- 1.
Shang, K.; Morent, R.; Wang, N.; Wang, Y.; Peng, B.; Jiang, N.; Lu, N.; Li, J. Degradation of sulfamethoxazole (SMX) by water falling film DBD Plasma/Persulfate: Reactive species identification and their role in SMX degradation. Chem. Eng. J. 2022, 431, 133916. https://doi.org/10.1016/j.cej.2021.133916.
- 2.
Fan, X.; Zhang, Z.; Li, X.; Liu, Y.; Cao, S.; Geng, W.; Wang, Y.; Zhang, X. Microecology of aerobic denitrification system construction driven by cyclic stress of sulfamethoxazole. Bioresour. Technol. 2024, 402, 130801. https://doi.org/10.1016/j.biortech.2024.130801.
- 3.
Xue, Y.; Kamali, M.; Aminabhavi, T.M.; Appels, L.; Dewil, R. Tailoring the surface functional groups of biochar for enhanced adsorption and degradation of pharmaceutically active compounds. Chem. Eng. J. 2024, 491, 152037. https://doi.org/10.1016/j.cej.2024.152037
- 4.
Wang, C.; Xing, W.; Wu, Y.; Li, Y.; Yan, Y.; Zhu, J. In-situ synthesis of CNT/UiO-66-NH2-based molecularly imprinted nanocomposite membranes for selective recognition and separation of sulfamethoxazole: A synergistic promotion system. Surf. Interfaces 2022, 31, 101986. https://doi.org/10.1016/j.surfin.2022.101986.
- 5.
Xu, J.; Xu, W.; Wang, D.; Sang, G.; Yang, X. Evaluation of enhanced coagulation coupled with magnetic ion exchange (MIEX) in natural organic matter and sulfamethoxazole removals: The role of Al-based coagulant characteristic. Sep. Purif. Technol. 2016, 167, 70–78. https://doi.org/10.1016/j.seppur.2016.05.007.
- 6.
Zhao, C.; Duan, X.; Liu, C.; Huang, H.; Wu, M.; Zhang, X.; Chen, Y. Metabolite Cross-Feeding Promoting NADH Production and Electron Transfer during Efficient SMX Biodegradation by a Denitrifier and S. oneidensis MR-1 in the Presence of Nitrate. Environ. Sci. Technol. 2023, 57, 18306–18316. https://doi.org/10.1021/acs.est.2c09341.
- 7.
Zhu, E.; Yuan, D.; Wang, Z.; Zhang, Q.; Tang, S. Insight into the activation mechanism of peracetic acid by molybdenum carbide for sulfamethoxazole decomposition. Chem. Eng. J. 2023, 474, 145824. https://doi.org/10.1016/j.cej.2023.145824.
- 8.
Peng, Y.; Xie, G.; Shao, P.; Ren, W.; Li, M.; Hu, Y.; Yang, L.; Shi, H.; Luo, X. A comparison of SMX degradation by persulfate activated with different nanocarbons: Kinetics, transformation pathways, and toxicity. Appl. Catal. B Environ. 2022, 310, 121345. https://doi.org/10.1016/j.apcatb.2022.121345.
- 9.
Jia, Y.; Li, H.; Duan, L.; Gao, Q.; Zhang, H.; Li, S.; Li, M. Activation of persulfate by β-PDI/MIL-101(Fe) photocatalyst under visible light toward efficient degradation of sulfamethoxazole. Chem. Eng. J. 2024, 481, 148588. https://doi.org/10.1016/j.cej.2024.148588.
- 10.
Son, A.; Lee, J.; Lee, C.; Cho, K.; Lee, J.; Hong, S.W. Persulfate enhanced photoelectrochemical oxidation of organic pollutants using self-doped TiO2 nanotube arrays: Effect of operating parameters and water matrix. Water Res. 2021, 191, 116803. https://doi.org/10.1016/j.watres.2021.116803.
- 11.
Li, S.; Zhang, G.; Meng, D.; Yang, F. Photoelectrocatalytic activation of sulfate for sulfamethoxazole degradation and simultaneous H2 production by bifunctional N, P co-doped black-blue TiO2 nanotube array electrode. Chem. Eng. J. 2024, 485, 149828. https://doi.org/10.1016/j.cej.2024.149828.
- 12.
Qian, R.F.; Zong, H.X.; Schneider, J.; Zhou, G.D.; Zhao, T.; Li, Y.L.; Yang, J.; Bahnemann, D.W.; Pan, J.H. Charge carrier trapping, recombination and transfer during TiO2 photocatalysis: An overview. Catal. Today 2019, 335, 78–90. https://doi.org/10.1016/j.cattod.2018.10.053.
- 13.
Zhao, Y.; Fang, X.; Chen, L.; Zhu, J.F.; Zheng, Y.H. Improved proton adsorption and charge separation on cadmium sulfides for photocatalytic hydrogen production. Energy Technol. 2022, 10, 2200300. https://doi.org/10.1002/ente.202200300.
- 14.
Lee, G.J.; