- 1.
Sardon, H.; Dove, A.P. Plastics recycling with a difference. Science 2018, 360, 380–381.
- 2.
- 3.
Geyer, R.; Jambeck, J.R.; Law, K.L. Production, use, and fate of all plastics ever made. Sci. Adv. 2017, 3, e1700782.
- 4.
- 5.
MacLeod, M.; Arp, H.P.H.; Tekman, M.B.; Jahnke, A. The global threat from plastic pollution. Science 2021, 373, 61–65.
- 6.
Stubbins, A.; Law, K.L.; Muñoz, S.E.; Bianchi, T.S.; Zhu, L. Plastics in the Earth system. Science 2021, 373, 51–55.
- 7.
Pan, Q.; Liu, Q.-Y.; Zheng, J.; Li, Y.-H.; Xiang, S.; Sun, X.-J.; He, X.-S. Volatile and semi-volatile organic compounds in landfill gas: Composition characteristics and health risks. Environ. Int. 2023, 174, 107886.
- 8.
He, X.-S.; Pan, Q.; Xi, B.-D.; Zheng, J.; Liu, Q.-Y.; Sun, Y. Volatile and semi-volatile organic compounds in landfill leachate: Concurrence, removal and the influencing factors. Water Res. 2023, 245, 120566.
- 9.
Vlasopoulos, A.; Malinauskaite, J.; Żabnieńska-Góra, A.; Jouhara, H. Life cycle assessment of plastic waste and energy recovery. Energy 2023, 277, 127576.
- 10.
Vollmer, I.; Jenks, M.J.F.; Roelands, M.C.P.; White, R.J.; van Harmelen, T.; de Wild, P.; van der Laan, G.P.; Meirer, F.; Keurentjes, J.T.F.; Weckhuysen, B.M. Beyond Mechanical Recycling: Giving New Life to Plastic Waste. Angew. Chem. Int. Ed. 2020, 59, 15402–15423.
- 11.
Verma, R.; Vinoda, K.S.; Papireddy, M.; Gowda, A.N.S. Toxic Pollutants from Plastic Waste- A Review. Procedia Environ. Sci. 2016, 35, 701–708.
- 12.
Rahimi, A.; García, J.M. Chemical recycling of waste plastics for new materials production. Nat. Rev. Chem. 2017, 1, 0046.
- 13.
- 14.
Barnard, E.; Rubio Arias, J.J.; Thielemans, W. Chemolytic depolymerisation of PET: A review. Green Chem. 2021, 23, 3765–3789.
- 15.
Faust, K.; Denifl, P.; Hapke, M. Recent Advances in Catalytic Chemical Recycling of Polyolefins. ChemCatChem 2023, 15, e202300310.
- 16.
Marquez, C.; Martin, C.; Linares, N.; De Vos, D. Catalytic routes towards polystyrene recycling. Mater. Horiz. 2023, 10, 1625–1640.
- 17.
Jiang, X.; Zhu, B.; Zhu, M. An overview on the recycling of waste poly(vinyl chloride). Green Chem. 2023, 25, 6971–7025.
- 18.
Sajwan, D.; Sharma, A.; Sharma, M.; Krishnan, V. Upcycling of Plastic Waste Using Photo-, Electro-, and Photoelectrocatalytic Approaches: A Way toward Circular Economy. ACS Catal. 2024, 14, 4865–4926.
- 19.
Hou, Q.; Zhen, M.; Qian, H.; Nie, Y.; Bai, X.; Xia, T.; Laiq Ur Rehman, M.; Li, Q.; Ju, M. Upcycling and catalytic degradation of plastic wastes. Cell Rep. Phys. Sci. 2021, 2, 100514.
- 20.
Ragaert, K.; Delva, L.; Van Geem, K. Mechanical and chemical recycling of solid plastic waste. Waste Manag. 2017, 69, 24–58.
- 21.
Chen, H.; Wan, K.; Zhang, Y.; Wang, Y. Waste to Wealth: Chemical Recycling and Chemical Upcycling of Waste Plastics for a Great Future. ChemSusChem 2021, 14, 4123–4136.
- 22.
Li, X.; Wang, J.; Zhang, T.; Yang, S.; Sun, M.; Qian, X.; Wang, T.; Zhao, Y. Sustainable catalytic strategies for the transformation of plastic wastes into valued products. Chem. Eng. Sci. 2023, 276, 118729.
- 23.
Chen, X.; Wang, Y.; Zhang, L. Recent Progress in the Chemical Upcycling of Plastic Wastes. ChemSusChem 2021, 14, 4137–4151.
- 24.
Kosloski-Oh, S.C.; Wood, Z.A.; Manjarrez, Y.; de los Rios, J.P.; Fieser, M.E. Catalytic methods for chemical recycling or upcycling of commercial polymers. Mater. Horiz. 2021, 8, 1084–1129.
- 25.
Di, J.; Reck, B.K.; Miatto, A.; Graedel, T.E. United States plastics: Large flows, short lifetimes, and negligible recycling. Resour. Conserv. Recycl. 2021, 167, 105440.
- 26.
Smith, R.L.; Takkellapati, S.; Riegerix, R.C. Recycling of Plastics in the United States: Plastic Material Flows and Polyethylene Terephthalate (PET) Recycling Processes. ACS Sustain. Chem. Eng. 2022, 10, 2084–2096.
- 27.
Directives 2008/98/EC of the European Parliament and of the Council of 19 November 2008 on Waste and Repealing Certain Directives. Available online:
https://eur-lex.europa.eu/eli/dir/2008/98/oj (accessed on 27 October 2024).
- 28.
Kabir, E.; Kaur, R.; Lee, J.; Kim, K.-H.; Kwon, E.E. Prospects of biopolymer technology as an alternative option for non-degradable plastics and sustainable management of plastic wastes. J. Clean. Prod. 2020, 258, 120536.
- 29.
Lettner, M.; Schöggl, J.-P.; Stern, T. Factors influencing the market diffusion of bio-based plastics: Results of four comparative scenario analyses. J. Clean. Prod. 2017, 157, 289–298.
- 30.
Zhao, X.; Cornish, K.; Vodovotz, Y. Narrowing the Gap for Bioplastic Use in Food Packaging: An Update. Environ. Sci. Technol. 2020, 54, 4712–4732.
- 31.
Ignatyev, I.A.; Thielemans, W.; Vander Beke, B. Recycling of Polymers: A Review. ChemSusChem 2014, 7, 1579–1593.
- 32.
Welle, F. Is PET bottle-to-bottle recycling safe? Evaluation of post-consumer recycling processes according to the EFSA guidelines. Resour. Conserv. Recycl. 2013, 73, 41–45.
- 33.
Saikrishnan, S.; Jubinville, D.; Tzoganakis, C.; Mekonnen, T.H. Thermo-mechanical degradation of polypropylene (PP) and low-density polyethylene (LDPE) blends exposed to simulated recycling. Polym. Degrad. Stab. 2020, 182, 109390.
- 34.
Suzuki, G.; Uchida, N.; Tanaka, K.; Higashi, O.; Takahashi, Y.; Kuramochi, H.; Yamaguchi, N.; Osako, M. Global discharge of microplastics from mechanical recycling of plastic waste. Environ. Pollut. 2024, 348, 123855.
- 35.
Ellis, L.D.; Rorrer, N.A.; Sullivan, K.P.; Otto, M.; McGeehan, J.E.; Román-Leshkov, Y.; Wierckx, N.; Beckham, G.T. Chemical and biological catalysis for plastics recycling and upcycling. Nat. Catal. 2021, 4, 539–556.
