- 1.
Kawai, E.; Ozawa, A.; Leibowicz, B.D. Role of carbon capture and utilization (CCU) for decarbonization of industrial sector: A case study of Japan. Appl. Energy 2022, 328, 120183.
- 2.
Ravikumar, D.; Zhang, D.; Keoleian, G.; Miller, S.; Sick, V.; Li, V. Carbon dioxide utilization in concrete curing or mixing might not produce a net climate benefit. Nat. Commun. 2021, 12, 855.
- 3.
Gao, W.; Liang, S.; Wang, R.; Jiang, Q.; Zhang, Y.; Zheng, Q.; Xie, B.; Toe, C.Y.; Zhu, X.; Wang, J.; et al. Industrial carbon dioxide capture and utilization: State of the art and future challenges. Chem. Soc. Rev. 2020, 49, 8584–8686.
- 4.
Mac Dowell, N.; Fennell, P.S.; Shah, N.; Maitland, G.C. The role of CO2 capture and utilization in mitigating climate change. Nat. Clim. Chang. 2017, 7, 243–249.
- 5.
Chen, C.; Li, S.; Zhu, X.; Bo, S.; Cheng, K.; He, N.; Qiu, M.; Xie, X.; Song, D.; Liu, Y.; et al. Balancing sub-reaction activity to boost electrocatalytic urea synthesis using a metal-free electrocatalyst. Carbon Energy 2023, e345.
- 6.
Wu, Y.; Jiang, Z.; Lin, Z.; Liang, Y.; Wang, H. Direct electrosynthesis of methylamine from carbon dioxide and nitrate. Nat. Sustain. 2021, 4, 725–730.
- 7.
Li, J.; Zhang, Y.; Kuruvinashetti, K.; Kornienko, N. Construction of C-N bonds from small-molecule precursors through heterogeneous electrocatalysis. Nat. Rev. Chem. 2022, 6, 303–319.
- 8.
Liu, X.; Jiao, Y.; Zheng, Y.; Jaroniec, M.; Qiao, S.-Z. Mechanism of C-N bonds formation in electrocatalytic urea production revealed by ab initio molecular dynamics simulation. Nat. Commun. 2022, 13, 5471.
- 9.
Lv, C.; Zhong, L.; Liu, H.; Fang, Z.; Yan, C.; Chen, M.; Kong, Y.; Lee, C.; Liu, D.; Li, S.; et al. Selective electrocatalytic synthesis of urea with nitrate and carbon dioxide. Nat. Sustain. 2021, 4, 868–876.
- 10.
Yuan, M.; Chen, J.; Bai, Y.; Liu, Z.; Zhang, J.; Zhao, T.; Wang, Q.; Li, S.; He, H.; Zhang, G. Unveiling electrochemical urea synthesis by co-activation of CO2 and N2 with Mott-Schottky heterostructure catalysts. Angew. Chem. Int. Ed. 2021, 60, 10910–10918.
- 11.
Wei, X.; Liu, Y.; Zhu, X.; Bo, S.; Xiao, L.; Chen, C.; Nga, T.T.T.; He, Y.; Qiu, M.; Xie, C.; et al. Dynamic reconstitution between copper single atoms and clusters for electrocatalytic urea synthesis. Adv. Mater. 2023, 35, 2300020.
- 12.
Wang, H.; Jiang, Y.; Li, S.; Gou, F.; Liu, X.; Jiang, Y.; Luo, W.; Shen, W.; He, R.; Li, M. Realizing efficient C-N coupling via electrochemical co-reduction of CO2 and NO3− on AuPd nanoalloy to form urea: Key C-N coupling intermediates. Appl. Catal. B 2022, 318, 121819.
- 13.
Huang, Y.; Wang, Y.; Liu, Y.; Ma, A.; Gui, J.; Zhang, C.; Yu, Y.; Zhang, B. Unveiling the quantification minefield in electrocatalytic urea synthesis. Chem. Eng. J. 2023, 453, 139836.
