; Zheng, B.; Guo, Y. Phosphorus Doped Hierarchical Porous Carbon: An Efficient Oxygen Reduction Electrocatalyst for On-site H2O2 Production. Inorg. Chem. Front. 2023, 10(12), 3632.
- 83.
Gu, Y.-y.; Fu, H.; Huang, Z.; Lin, R.; Wu, Z.; Li, M.; Cui, Y.; Fu, R.; Wang, S. O/F Co-doped CNTs Promoted Graphite Felt Gas Diffusion Cathode for Highly Efficient and Durable H2O2 Evolution without Aeration. J. Clean. Prod. 2022, 341, 130799.
- 84.
Ji, L.; Rao, M.; Zheng, H.; Zhang, L.; Li, Y.; Duan, W.; Guo, J.; Cairns, E.J.; Zhang, Y. Graphene Oxide as a Sulfur Immobilizer in High Performance Lithium/Sulfur Cells. J. Am. Chem. Soc. 2011, 133(46), 18522.
- 85.
Paraknowitsch, J.P.; Thomas, A. Doping Carbons Beyond Nitrogen: An Overview of Advanced Heteroatom Doped Carbons with Boron, Sulphur and Phosphorus for Energy Applications. Energy Environ. Sci. 2013, 6(10), 2839.
- 86.
Zhu, C.; Li, H.; Fu, S.; Du, D.; Lin, Y. Highly Efficient Nonprecious Metal Catalysts Towards Oxygen Reduction Reaction Based on Three-dimensional Porous Carbon Nanostructures. Chem. Soc. Rev. 2016, 45(3), 517.
- 87.
Feng, X.; Bai, Y.; Liu, M.; Li, Y.; Yang, H.; Wang, X.; Wu, C. Untangling the Respective Effects of Heteroatom-doped Carbon Materials in Batteries, Supercapacitors and the ORR to Design High Performance Materials. Energy Environ. Sci. 2021, 14(4), 2036.
- 88.
Hu, C.; Dai, L. Doping of Carbon Materials for Metal-Free Electrocatalysis. Adv. Mater. 2019, 31(7), 1804672.
- 89.
Wiggins-Camacho, J.D.; Stevenson, K.J. Effect of Nitrogen Concentration on Capacitance, Density of States, Electronic Conductivity, and Morphology of N-Doped Carbon Nanotube Electrodes. J. Phys. Chem. C 2009, 113(44), 19082.
- 90.
Liu, J.; Gong, Z.; Yan, M.; He, G.; Gong, H.; Ye, G.; Fei, H. Electronic Structure Regulation of Single-Atom Catalysts for Electrochemical Oxygen Reduction to H2O2. Small 2022, 18(3), 2103824.
- 91.
Deng, D.; Yu, L.; Pan, X.; Wang, S.; Chen, X.; Hu, P.; Sun, L.; Bao, X. Size Effect of Graphene on Electrocatalytic Activation of Oxygen. Chem. Commun. 2011, 47(36), 10016.
- 92.
San Roman, D.; Krishnamurthy, D.; Garg, R.; Hafiz, H.; Lamparski, M.; Nuhfer, N.T.; Meunier, V.; Viswanathan, V.; Cohen-Karni, T. Engineering Three-Dimensional (3D) Out-of-Plane Graphene Edge Sites for Highly Selective Two-Electron Oxygen Reduction Electrocatalysis. ACS Catal. 2020, 10(3), 1993.
- 93.
Zhang, T.; Li, W.; Huang, K.; Guo, H.; Li, Z.; Fang, Y.; Yadav, R.M.; Shanov, V.; Ajayan, P.M.; Wang, L.; et al. Regulation of Functional Groups on Graphene Quantum Dots Directs Selective CO2 to CH4 Conversion. Nat. Commun. 2021, 12(1), 5265.
- 94.
Song, D.; Guo, H.; Huang, K.; Zhang, H.; Chen, J.; Wang, L.; Lian, C.; Wang, Y. Carboxylated Carbon Quantum Dot-induced Binary Metal–organic Framework Nanosheet Synthesis to Boost the Electrocatalytic Performance. Mater. Today 2022, 54, 42–51.
- 95.
Wang, W.; Shang, L.; Chang, G.; Yan, C.; Shi, R.; Zhao, Y.; Waterhouse, G.I.N.; Yang, D.; Zhang, T. Intrinsic Carbon-Defect-Driven Electrocatalytic Reduction of Carbon Dioxide. Adv. Mater. 2019, 31(19), 1808276.
- 96.