- 36.
Guselnikova, O.; Semyonov, O.; Sviridova, E.; Gulyaev, R.; Gorbunova, A.; Kogolev, D.; Trelin, A.; Yamauchi, Y.; Boukherroub, R.; Postnikov, P. “Functional upcycling” of polymer waste towards the design of new materials. Chem. Soc. Rev. 2023, 52, 4755–4832.
- 37.
An, W.; Wang, X.-L.; Liu, X.; Wu, G.; Xu, S.; Wang, Y.-Z. Chemical recovery of thermosetting unsaturated polyester resins. Green Chem. 2022, 24, 701–712.
- 38.
Zhao, X.; Long, Y.; Xu, S.; Liu, X.; Chen, L.; Wang, Y.-Z. Recovery of epoxy thermosets and their composites. Mater. Today 2023, 64, 72–97.
- 39.
Ren, T.; Zhan, H.; Xu, H.; Chen, L.; Shen, W.; Xu, Y.; Zhao, D.; Shao, Y.; Wang, Y. Recycling and high-value utilization of polyethylene terephthalate wastes: A review. Environ. Res. 2024, 249, 118428.
- 40.
Singh, A.; Rorrer, N.A.; Nicholson, S.R.; Erickson, E.; DesVeaux, J.S.; Avelino, A.F.T.; Lamers, P.; Bhatt, A.; Zhang, Y.; Avery, G.; et al. Techno-economic, life-cycle, and socioeconomic impact analysis of enzymatic recycling of poly(ethylene terephthalate). Joule 2021, 5, 2479–2503.
- 41.
Anglou, E.; Ganesan, A.; Chang, Y.; Gołąbek, K.M.; Fu, Q.; Bradley, W.; Jones, C.W.; Sievers, C.; Nair, S.; Boukouvala, F. Process development and techno-economic analysis for mechanochemical recycling of poly(ethylene terephthalate). Chem. Eng. J. 2024, 481, 148278.
- 42.
Uekert, T.; Singh, A.; DesVeaux, J.S.; Ghosh, T.; Bhatt, A.; Yadav, G.; Afzal, S.; Walzberg, J.; Knauer, K.M.; Nicholson, S.R.; et al. Technical, Economic, and Environmental Comparison of Closed-Loop Recycling Technologies for Common Plastics. ACS Sustain. Chem. Eng. 2023, 11, 965–978.
- 43.
Urm, J.J.; Choi, J.H.; Kim, C.; Lee, J.M. Techno-economic analysis and process optimization of a PET chemical recycling process based on Bayesian optimization. Comput. Chem. Eng. 2023, 179, 108451.
- 44.
Zhang, M.; Yu, Y.; Yan, B.; Song, X.; Liu, Y.; Feng, Y.; Wu, W.; Chen, B.; Han, B.; Mei, Q. Full valorisation of waste PET into dimethyl terephthalate and cyclic arylboronic esters. Appl. Catal. B-Environ. Energy 2024, 352, 124055.
- 45.
Mo, S.; Kou, J.; Zeng, J.; Song, K.; Zhang, Y.; He, S.; Hu, Y.; Guo, Y.; Liu, X.; Chen, X.; et al. Upcycling PET wastes into high value-added 1,4-cyclohexanedimethanol (CHDM) via tandem reactions. Chem. Eng. J. 2024, 500, 157249.
- 46.
Chen, Q.; Yan, H.; Zhao, K.; Wang, S.; Zhang, D.; Li, Y.; Fan, R.; Li, J.; Chen, X.; Zhou, X.; et al. Catalytic oxidation upcycling of polyethylene terephthalate to commodity carboxylic acids. Nat. Commun. 2024, 15, 10732.
- 47.
Wei, X.; Zheng, W.; Chen, X.; Qiu, J.; Sun, W.; Xi, Z.; Zhao, L. Chemical upcycling of poly(ethylene terephthalate) with binary mixed alcohols toward value-added copolyester by depolymerization and repolymerization strategy. Chem. Eng. Sci. 2024, 294, 120103.
- 48.
Wang, K.; Guo, C.; Li, J.; Wang, K.; Cao, X.; Liang, S.; Wang, J. High value-added conversion and functional recycling of waste polyethylene terephthalate (PET) plastics: A comprehensive review. J. Environ. Chem. Eng. 2024, 12, 113539.
- 49.
Onwucha, C.N.; Ehi-Eromosele, C.O.; Ajayi, S.O.; Schaefer, M.; Indris, S.; Ehrenberg, H. Uncatalyzed Neutral Hydrolysis of Waste PET Bottles into Pure Terephthalic Acid. Ind. Eng. Chem. Res. 2023, 62, 6378–6385.
- 50.
Pereira, P.; Savage, P.E.; Pester, C.W. Neutral Hydrolysis of Post-Consumer Polyethylene Terephthalate Waste in Different Phases. ACS Sustain. Chem. Eng. 2023, 11, 7203–7209.
- 51.
Pereira, P.; Slear, W.; Testa, A.; Reasons, K.; Guirguis, P.; Savage, P.E.; Pester, C.W. Fast hydrolysis for chemical recycling of polyethylene terephthalate (PET). RSC Sustain. 2024, 2, 1508–1514.
- 52.
Liu, Y.; Wang, M.; Pan, Z. Catalytic depolymerization of polyethylene terephthalate in hot compressed water. J. Supercrit. Fluids 2012, 62, 226–231.
- 53.
Wang, Y.; Zhang, Y.; Song, H.; Wang, Y.; Deng, T.; Hou, X. Zinc-catalyzed ester bond cleavage: Chemical degradation of polyethylene terephthalate. J. Cleaner Prod. 2019, 208, 1469–1475.
- 54.
Campanelli, J.R.; Cooper, D.G.; Kamal, M.R. Catalyzed hydrolysis of polyethylene terephthalate melts. J. Appl. Polym. Sci. 1994, 53, 985–991.
- 55.
Yun, L.-X.; Qiao, M.; Zhang, B.; Zhang, H.-T.; Wang, J.-X. Upcycling plastic wastes into high-performance nano-MOFs by efficient neutral hydrolysis for water adsorption and photocatalysis. J. Mater. Chem. A 2024, 12, 19452–19461.
- 56.
Yoshioka, T.; Motoki, T.; Okuwaki, A. Kinetics of Hydrolysis of Poly(ethylene terephthalate) Powder in Sulfuric Acid by a Modified Shrinking-Core Model. Ind. Eng. Chem. Res. 2001, 40, 75–79.
- 57.
Islam, M.S.; Islam, Z.; Hasan, R.; Islam Molla Jamal, A.S. Acidic hydrolysis of recycled polyethylene terephthalate plastic for the production of its monomer terephthalic acid. Prog. Rubber Plast. Recycl. Technol. 2023, 39, 12–25.
- 58.
Yoshioka, T.; Okayama, N.; Okuwaki, A. Kinetics of Hydrolysis of PET Powder in Nitric Acid by a Modified Shrinking-Core Model. Ind. Eng. Chem. Res. 1998, 37, 336–340.
- 59.
Yang, W.; Liu, R.; Li, C.; Song, Y.; Hu, C. Hydrolysis of waste polyethylene terephthalate catalyzed by easily recyclable terephthalic acid. Waste Manag. 2021, 135, 267–274.
- 60.
Yang, W.; Wang, J.; Jiao, L.; Song, Y.; Li, C.; Hu, C. Easily recoverable and reusable p-toluenesulfonic acid for faster hydrolysis of waste polyethylene terephthalate. Green Chem. 2022, 24, 1362–1372.