- 14.
Li, N.; Gao, H.; Liu, Z.; Zhi, Q.; Li, B.; Gong, L.; Chen, B.; Yang, T.; Wang, K.; Jin, P.; Jiang, J. Metalphthalocyanine frameworks grown on TiO2 nanotubes for synergistically and efficiently electrocatalyzing urea production from CO2 and nitrate. Sci. China Chem. 2023, 66, 1417–1424.
- 15.
Mei, Z.; Zhou, Y.; Lv, W.; Tong, S.; Yang, X.; Chen, L.; Zhang, N. Recent progress in electrocatalytic urea synthesis under ambient conditions, ACS Sustain. Chem. Eng. 2022, 10, 12477–12496.
- 16.
Martín, A.J.; Veenstra, F.L.P.; Lüthi, J.; Verel, R.; Pérez-Ramírez, J. Toward reliable and accessible ammonia quantification in the electrocatalytic reduction of nitrogen. Chem Catalysis 2021, 1, 1505–1518.
- 17.
Francis, P.S.; Lewis, S.W.; Lim, K.F. Analytical methodology for the determination of urea: Current practice and future trends. Trends Analyt. Chem. 2002, 21, 389–400.
- 18.
Lv, C.; Lee, C.; Zhong, L.; Liu, H.; Liu, J.; Yang, L.; Yan, C.; Yu, W.; Hng, H.H.; Qi, Z.; et al. A defect engineered electrocatalyst that promotes high-efficiency urea synthesis under ambient conditions. ACS Nano 2022, 16, 8213–8222.
- 19.
Huang, Y.; Yang, R.; Wang, C.; Meng, N.; Shi, Y.; Yu, Y.; Zhang, B. Direct electrosynthesis of urea from carbon dioxide and nitric oxide. ACS Energy Lett. 2022, 7, 284–291.
- 20.
Wei, X.; Wen, X.; Liu, Y.; Chen, C.; Xie, C.; Wang, D.; Qiu, M.; He, N.; Zhou, P.; Chen, W.; et al. Oxygen vacancy-mediated selective C–N coupling toward electrocatalytic urea synthesis. J. Am. Chem. Soc. 2022, 144, 11530–11535.
- 21.
Wang, H.; Jiang, Y.; Li, S.; Gou, F.; Liu, X.; Jiang, Y.; Luo, W.; Shen, W.; He, R.; Li, M. Realizing efficient C-N coupling via electrochemical co-reduction of CO2 and NO3− on AuPd nanoalloy to form urea: Key C-N coupling intermediates. Appl. Catal. B. 2022, 318, 121819.
- 22.
Huang, Y.; Wang, Y.; Liu, Y.; Ma, A.; Gui, J.; Zhang, C.; Yu, Y.; Zhang, B. Unveiling the quantification minefield in electrocatalytic urea synthesis. Chemical Engineering Journal 2023, 453, 139836.
- 23.
Chen, G.-F.; Yuan, Y.; Jiang, H.; Ren, S.-Y.; Ding, L.-X.; Ma, L.; Wu, T.; Lu, J.; Wang, H. Electrochemical reduction of nitrate to ammonia via direct eight-electron transfer using a copper–molecular solid catalyst. Nature Energy 2020, 5, 605–613.
- 24.
Chen, C.; Zhu, X.; Wen, X.; Zhou, Y.; Zhou, L.; Li, H.; Tao, L.; Li, Q.; Du, S.; Liu, T.; et al. Coupling N2 and CO2 in H2O to synthesize urea under ambient conditions. Nat. Chem. 2020, 12, 717–724.
- 25.
Kraft, B.; Tegetmeyer, H.E.; Sharma, R.; Klotz, M.G.; Ferdelman, T.G.; Hettich, R.L.; Geelhoed, J.S.; Strous, M. The environmental controls that govern the end product of bacterial nitrate respiration. Science 2014, 345, 676–679.