Zhu, J.; Huang, Y.; Mei, W.; Zhao, C.; Zhang, C.; Zhang, J.; Amiinu, I.; Mu, S. Effects of Intrinsic Pentagon Defects on Electrochemical Reactivity of Carbon Nanomaterials. Angew. Chem. Int. Ed. 2019, 58, 3859.
- 97.
Lee, S.; Kim, H.; Lee, J.; Kuk, Y.; Chung, K.H.; Kim, H.; Kahng, S.-J. Donor and Acceptor-like Electronic States in a One-dimensional Semiconductor. Surf. Sci. 2006, 600(22), 4937.
- 98.
Fan, H.; Wang, J.; Wu, P.; Zheng, L.; Xiang, J.; Liu, H.; Han, B.; Jiang, L. Hydrophobic Ionic Liquid Tuning Hydrophobic Carbon to Superamphiphilicity for Reducing Diffusion Resistance in Liquid-liquid Catalysis Systems. Chem 2021, 7(7), 1852.
- 99.
Chen, Q.; Peng, Q.; Zhao, X.; Sun, H.; Wang, S.; Zhu, Y.; Liu, Z.; Wang, C.; He, X. Grafting Carbon Nanotubes Densely on Carbon Fibers by Poly (propylene imine) for Interfacial Enhancement of Carbon Fiber Composites. Carbon 2020, 158, 704–710.
- 100.
Yang, F.; Ma, X.; Cai, W.-B.; Song, P.; Xu, W. Nature of Oxygen-Containing Groups on Carbon for High-Efficiency Electrocatalytic CO2 Reduction Reaction. J. Am. Chem. Soc. 2019, 141(51), 20451.
- 101.
Sang, Z.-y.; Hou, F.; Wang, S.-h.; Liang, J. Research Progress on Carbon-based Non-metallic Nanomaterials as Catalysts for the Two-electron Oxygen Reduction for Hydrogen Peroxide Production. New Carbon Mater 2022, 37(1), 136–151.
- 102.
Yan, H.; Zhao, X.; Guo, N.; Lyu, Z.; Du, Y.; Xi, S.; Guo, R.; Chen, C.; Chen, Z.; Liu, W.; et al. Atomic Engineering of High-density Isolated Co Atoms on Graphene with Proximal-atom Controlled Reaction Selectivity. Nat. Commun. 2018, 9(1), 3197.
- 103.
Zhou, W.; Xie, L.; Gao, J.; Nazari, R.; Zhao, H.; Meng, X.; Sun, F.; Zhao, G.; Ma, J. Selective H2O2 Electrosynthesis by O-doped and Transition-metal-O-doped Carbon Cathodes via O2 Electroreduction: A Critical Review. Chem. Eng. J. 2021, 410, 128368.
- 104.
Xie, L.; Zhou, W.; Qu, Z.; Ding, Y.; Gao, J.; Sun, F.; Qin, Y. Understanding the Activity Origin of Oxygen-doped Carbon Materials in Catalyzing the Two-electron Oxygen Reduction Reaction Towards Hydrogen Peroxide Generation. J. Colloid Interface Sci. 2022, 610, 934–943.
- 105.
Chen, Z.; Chen, S.; Siahrostami, S.; Chakthranont, P.; Hahn, C.; Nordlund, D.; Dimosthenis, S.; Nørskov, J.K.; Bao, Z.; Jaramillo, T.F. Development of a Reactor with Carbon Catalysts for Modular-scale, Low-cost Electrochemical Generation of H2O2. React. Chem. Eng. 2017, 2(2), 239–245.
- 106.
Xia, C.; Xia, Y.; Zhu, P.; Fan, L.; Wang, H. Direct Electrosynthesis of Pure Aqueous H2O2 Solutions up to 20% by Weight Using a Solid Electrolyte. Science 2019, 366(6462), 226.
- 107.
Zhao, J.; Zhang, X.; Xu, J.; Tang, W.; Lin Wang, Z.; Ru Fan, F. Contact-electro-catalysis for Direct Synthesis of H2O2 under Ambient Conditions. Angew. Chem. Int. Ed. 2023, 62(21), e202300604.
- 108.
Zhu, X.; Tan, X.; Wu, K.-H.; Haw, S.-C.; Pao, C.-W.; Su, B.-J.; Jiang, J.; Smith, S.C.; Chen, J.-M.; Amal, R.; et al. Intrinsic ORR Activity Enhancement of Pt Atomic Sites by Engineering the d-Band Center via Local Coordination Tuning. Angew. Chem. Int. Ed. 2021, 60(40), 21911.
- 109.
Zhang, Q.; Guan, J. Applications of Atomically Dispersed Oxygen Reduction Catalysts in Fuel Cells and Zinc–Air Batteries. Energy Environ. Mater. 2021, 4(3), 307–335.