- 61.
Hoang, C.N.; Nguyen, N.T.; Doan, T.Q.; Hoang, D. Novel efficient method of chemical upcycling of waste poly(ethylene terephthalate) bottles by acidolysis with adipic acid under microwave irradiation. Polym. Degrad. Stab. 2022, 206, 110175.
- 62.
Abedsoltan, H. A focused review on recycling and hydrolysis techniques of polyethylene terephthalate. Polym. Eng. Sci. 2023, 63, 2651–2674.
- 63.
Paliwal, N.R.; Mungray, A.K. Ultrasound assisted alkaline hydrolysis of poly(ethylene terephthalate) in presence of phase transfer catalyst. Polym. Degrad. Stab. 2013, 98, 2094–2101.
- 64.
Barredo, A.; Asueta, A.; Amundarain, I.; Leivar, J.; Miguel-Fernández, R.; Arnaiz, S.; Epelde, E.; López-Fonseca, R.; Gutiérrez-Ortiz, J.I. Chemical recycling of monolayer PET tray waste by alkaline hydrolysis. J. Environ. Chem. Eng. 2023, 11, 109823.
- 65.
Zhang, F.; Chen, S.; Nie, S.; Luo, J.; Lin, S.; Wang, Y.; Yang, H. Waste PET as a Reactant for Lanthanide MOF Synthesis and Application in Sensing of Picric Acid. Polymers 2019, 11, 2015.
- 66.
Zhou, L.; Wang, S.; Chen, Y.; Serre, C. Direct synthesis of robust hcp UiO-66(Zr) MOF using poly(ethylene terephthalate) waste as ligand source. Microporous Mesoporous Mater. 2019, 290, 109674.
- 67.
Liu, K.; Gao, X.; Liu, C.-X.; Shi, R.; Tse, E.C.M.; Liu, F.; Chen, Y. Energy-Saving Hydrogen Production by Seawater Splitting Coupled with PET Plastic Upcycling. Adv. Energy Mater. 2024, 14, 2304065.
- 68.
Du, M.; Xue, R.; Yuan, W.; Cheng, Y.; Cui, Z.; Dong, W.; Qiu, B. Tandem Integration of Biological and Electrochemical Catalysis for Efficient Polyester Upcycling under Ambient Conditions. Nano Lett. 2024, 24, 9768–9775.
- 69.
Zhang, X.; Wei, R.; Yan, M.; Wang, X.; Wei, X.; Wang, Y.; Wang, L.; Zhang, J.; Yin, S. One-Pot Synthesis Inorganic-Organic Hybrid PdNi Bimetallenes for PET Electrocatalytic Value-Added Transformation. Adv. Funct. Mater. 2024, 34, 2401796.
- 70.
Zhou, H.; Ren, Y.; Li, Z.; Xu, M.; Wang, Y.; Ge, R.; Kong, X.; Zheng, L.; Duan, H. Electrocatalytic upcycling of polyethylene terephthalate to commodity chemicals and H2 fuel. Nat. Commun. 2021, 12, 4679.
- 71.
Lozano-Martinez, P.; Torres-Zapata, T.; Martin-Sanchez, N. Directing Depolymerization of PET with Subcritical and Supercritical Ethanol to Different Monomers through Changes in Operation Conditions. ACS Sustain. Chem. Eng. 2021, 9, 9846–9853.
- 72.
Liu, S.; Wang, Z.; Li, L.; Yu, S.; Xie, C.; Liu, F. Butanol alcoholysis reaction of polyethylene terephthalate using acidic ionic liquid as catalyst. J. Appl. Polym. Sci. 2013, 130, 1840–1844.
- 73.
Chen, J.; Lv, J.; Ji, Y.; Ding, J.; Yang, X.; Zou, M.; Xing, L. Alcoholysis of PET to produce dioctyl terephthalate by isooctyl alcohol with ionic liquid as cosolvent. Polym. Degrad. Stab. 2014, 107, 178–183.
- 74.
Kim, B.-K.; Hwang, G.-C.; Bae, S.-Y.; Yi, S.-C.; Kumazawa, H. Depolymerization of polyethyleneterephthalate in supercritical methanol. J. Appl. Polym. Sci. 2001, 81, 2102–2108.
- 75.
Tang, J.; Meng, X.; Cheng, X.; Zhu, Q.; Yan, D.; Zhang, Y.; Lu, X.; Shi, C.; Liu, X. Mechanistic Insights of Cosolvent Efficient Enhancement of PET Methanol Alcohololysis. Ind. Eng. Chem. Res. 2023, 62, 4917–4927.
- 76.
Hofmann, M.; Sundermeier, J.; Alberti, C.; Enthaler, S. Zinc(II) acetate Catalyzed Depolymerization of Poly(ethylene terephthalate). ChemistrySelect 2020, 5, 10010–10014.
- 77.
Tanaka, S.; Sato, J.; Nakajima, Y. Capturing ethylene glycol with dimethyl carbonate towards depolymerisation of polyethylene terephthalate at ambient temperature. Green Chem. 2021, 23, 9412–9416.
- 78.
Huang, Y.; Ma, Y.; Cheng, Y.; Wang, L.; Li, X. Dimethyl Terephthalate Hydrogenation to Dimethyl Cyclohexanedicarboxylates over Bimetallic Catalysts on Carbon Nanotubes. Ind. Eng. Chem. Res. 2014, 53, 4604–4613.
- 79.
Xiao, H.; Zhang, C.; Zhao, J.; Zheng, Z.; Li, Y. Selective hydrogenation of dimethyl terephthalate over a potassium-modified Ni/SiO2 catalyst. RSC Adv. 2023, 13, 16363–16368.
- 80.
Xiao, X.; Xin, H.; Qi, Y.; Zhao, C.; Wu, P.; Li, X. One-pot conversion of dimethyl terephthalate to 1,4-cyclohexanedimethanol. Appl. Catal. A 2022, 632, 118510.
- 81.
Huang, Y.; Si, Y.; Guo, X.; Qin, C.; Huang, Y.; Wang, L.; Gao, X.; Yao, S.; Cheng, Y. Valorization of Waste Polyester for 1,4-Cyclohexanedimethanol Production. ACS Catal. 2025, 4570-4578.
- 82.
Li, Y.; Wang, M.; Liu, X.; Hu, C.; Xiao, D.; Ma, D. Catalytic Transformation of PET and CO2 into High-Value Chemicals. Angew. Chem. Int. Ed. 2022, 61, e202117205.
- 83.
Helmer, R.; Borkar, S.S.; Li, A.; Mahnaz, F.; Vito, J.; Bishop, M.; Iftakher, A.; Hasan, M.M.F.; Rangarajan, S.; Shetty, M. Tandem Methanolysis and Catalytic Transfer Hydrogenolysis of Polyethylene Terephthalate to p-Xylene Over Cu/ZnZrOx Catalysts. Angew. Chem. Int. Ed. 2025, 64, e202416384.
- 84.
Pardal, F.; Tersac, G. Kinetics of poly(ethylene terephthalate) glycolysis by diethylene glycol. Part II: Effect of temperature, catalyst and polymer morphology. Polym. Degrad. Stab. 2007, 92, 611–616.
- 85.
Javed, S.; Fisse, J.; Vogt, D. Optimization and Kinetic Evaluation for Glycolytic Depolymerization of Post-Consumer PET Waste with Sodium Methoxide. Polymers 2023, 15, 687.
- 86.