- 26.
Chen, F.-Y.; Wu, Z.-Y.; Gupta, S.; Rivera, D.J.; Lambeets, S.V.; Pecaut, S.; Kim, J.Y.T.; Zhu, P.; Finfrock, Y.Z.; Meira, D.M.; et al. Efficient conversion of low-concentration nitrate sources into ammonia on a Ru-dispersed Cu nanowire electrocatalyst. Nat. Nanotechnol. 2022, 17, 759–767.
- 27.
Wang, J.; Chu, L. Biological nitrate removal from water and wastewater by solid-phase denitrification process. Biotechnol. Adv. 2016, 34, 1103–1112.
- 28.
Wang, Y.; Li, H.; Zhou, W.; Zhang, X.; Zhang, B.; Yu, Y. Structurally disordered RuO2 nanosheets with rich oxygen vacancies for enhanced nitrate electroreduction to ammonia. Angew. Chem. Int. Ed. 2022, 61, e202202604.
- 29.
Garcia-Segura, S.; Lanzarini-Lopes, M.; Hristovski, K.; Westerhoff, P. Electrocatalytic reduction of nitrate: Fundamentals to full-scale water treatment applications. Appl. Catal. B 2018, 236, 546–568.
- 30.
Zhang, X.; Wang, Y.; Liu, C.; Yu, Y.; Lu, S.; Zhang, B. Recent advances in non-noble metal electrocatalysts for nitrate reduction. Chem. Eng. J. 2021, 403, 126269.
- 31.
De Luna, P.; Hahn, C.; Higgins, D.; Jaffer, S.A.; Jaramillo, T.F.; Sargent, E.H. What would it take for renewably powered electrosynthesis to displace petrochemical processes? Science 2019, 364, 6438.
- 32.
Shin, H.; Hansen, K.U.; Jiao, F. Techno-economic assessment of low-temperature carbon dioxide electrolysis. Nat. Sustain. 2021, 4, 911–919.
- 33.
Geng, J.; Ji, S.; Jin, M.; Zhang, C.; Xu, M.; Wang, G.; Liang, C.; Zhang, H. Ambient electrosynthesis of urea with nitrate and carbon dioxide over Iron-based dual-sites. Angew. Chem. Int. Ed. 2023, 62, e2022109.
- 34.
Li, N.; Gao, H.; Liu, Z.; Zhi, Q.; Li, B.; Gong, L.; Chen, B.; Yang, T.; Wang, K.; Jin, P.; et al. Metalphthalocyanine frameworks grown on TiO2 nanotubes for synergistically and efficiently electrocatalyzing urea production from CO2 and nitrate. Sci. China Chem. 2023, 66, 1417–1424.
- 35.
Liu, X.; Kumar, P.V.; Chen, Q.; Zhao, L.; Ye, F.; Ma, X.; Liu, D.; Chen, X.; Dai, L.; Hu, C. Carbon nanotubes with fluorine-rich surface as metal-free electrocatalyst for effective synthesis of urea from nitrate and CO2. Appl. Catal. B 2022, 316, 121618.
- 36.
Shin, S.; Sultan, S.; Chen, Z.-X.; Lee, H.; Choi, H.; Wi, T.-U.; Park, C.; Kim, T.; Lee, C.; Jeong, J.; et al. Copper with an atomic-scale spacing for efficient electrocatalytic co-reduction of carbon dioxide and nitrate to urea. Energy Environ. Sci. 2023, 16, 2003–2013.
- 37.
Sun, M.; Wu, G.; Jiang, J.; Yang, Y.; Du, A.; Dai, L.; Mao, X.; Qin, Q. Carbon-anchored molybdenum oxide nanoclusters as efficient catalysts for the electrosynthesis of ammonia and urea. Angew. Chem. Int. Ed. 2023, 62, e2023019.
- 38.