López-Fonseca, R.; Duque-Ingunza, I.; de Rivas, B.; Arnaiz, S.; Gutiérrez-Ortiz, J.I. Chemical recycling of post-consumer PET wastes by glycolysis in the presence of metal salts. Polym. Degrad. Stab. 2010, 95, 1022–1028.
- 87.
Javed, S.; Vogt, D. Development of Eco-Friendly and Sustainable PET Glycolysis Using Sodium Alkoxides as Catalysts. ACS Sustain. Chem. Eng. 2023, 11, 11541–11547.
- 88.
Wang, Z.; Jin, Y.; Wang, Y.; Tang, Z.; Wang, S.; Xiao, G.; Su, H. Cyanamide as a Highly Efficient Organocatalyst for the Glycolysis Recycling of PET. ACS Sustain. Chem. Eng. 2022, 10, 7965–7973.
- 89.
Javed, S.; Ropel, D.; Vogt, D. Sodium ethoxide as an environmentally benign and cost-effective catalyst for chemical depolymerization of post-consumer PET waste. Green Chem. 2023, 25, 1442–1452.
- 90.
Wang, T.; Shen, C.; Yu, G.; Chen, X. The upcycling of polyethylene terephthalate using protic ionic liquids as catalyst. Polym. Degrad. Stab. 2022, 203, 110050.
- 91.
Zhang, C.; He, H.; Shen, Y.; Li, Q.; Ye, X. Green Catalytic Ionic Liquids Containing Organophosphorus for Efficient Glycolysis of Waste PET Bottle Flakes. Ind. Eng. Chem. Res. 2024, 63, 10903–10913.
- 92.
Liu, Y.; Yao, X.; Yao, H.; Zhou, Q.; Xin, J.; Lu, X.; Zhang, S. Degradation of poly(ethylene terephthalate) catalyzed by metal-free choline-based ionic liquids. Green Chem. 2020, 22, 3122–3131.
- 93.
Zhang, H.; Choi, J.I.; Choi, J.-W.; Jeong, S.-M.; Lee, P.-S.; Hong, D.-Y. A highly porous MgAl2O4 spinel-supported Mn3O4 as a reusable catalyst for glycolysis of postconsumer PET waste. J. Ind. Eng. Chem. 2022, 115, 251–262.
- 94.
Sun, Q.; Zheng, Y.-Y.; Yun, L.-X.; Wu, H.; Liu, R.-K.; Du, J.-T.; Gu, Y.-H.; Shen, Z.-G.; Wang, J.-X. Fe3O4 Nanodispersions as Efficient and Recoverable Magnetic Nanocatalysts for Sustainable PET Glycolysis. ACS Sustain. Chem. Eng. 2023, 11, 7586–7595.
- 95.
Anggo Krisbiantoro, P.; Chiao, Y.-W.; Liao, W.; Sun, J.-P.; Tsutsumi, D.; Yamamoto, H.; Wu, C.W. K. Catalytic glycolysis of polyethylene terephthalate (PET) by solvent-free mechanochemically synthesized MFe2O4 (M = Co, Ni, Cu and Zn) spinel. Chem. Eng. J. 2022, 450, 137926.
- 96.
Cao, J.; Lin, Y.; Jiang, W.; Wang, W.; Li, X.; Zhou, T.; Sun, P.; Pan, B.; Li, A.; Zhang, Q. Mechanism of the Significant Acceleration of Polyethylene Terephthalate Glycolysis by Defective Ultrathin ZnO Nanosheets with Heteroatom Doping. ACS Sustain. Chem. Eng. 2022, 10, 5476–5488.
- 97.
Mo, S.; Guo, Y.; Liu, X.; Wang, Y. Efficient depolymerization of PET over Ti-doped SBA-15 with abundant Lewis acid sites via glycolysis. Catal. Sci. Technol. 2023, 13, 6561–6569.
- 98.
Veregue, F.R.; Pereira da Silva, C.T.; Moisés, M.P.; Meneguin, J.G.; Guilherme, M.R.; Arroyo, P.A.; Favaro, S.L.; Radovanovic, E.; Girotto, E.M.; Rinaldi, A.W. Ultrasmall Cobalt Nanoparticles as a Catalyst for PET Glycolysis: A Green Protocol for Pure Hydroxyethyl Terephthalate Precipitation without Water. ACS Sustain. Chem. Eng. 2018, 6, 12017–12024.
- 99.
Lechuga-Islas, V.D.; Sánchez-Cerrillo, D.M.; Stumpf, S.; Guerrero-Santos, R.; Schubert, U.S.; Guerrero-Sánchez, C. Thermo-responsive polymer catalysts for polyester recycling processes: switching from homogeneous catalysis to heterogeneous separations. Polym. Chem. 2023, 14, 1893–1904.
- 100.
Clark, R.A.; Shaver, M.P. Depolymerization within a Circular Plastics System. Chem. Rev. 2024, 124, 2617–2650.
- 101.
Zhang, Y.; Tian, F.; Wu, Z.; Li, X.; Liu, X.; He, Y. Chemical conversion of waste PET to valued-added bis(2-hydroxyethyl) terephthalamide through aminolysis. Mater. Today Commun. 2022, 32, 104045.
- 102.
Mersha, D.A.; Gesese, T.N.; Sendekie, Z.B.; Admase, A.T.; Bezie, A.J. Operating conditions, products and sustainable recycling routes of aminolysis of polyethylene terephthalate (PET)—A review. Polym. Bull. 2024, 81, 11563–11579.
- 103.
Demarteau, J.; Olazabal, I.; Jehanno, C.; Sardon, H. Aminolytic upcycling of poly(ethylene terephthalate) wastes using a thermally-stable organocatalyst. Polym. Chem. 2020, 11, 4875–4882.
- 104.
Natarajan, J.; Madras, G.; Chatterjee, K. Poly(ester amide)s from Poly(ethylene terephthalate) Waste for Enhancing Bone Regeneration and Controlled Release. ACS Appl. Mater. Interfaces 2017, 9, 28281–28297.
- 105.
Padhan, R.K.; Gupta, A.A. Preparation and evaluation of waste PET derived polyurethane polymer modified bitumen through in situ polymerization reaction. Constr. Build. Mater. 2018, 158, 337–345.
- 106.
Chan, K.; Zinchenko, A. Conversion of waste bottles’ PET to a hydrogel adsorbent via PET aminolysis. J. Environ. Chem. Eng. 2021, 9, 106129.
- 107.
Chan, K.; Zinchenko, A. Aminolysis-assisted hydrothermal conversion of waste PET plastic to N-doped carbon dots with markedly enhanced fluorescence. J. Environ. Chem. Eng. 2022, 10, 107749.
- 108.
Kratish, Y.; Li, J.; Liu, S.; Gao, Y.; Marks, T.J. Polyethylene Terephthalate Deconstruction Catalyzed by a Carbon-Supported Single-Site Molybdenum-Dioxo Complex. Angew. Chem. Int. Ed. 2020, 59, 19857–19861.
- 109.
Jing, Y.; Wang, Y.; Furukawa, S.; Xia, J.; Sun, C.; Hülsey, M.J.; Wang, H.; Guo, Y.; Liu, X.; Yan, N. Towards the Circular Economy: Converting Aromatic Plastic Waste Back to Arenes over a Ru/Nb2O5 Catalyst. Angew. Chem. Int. Ed. 2021, 60, 5527–5535.
- 110.
Hongkailers, S.; Jing, Y.; Wang, Y.; Hinchiranan, N.; Yan, N. Recovery of Arenes from Polyethylene Terephthalate (PET) over a Co/TiO2 Catalyst. ChemSusChem 2021, 14, 4330–4339.
- 111.
Ye, M.; Li, Y.; Yang, Z.; Yao, C.; Sun, W.; Zhang, X.; Chen, W.; Qian, G.; Duan, X.; Cao, Y.; et al. Ruthenium/TiO2-Catalyzed Hydrogenolysis of Polyethylene Terephthalate: Reaction Pathways Dominated by Coordination Environment. Angew. Chem. Int. Ed. 2023, 62, e202301024.
- 112.
Gao, Z.; Ma, B.; Chen, S.; Tian, J.; Zhao, C. Converting waste PET plastics into automobile fuels and antifreeze components. Nat. Commun. 2022, 13, 3343.
- 113.
Gala, A.; Guerrero, M.; Guirao, B.; Domine, M.E.; Serra, J.M. Characterization and Distillation of Pyrolysis Liquids Coming from Polyolefins Segregated of MSW for Their Use as Automotive Diesel Fuel. Energy Fuels 2020, 34, 5969–5982.
- 114.
Zou, L.; Xu, R.; Wang, H.; Wang, Z.; Sun, Y.; Li, M. Chemical recycling of polyolefins: A closed-loop cycle of waste to olefins. Natl. Sci. Rev. 2023, 10, nwad207.
- 115.
Antelava, A.; Jablonska, N.; Constantinou, A.; Manos, G.; Salaudeen, S.A.; Dutta, A.; Al-Salem, S.M. Energy Potential of Plastic Waste Valorization: A Short Comparative Assessment of Pyrolysis versus Gasification. Energy Fuels 2021, 35, 3558–3571.
- 116.
Wall, L.A.; Straus, S. Pyrolysis of polyolefins. J. Polym Sci. 1960, 44, 313–323.
- 117.
Zhang, Y.; Fu, Z.; Wang, W.; Ji, G.; Zhao, M.; Li, A. Kinetics, Product Evolution, and Mechanism for the Pyrolysis of Typical Plastic Waste. ACS Sustain. Chem. Eng. 2022, 10, 91–103.
- 118.
Selvam, E.; Yu, K.; Ngu, J.; Najmi, S.; Vlachos, D.G. Recycling polyolefin plastic waste at short contact times via rapid joule heating. Nat. Commun. 2024, 15, 5662.
- 119.
Vollmer, I.; Jenks, M.J.F.; Mayorga González, R.; Meirer, F.; Weckhuysen, B.M. Plastic Waste Conversion over a Refinery Waste Catalyst. Angew. Chem. Int. Ed. 2021, 60, 16101–16108.
- 120.
Dong, Z.; Chen, W.; Xu, K.; Liu, Y.; Wu, J.; Zhang, F. Understanding the Structure—Activity Relationships in Catalytic Conversion of Polyolefin Plastics by Zeolite-Based Catalysts: A Critical Review. ACS Catal. 2022, 12, 14882–14901.
- 121.
Akhtar, M.N.; Riaz, S.; Ahmad, N.; Jaseer, E.A. Pioneering Aromatic Generation from Plastic Waste via Catalytic Thermolysis: A Minireview. Energy Fuels 2024, 38, 11363–11390.
- 122.
Chen, W.; Lu, J.; Zhang, C.; Xie, Y.; Wang, Y.; Wang, J.; Zhang, R. Aromatic hydrocarbons production and synergistic effect of plastics and biomass via one-pot catalytic co-hydropyrolysis on HZSM-5. J. Anal. Appl. Pyrolysis 2020, 147, 104800.
- 123.
Xue, Y.; Johnston, P.; Bai, X. Effect of catalyst contact mode and gas atmosphere during catalytic pyrolysis of waste plastics. Energy Convers. Manag. 2017, 142, 441–451.
- 124.
Finelli, V.; Gentilin, V.; Mossotti, G.; Ricchiardi, G.; Piovano, A.; Crocellà, V.; Groppo, E. The role of porosity and acidity in the catalytic upcycling of polyethylene. Catal. Today 2023, 419, 114142.
- 125.
Duan, J.; Chen, W.; Wang, C.; Wang, L.; Liu, Z.; Yi, X.; Fang, W.; Wang, H.; Wei, H.; Xu, S.; et al. Coking-Resistant Polyethylene Upcycling Modulated by Zeolite Micropore Diffusion. J. Am. Chem. Soc. 2022, 144, 14269–14277.
- 126.
Feng, J.; Duan, J.; Hung, C.-T.; Zhang, Z.; Li, K.; Ai, Y.; Yang, C.; Zhao, Y.; Yu, Z.; Zhang, Y.; et al. Micelles Cascade Assembly to Tandem Porous Catalyst for Waste Plastics Upcycling. Angew. Chem. Int. Ed. 2024, 63, e202405252.
- 127.
Kokuryo, S.; Miyake, K.; Uchida, Y.; Tanaka, S.; Miyamoto, M.; Oumi, Y.; Mizusawa, A.; Kubo, T.; Nishiyama, N. Design of Zr- and Al-Doped *BEA-Type Zeolite to Boost LDPE Cracking. ACS Omega 2022, 7, 12971–12977.
- 128.
Zhou, S.; Li, P.; Pan, H.; Zhang, Y. Improvement of Aromatics Selectivity from Catalytic Pyrolysis of Low-Density Polyethylene with Metal-Modified HZSM-5 in a CO2 Atmosphere. Ind. Eng. Chem. Res. 2022, 61, 11407–11416.
- 129.
Fu, L.; Xiong, Q.; Wang, Q.; Cai, L.; Chen, Z.; Zhou, Y. Catalytic Pyrolysis of Waste Polyethylene Using Combined CaO and Ga/ZSM-5 Catalysts for High Value-Added Aromatics Production. ACS Sustain. Chem. Eng. 2022, 10, 9612–9623.
- 130.
Qian, K.; Tian, W.; Yin, L.; Yang, Z.; Tian, F.; Chen, D. Aromatic production from high-density polyethylene over zinc promoted HZSM-5. Appl. Catal. B-Environ. 2023, 339, 123159.
- 131.
Wang, W.; Yao, C.; Ge, X.; Pu, X.; Yuan, J.; Sun, W.; Chen, W.; Feng, X.; Qian, G.; Duan, X.; et al. Catalytic conversion of polyethylene into aromatics with Pt/ZSM-5: insights into reaction pathways and rate-controlling step regulation. J. Mater. Chem. A 2023, 11, 14933–14940.
- 132.
Yuan, H.; Li, C.; Shan, R.; Zhang, J.; Wu, Y.; Chen, Y. Recent developments on the zeolites catalyzed polyolefin plastics pyrolysis. Fuel Process. Technol. 2022, 238, 107531.
- 133.
Kots, P.A.; Vance, B.C.; Vlachos, D.G. Polyolefin plastic waste hydroconversion to fuels, lubricants, and waxes: A comparative study. React. Chem. Eng. 2022, 7, 41–54.
- 134.
Sun, J.; Dong, J.; Gao, L.; Zhao, Y.-Q.; Moon, H.; Scott, S.L. Catalytic Upcycling of Polyolefins. Chem. Rev. 2024, 124, 9457–9579.
- 135.
Lee, W.-T.; Bobbink, F.D.; van Muyden, A.P.; Lin, K.-H.; Corminboeuf, C.; Zamani, R.R.; Dyson, P.J. Catalytic hydrocracking of synthetic polymers into grid-compatible gas streams. Cell Rep. Phys. Sci. 2021, 2, 100332.
- 136.