Qin, J.; Liu, N.; Chen, L.; Wu, K.; Zhao, Q.; Liu, B.; Ye, Z. Selective electrochemical urea synthesis from nitrate and CO2 using in situ Ru anchoring onto a three-dimensional copper electrode. ACS Sustain. Chem. Eng. 2022, 10, 15869–15875.
- 39.
Meng, N.; Ma, X.; Wang, C.; Wang, Y.; Yang, R.; Shao, J.; Huang, Y.; Xu, Y.; Zhang, B.; Yu, Y. Oxide-derived core-shell Cu@Zn nanowires for urea electrosynthesis from carbon dioxide and nitrate in water. ACS Nano 2022, 16, 9095–9104.
- 40.
Wei, X.; Liu, Y.; Zhu, X.; Bo, S.; Xiao, L.; Chen, C.; Nga, T.T.T.; He, Y.; Qiu, M.; Xie, C.; et al. Dynamic reconstitution between copper single atoms and clusters for electrocatalytic urea synthesis. Adv. Mater. 2023, 35, e2300020.
- 41.
Zhang, X.; Zhu, X.; Bo, S.; Chen, C.; Qiu, M.; Wei, X.; He, N.; Xie, C.; Chen, W.; Zheng, J.; et al. Identifying and tailoring C-N coupling site for efficient urea synthesis over diatomic Fe-Ni catalyst. Nat. Commun. 2022, 13, 5337.
- 42.
Leverett, J.; Tran-Phu, T.; Yuwono, J.A.; Kumar, P.; Kim, C.; Zhai, Q.; Han, C.; Qu, J.; Cairney, J.; Simonov, A.N.; et al. R.K. Tuning the coordination structure of Cu-N-C single atom catalysts for simultaneous electrochemical reduction of CO2 and NO3– to urea. Adv. Energy Mater. 2022, 12, 2201500.
- 43.
Malapit, C.A.; Prater, M.B.; Cabrera-Pardo, J.R.; Li, M.; Pham, T.D.; McFadden, T.P.; Blank, S.; Minteer, S.D. Advances on the merger of electrochemistry and transition metal catalysis for organic synthesis. Chem. Rev. 2022, 122, 3180–3218.
- 44.
Sun, H.; Yan, Z.; Liu, F.; Xu, W.; Cheng, F.; Chen, J. Self-supported transition-metal-based electrocatalysts for hydrogen and oxygen evolution. Adv. Mater. 2020, 32, 1806326.
- 45.
Luo, Y.; Xie, K.; Ou, P.; Lavallais, C.; Peng, T.; Chen, Z.; Zhang, Z.; Wang, N.; Li, X.-Y.; Grigioni, I.; et al. Selective electrochemical synthesis of urea from nitrate and CO2 via relay catalysis on hybrid catalysts. Nature Catalysis 2023, 6, 939–948.
- 46.
Zhao, Y.; Ding, Y.; Li, W.; Liu, C.; Li, Y.; Zhao, Z.; Shan, Y.; Li, F.; Sun, L.; Li, F. Efficient urea electrosynthesis from carbon dioxide and nitrate via alternating Cu–W bimetallic C–N coupling sites. Nat. Commun. 2023, 14, 4491.
- 47.
Hou, C.-C.; Zou, L.; Sun, L.; Zhang, K.; Liu, Z.; Li, Y.; Li, C.; Zou, R.; Yu, J.; Xu, Q. Single-atom Iron catalysts on overhang-eave carbon cages for high-performance oxygen reduction reaction. Angew. Chem. Int. Ed. 2020, 59, 7384–7389.
- 48.
Hung, S.-F.; Xu, A.; Wang, X.; Li, F.; Hsu, S.-H.; Li, Y.; Wicks, J.; Cervantes, E.G.; Rasouli, A.S.; Li, Y.C.; et al. A metal-supported single-atom catalytic site enables carbon dioxide hydrogenation. Nat. Commun. 2022, 13, 819.
- 49.