Liu, S.; Kots, P.A.; Vance, B.C.; Danielson, A.; Vlachos, D.G. Plastic waste to fuels by hydrocracking at mild conditions. Sci. Adv. 2021, 7, eabf8283.
- 137.
Vance, B.C.; Yuliu, Z.; Najmi, S.; Selvam, E.; Granite, J.E.; Yu, K.; Ierapetritou, M.G.; Vlachos, D.G. Unlocking naphtha from polyolefins using Ni-based hydrocracking catalysts. Chem. Eng. J. 2024, 487, 150468.
- 138.
Rorrer, J.E.; Ebrahim, A.M.; Questell-Santiago, Y.; Zhu, J.; Troyano-Valls, C.; Asundi, A.S.; Brenner, A.E.; Bare, S.R.; Tassone, C.J.; Beckham, G.T.; et al. Role of Bifunctional Ru/Acid Catalysts in the Selective Hydrocracking of Polyethylene and Polypropylene Waste to Liquid Hydrocarbons. ACS Catal. 2022, 12, 13969–13979.
- 139.
Li, L.; Luo, H.; Shao, Z.; Zhou, H.; Lu, J.; Chen, J.; Huang, C.; Zhang, S.; Liu, X.; Xia, L.; et al. Converting Plastic Wastes to Naphtha for Closing the Plastic Loop. J. Am. Chem. Soc. 2023, 145, 1847–1854.
- 140.
Vance, B.C.; Kots, P.A.; Wang, C.; Hinton, Z.R.; Quinn, C.M.; Epps, T.H.; Korley, L.T.J.; Vlachos, D.G. Single pot catalyst strategy to branched products via adhesive isomerization and hydrocracking of polyethylene over platinum tungstated zirconia. Appl. Catal. B-Environ. 2021, 299, 120483.
- 141.
Wang, C.; Xie, T.; Kots, P.A.; Vance, B.C.; Yu, K.; Kumar, P.; Fu, J.; Liu, S.; Tsilomelekis, G.; Stach, E.A.; et al. Polyethylene Hydrogenolysis at Mild Conditions over Ruthenium on Tungstated Zirconia. JACS Au 2021, 1, 1422–1434.
- 142.
Chu, M.; Liu, Y.; Lou, X.; Zhang, Q.; Chen, J. Rational Design of Chemical Catalysis for Plastic Recycling. ACS Catal. 2022, 12, 4659–4679.
- 143.
Nakaji, Y.; Tamura, M.; Miyaoka, S.; Kumagai, S.; Tanji, M.; Nakagawa, Y.; Yoshioka, T.; Tomishige, K. Low-temperature catalytic upgrading of waste polyolefinic plastics into liquid fuels and waxes. Appl. Catal. B-Environ. 2021, 285, 119805.
- 144.
Rorrer, J.E.; Beckham, G.T.; Román-Leshkov, Y. Conversion of Polyolefin Waste to Liquid Alkanes with Ru-Based Catalysts under Mild Conditions. JACS Au 2021, 1, 8–12.
- 145.
Rorrer, J.E.; Troyano-Valls, C.; Beckham, G.T.; Román-Leshkov, Y. Hydrogenolysis of Polypropylene and Mixed Polyolefin Plastic Waste over Ru/C to Produce Liquid Alkanes. ACS Sustain. Chem. Eng. 2021, 9, 11661–11666.
- 146.
Chen, L.; Zhu, Y.; Meyer, L.C.; Hale, L.V.; Le, T.T.; Karkamkar, A.; Lercher, J.A.; Gutiérrez, O.Y.; Szanyi, J. Effect of reaction conditions on the hydrogenolysis of polypropylene and polyethylene into gas and liquid alkanes. React. Chem. Eng. 2022, 7, 844–854.
- 147.
Ji, H.; Wang, X.; Wei, X.; Peng, Y.; Zhang, S.; Song, S.; Zhang, H. Boosting Polyethylene Hydrogenolysis Performance of Ru-CeO2 Catalysts by Finely Regulating the Ru Sizes. Small 2023, 19, 2300903.
- 148.
Wang, C.; Yu, K.; Sheludko, B.; Xie, T.; Kots, P.A.; Vance, B.C.; Kumar, P.; Stach, E.A.; Zheng, W.; Vlachos, D.G. A general strategy and a consolidated mechanism for low-methane hydrogenolysis of polyethylene over ruthenium. Appl. Catal. B-Environ. 2022, 319, 121899.
- 149.
Tennakoon, A.; Wu, X.; Paterson, A.L.; Patnaik, S.; Pei, Y.; LaPointe, A.M.; Ammal, S.C.; Hackler, R.A.; Heyden, A.; Slowing, I.I.; et al. Catalytic upcycling of high-density polyethylene via a processive mechanism. Nat. Catal. 2020, 3, 893–901.
- 150.
Tennakoon, A.; Wu, X.; Meirow, M.; Howell, D.; Willmon, J.; Yu, J.; Lamb, J.V.; Delferro, M.; Luijten, E.; Huang, W.; et al. Two Mesoporous Domains Are Better Than One for Catalytic Deconstruction of Polyolefins. J. Am. Chem. Soc. 2023, 145, 17936–17944.
- 151.
Basset, J.M.; Copéret, C.; Lefort, L.; Maunders, B.M.; Maury, O.; Le Roux, E.; Saggio, G.; Soignier, S.; Soulivong, D.; Sunley, G.J.; et al. Primary Products and Mechanistic Considerations in Alkane Metathesis. J. Am. Chem. Soc. 2005, 127, 8604–8605.
- 152.
Jia, X.; Qin, C.; Friedberger, T.; Guan, Z.; Huang, Z. Efficient and selective degradation of polyethylenes into liquid fuels and waxes under mild conditions. Sci. Adv. 2016, 2, e1501591.
- 153.
Ellis, L.D.; Orski, S.V.; Kenlaw, G.A.; Norman, A.G.; Beers, K.L.; Román-Leshkov, Y.; Beckham, G.T. Tandem Heterogeneous Catalysis for Polyethylene Depolymerization via an Olefin-Intermediate Process. ACS Sustain. Chem. Eng. 2021, 9, 623–628.
- 154.
Kim, D.; Hinton, Z.R.; Bai, P.; Korley, L.T.J.; Epps, T.H.; Lobo, R.F. Metathesis, molecular redistribution of alkanes, and the chemical upgrading of low-density polyethylene. Appl. Catal. B-Environ. 2022, 318, 121873.
- 155.
Conk, R.J.; Hanna, S.; Shi, J.X.; Yang, J.; Ciccia, N.R.; Qi, L.; Bloomer, B.J.; Heuvel, S.; Wills, T.; Su, J.; et al. Catalytic deconstruction of waste polyethylene with ethylene to form propylene. Science 2022, 377, 1561–1566.
- 156.
Wang, N.M.; Strong, G.; DaSilva, V.; Gao, L.; Huacuja, R.; Konstantinov, I.A.; Rosen, M.S.; Nett, A.J.; Ewart, S.; Geyer, R.; et al. Chemical Recycling of Polyethylene by Tandem Catalytic Conversion to Propylene. J. Am. Chem. Soc. 2022, 144, 18526–18531.
- 157.
Cui, Y.; Zhang, Y.; Cui, L.; Liu, Y.; Li, B.; Liu, W. Microwave-assisted pyrolysis of polypropylene plastic for liquid oil production. J. Cleaner Prod. 2023, 411, 137303.
- 158.
Wang, S.; Hu, Y.; Lu, S.; Zhang, B.; Li, S.; Chen, X. Highly Efficient Recycling Waste Plastic into Hydrogen and Carbon Nanotubes through a Double Layer Microwave-Assisted Pyrolysis Method. Macromol. Rapid Commun. 2024, 45, 2400270.
- 159.
Jie, X.; Li, W.; Slocombe, D.; Gao, Y.; Banerjee, I.; Gonzalez-Cortes, S.; Yao, B.; AlMegren, H.; Alshihri, S.; Dilworth, J.; et al. Microwave-initiated catalytic deconstruction of plastic waste into hydrogen and high-value carbons. Nat. Catal. 2020, 3, 902–912.
- 160.
Kanbur, U.; Zang, G.; Paterson, A.L.; Chatterjee, P.; Hackler, R.A.; Delferro, M.; Slowing, I.I.; Perras, F.A.; Sun, P.; Sadow, A.D. Catalytic carbon-carbon bond cleavage and carbon-element bond formation give new life for polyolefins as biodegradable surfactants. Chem 2021, 7, 1347–1362.
- 161.
Wang, K.; Jia, R.; Cheng, P.; Shi, L.; Wang, X.; Huang, L. Highly Selective Catalytic Oxi-upcycling of Polyethylene to Aliphatic Dicarboxylic Acid under a Mild Hydrogen-Free Process. Angew. Chem. Int. Ed. 2023, 62, e202301340.
- 162.
Jiao, X.; Zheng, K.; Chen, Q.; Li, X.; Li, Y.; Shao, W.; Xu, J.; Zhu, J.; Pan, Y.; Sun, Y.; et al. Photocatalytic Conversion of Waste Plastics into C2 Fuels under Simulated Natural Environment Conditions. Angew. Chem. Int. Ed. 2020, 59, 15497–15501.
- 163.
Zhao, B.; Hu, Z.; Sun, Y.; Hajiayi, R.; Wang, T.; Jiao, N. Selective Upcycling of Polyolefins into High-Value Nitrogenated Chemicals. J. Am. Chem. Soc. 2024, 146, 28605–28611.
- 164.
Zayoud, A.; Dao Thi, H.; Kusenberg, M.; Eschenbacher, A.; Kresovic, U.; Alderweireldt, N.; Djokic, M.; Van Geem, K.M. Pyrolysis of end-of-life polystyrene in a pilot-scale reactor: Maximizing styrene production. Waste Manag. 2022, 139, 85–95.
- 165.
Ojha, D.K.; Vinu, R. Resource recovery via catalytic fast pyrolysis of polystyrene using zeolites. J. Anal. Appl. Pyrolysis 2015, 113, 349–359.
- 166.
Amjad, U.-E.-S.; Ishaq, M.; Rehman, H.U.; Ahmad, N.; Sherin, L.; Hussain, M.; Mustafa, M. Diesel and gasoline like fuel production with minimum styrene content from catalytic pyrolysis of polystyrene. Environ. Prog. Sustain. Energy 2021, 40, e13493.
- 167.
Audisio, G.; Bertini, F.; Beltrame, P.L.; Carniti, P. Catalytic degradation of polymers: Part III—Degradation of polystyrene. Polym. Degrad. Stab. 1990, 29, 191–200.
- 168.
Marczewski, M.; Kamińska, E.; Marczewska, H.; Godek, M.; Rokicki, G.; Sokołowski, J. Catalytic decomposition of polystyrene. The role of acid and basic active centers. Appl. Catal. B-Environ. 2013, 129, 236–246.
- 169.
Nikitas, N.F.; Skolia, E.; Gkizis, P.L.; Triandafillidi, I.; Kokotos, C.G. Photochemical aerobic upcycling of polystyrene plastics to commodity chemicals using anthraquinone as the photocatalyst. Green Chem. 2023, 25, 4750–4759.
- 170.
Oh, S.; Stache, E.E. Chemical Upcycling of Commercial Polystyrene via Catalyst-Controlled Photooxidation. J. Am. Chem. Soc. 2022, 144, 5745–5749.
- 171.
Li, T.; Vijeta, A.; Casadevall, C.; Gentleman, A.S.; Euser, T.; Reisner, E. Bridging Plastic Recycling and Organic Catalysis: Photocatalytic Deconstruction of Polystyrene via a C-H Oxidation Pathway. ACS Catal. 2022, 12, 8155–8163.
- 172.
Qin, C.; Shen, T.; Tang, C.; Jiao, N. FeCl2-Promoted Cleavage of the Unactivated C-C Bond of Alkylarenes and Polystyrene: Direct Synthesis of Arylamines. Angew. Chem. Int. Ed. 2012, 51, 6971–6975.
- 173.
Qin, Y.; Zhang, T.; Ching, H.Y.V.; Raman, G.S.; Das, S. Integrated strategy for the synthesis of aromatic building blocks via upcycling of real-life plastic wastes. Chem 2022, 8, 2472–2484.
- 174.
Ong, A.; Teo, J.Y.Q.; Feng, Z.; Tan, T.T.Y.; Lim, J.Y.C. Organocatalytic Aerobic Oxidative Degradation of Polystyrene to Aromatic Acids. ACS Sustain. Chem. Eng. 2023, 11, 12514–12522.
- 175.
Oh, S.; Stache, E.E. Mechanistic Insights Enable Divergent Product Selectivity in Catalyst-Controlled Photooxidative Degradation of Polystyrene. ACS Catal. 2023, 13, 10968–10975.
- 176.
Xu, Z.; Sun, D.; Xu, J.; Yang, R.; Russell, J.D.; Liu, G. Progress and Challenges in Polystyrene Recycling and Upcycling. ChemSusChem 2024, 17, e202400474.
- 177.
Xu, Z.; Pan, F.; Sun, M.; Xu, J.; Munyaneza, N.E.; Croft, Z.L.; Cai, G.; Liu, G. Cascade degradation and upcycling of polystyrene waste to high-value chemicals. Proc. Natl. Acad. Sci. USA 2022, 119, e2203346119.
- 178.
Zhang, M.; Buekens, A.; Jiang, X.; Li, X. Dioxins and polyvinylchloride in combustion and fires. Waste Manag. Res. 2015, 33, 630–643.
- 179.
Yuan, J.; Wang, W.; Sun, W.; Yang, Z.; Cao, Y.; Chen, W.; Ge, X.; Qian, G.; Feng, X.; Duan, X.; et al. Poisoning effect of polyvinyl chloride on the catalytic pyrolysis of mixed plastics over zeolites. Sci. China Chem. 2024, 67, 2265–2273.
- 180.
Meng, H.; Liu, J.; Xia, Y.; Hu, B.; Sun, H.; Li, J.; Lu, Q. Migration and transformation mechanism of Cl during polyvinyl chloride pyrolysis: The role of structural defects. Polym. Degrad. Stab. 2024, 224, 110750.
- 181.
Wu, J.; Papanikolaou, K.G.; Cheng, F.; Addison, B.; Cuthbertson, A.A.; Mavrikakis, M.; Huber, G.W. Kinetic Study of Polyvinyl Chloride Pyrolysis with Characterization of Dehydrochlorinated PVC. ACS Sustain. Chem. Eng. 2024, 12, 7402–7413.
- 182.
Gui, B.; Qiao, Y.; Wan, D.; Liu, S.; Han, Z.; Yao, H.; Xu, M. Nascent tar formation during polyvinylchloride (PVC) pyrolysis. Proc. Combust. Inst. 2013, 34, 2321–2329.
- 183.
Čolnik, M.; Kotnik, P.; Knez, Ž.; Škerget, M. Degradation of Polyvinyl Chloride (PVC) Waste with Supercritical Water. Processes 2022, 10, 1940.