Zhu, C.; Fu, S.; Shi, Q.; Du, D.; Lin, Y. Single-atom electrocatalysts. Angew. Chem. Int. Ed. 2017, 56, 13944–13960.
- 50.
Kessler, F.K.; Zheng, Y.; Schwarz, D.; Merschjann, C.; Schnick, W.; Wang, X.; Bojdys, M.J. Functional carbon nitride materials design strategies for electrochemical devices. Nat. Rev. Mater. 2017, 2, 1–17.
- 51.
Sun, L.; Gong, Y.; Li, D.; Pan, C. Biomass-derived porous carbon materials: Synthesis, designing, and applications for supercapacitors. Green Chem. 2022, 24, 3864–3894.
- 52.
Musa, A.B.; Tabish, M.; Kumar, A.; Selvaraj, M.; Khan, M.A.; Al-Shehri, B.M.; Arif, M.; Mushtaq, M.A.; Ibraheem, S.; Slimani, Y.; et al. Microenvironment engineering of Fe-single-atomic-site with nitrogen coordination anchored on carbon nanotubes for boosting oxygen electrocatalysis in alkaline and acidic media. Chem. Eng. J. 2023, 451, 138684.
- 53.
Yan, Y.; Miao, J.; Yang, Z.; Xiao, F.-X.; Yang, H.B.; Liu, B.; Yang, Y. Carbon nanotube catalysts: Recent advances in synthesis, characterization and applications. Chem. Soc. Rev. 2015, 44, 3295–3346.
- 54.
Mao, Y.; Jiang, Y.; Liu, H.; Jiang, Y.; Li, M.; Su, W.; He, R. Ambient electrocatalytic synthesis of urea by co-reduction of NO3− and CO2 over graphene-supported In2O3. Chinese Chemical Letters 2023, 35, 108540.
- 55.
Deng, K.; Zhou, T.; Mao, Q.; Wang, S.; Wang, Z.; Xu, Y.; Li, X.; Wang, H.; Wang, L. Surface engineering of defective and porous Ir metallene with polyallylamine for hydrogen evolution electrocatalysis. Adv. Mater. 2022, 34, 2110680.
- 56.
Li, W.; Wang, D.; Zhang, Y.; Tao, L.; Wang, T.; Zou, Y.; Wang, Y.; Chen, R.; Wang, S. Defect engineering for fuel-cell electrocatalysts. Adv. Mater. 2020, 32, 1907879.
- 57.
Zhu, Y.; Liu, X.; Jin, S.; Chen, H.; Lee, W.; Liu, M.; Chen, Y. Anionic defect engineering of transition metal oxides for oxygen reduction and evolution reactions. J. Mater. Chem. A 2019, 7, 5875–5897.
- 58.
Cao, N.; Quan, Y.; Guan, A.; Yang, C.; Ji, Y.; Zhang, L.; Zheng, G. Oxygen vacancies enhanced cooperative electrocatalytic reduction of carbon dioxide and nitrite ions to urea. J. Colloid Interface Sci. 2020, 577, 109–114.
- 59.
Gao, X.; Bai, X.; Wang, P.; Jiao, Y.; Davey, K.; Zheng, Y.; Qiao, S.-Z. Boosting urea electrooxidation on oxyanion-engineered nickel sites via inhibited water oxidation. Nat. Commun. 2023, 14, 5842.
- 60.
Wei, X.; Wen, X.; Liu, Y.; Chen, C.; Xie, C.; Wang, D.; Qiu, M.; He, N.; Zhou, P.; Chen, W.; et al. Oxygen vacancy-mediated selective C-N coupling toward electrocatalytic urea synthesis. J. Am. Chem. Soc. 2022, 144, 11530–11535.
- 61.
Yu, K.; Wang, H.; Yu, W.; Li, S.; Zhang, X.; Bian, Z. Resource utilization of carbon dioxide and nitrate to produce value-added organonitrogen compounds through an electrochemical approach. Applied Catalysis B: Environmental 2024, 341, 123292.