- 184.
Svadlenak, S.; Wojcik, S.; Ogunlalu, O.; Vu, M.; Dor, M.; Boudouris, B.W.; Wildenschild, D.; Goulas, K.A. Upcycling of polyvinyl chloride to hydrocarbon waxes via dechlorination and catalytic hydrogenation. Appl. Catal. B-Environ. 2023, 338, 123065.
- 185.
Yang, W.-T.; Xie, Y.-Y.; Xu, S.-M.; Wu, G.; Wang, Y.-Z. Upcycling of polyvinyl chloride to porous carbon for high-performance electromagnetic wave absorption materials. Chem. Eng. J. 2024, 496, 154054.
- 186.
Nshizirungu, T.; Agarwal, A.; Jo, Y.T.; Rana, M.; Shin, D.; Park, J.-H. Chlorinated polyvinyl chloride (CPVC) assisted leaching of lithium and cobalt from spent lithium-ion battery in subcritical water. J. Hazard. Mater. 2020, 393, 122367.
- 187.
Fagnani, D.E.; Kim, D.; Camarero, S.I.; Alfaro, J.F.; McNeil, A.J. Using waste poly(vinyl chloride) to synthesize chloroarenes by plasticizer-mediated electro(de)chlorination. Nat. Chem. 2023, 15, 222–229.
- 188.
Feng, B.; Jing, Y.; Liu, X.; Guo, Y.; Wang, Y. Waste PVC upcycling: Transferring unmanageable Cl species into value-added Cl-containing chemicals. Appl. Catal. B-Environ. 2023, 331, 122671.
- 189.
Jha, R.K.; Neyhouse, B.J.; Young, M.S.; Fagnani, D.E.; McNeil, A.J. Revisiting poly(vinyl chloride) reactivity in the context of chemical recycling. Chem. Sci. 2024, 15, 5802–5813.
- 190.
Kameda, T.; Ono, M.; Grause, G.; Mizoguchi, T.; Yoshioka, T. Chemical modification and dechlorination of polyvinyl chloride by substitution with thiocyanate as a nucleophile. Polym. Eng. Sci. 2010, 50, 69–75.
- 191.
Deliballi, Z.; Demir-Cakan, R.; Kiskan, B.; Yagci, Y. Self-Healable and Recyclable Sulfur Rich Poly(vinyl chloride) by S-S Dynamic Bonding. Macromol. Chem. Phys. 2023, 224, 2100423.
- 192.
Lieberzeit, P.; Bekchanov, D.; Mukhamediev, M. Polyvinyl chloride modifications, properties, and applications: Review. Polym. Adv. Technol. 2022, 33, 1809–1820.
- 193.
Jabrail, F.H.; Awad, H.M.; Matlob, A.A. Dechlorination of landfill poly(vinyl chloride) waste and estimation of recovered chlorine. Polym. Polym. Compos. 2021, 29, 1273–1281.
- 194.
Glas, D.; Hulsbosch, J.; Dubois, P.; Binnemans, K.; De Vos, D.E. End-of-Life Treatment of Poly(Vinyl Chloride) and Chlorinated Polyethylene by Dehydrochlorination in Ionic Liquids. ChemSusChem 2014, 7, 610–617.
- 195.
Oster, K.; Tedstone, A.; Greer, A.J.; Budgen, N.; Garforth, A.; Hardacre, C. Dehydrochlorination of PVC in multi-layered blisterpacks using ionic liquids. Green Chem. 2020, 22, 5132–5142.
- 196.
Park, E.J.; Park, B.C.; Kim, Y.J.; Canlier, A.; Hwang, T.S. Elimination and Substitution Compete During Amination of Poly(vinyl chloride) with Ehtylenediamine: XPS Analysis and Approach of Active Site Index. Macromol. Res. 2018, 26, 913–923.
- 197.
Kameda, T.; Fukuda, Y.; Grause, G.; Yoshioka, T. Effect of the nucleophilicity and solvent on the chemical modification of flexible poly(vinyl chloride) by substitution. Polym. Eng. Sci. 2011, 51, 1108–1115.
- 198.
Ling, M.; Ma, D.; Hu, X.; Liu, Z.; Wang, D.; Feng, Q. Hydrothermal treatment of polyvinyl chloride: Reactors, dechlorination chemistry, application, and challenges. Chemosphere 2023, 316, 137718.
- 199.
Xiu, F.-R.; Yu, X.; Qi, Y. A high-efficiency and low-temperature subcritical water dechlorination strategy of polyvinyl chloride using coal fly ash (CFA) and coal gangue (CG) as enhancers. J. Cleaner Prod. 2020, 260, 121085.
- 200.
Xiu, F.-R.; Yang, R.; Qi, Y.; Zhou, K.; Wang, J.; Shao, W.; Zhou, H.; Zhan, L. High-efficiency promotion on dechlorination of polyvinyl chloride in subcritical water treatment by introducing waste concrete. Process Saf. Environ. Protect. 2023, 174, 1056–1064.
- 201.
Song, J.; Wang, J.; Sima, J.; Zhu, Y.; Du, X.; Williams, P.T.; Huang, Q. Dechlorination of waste polyvinyl chloride (PVC) through non-thermal plasma. Chemosphere 2023, 338, 139535.
- 202.
Zhang, Z.; Wang, J.; Ge, X.; Wang, S.; Li, A.; Li, R.; Shen, J.; Liang, X.; Gan, T.; Han, X.; et al. Mixed Plastics Wastes Upcycling with High-Stability Single-Atom Ru Catalyst. J. Am. Chem. Soc. 2023, 145, 22836–22844.
- 203.
Zheng, K.; Wu, Y.; Hu, Z.; Wang, S.; Jiao, X.; Zhu, J.; Sun, Y.; Xie, Y. Progress and perspective for conversion of plastic wastes into valuable chemicals. Chem. Soc. Rev. 2023, 52, 8–29.
- 204.
Li, M.; Zhang, S. Tandem Chemical Depolymerization and Photoreforming of Waste PET Plastic to High-Value-Added Chemicals. ACS Catal. 2024, 14, 2949–2958.
- 205.
Jerdy, A.C.; Pham, T.; González-Borja, M.Á.; Atallah, P.; Soules, D.; Abbott, R.; Lobban, L.; Crossley, S. Impact of the presence of common polymer additives in thermal and catalytic polyethylene decomposition. Appl. Catal. B-Environ. 2023, 325, 122348.
- 206.
Qiu, Z.; Lin, S.; Chen, Z.; Chen, A.; Zhou, Y.; Cao, X.; Wang, Y.; Lin, B.-L. A reusable, impurity-tolerant and noble metal–free catalyst for hydrocracking of waste polyolefins. Sci. Adv. 2023, 9, eadg5332.
- 207.
Hubáček, J.; Lederer, J.; Kuráň, P.; Koutník, P.; Gholami, Z.; Zbuzek, M.; Bačiak, M. Dechlorination during pyrolysis of plastics: The potential of stepwise pyrolysis in combination with metal sorbents. Fuel Process. Technol. 2022, 231, 107226.
- 208.
Oasmaa, A.; Qureshi, M.S.; Pihkola, H.; Ruohomäki, I.; Raitila, J.; Lindfors, C.; Mannila, J.; Zu Castell-Rudenhausen, M.; Deviatkin, I.; Korpijärvi, K. Fast Pyrolysis of Industrial Waste Residues to Liquid Intermediates—Experimental and Conceptual Study; VTT Technical Research Centre of Finland: Espoo, Finland, 2019; Volume 44, p. VTT-R-512-19.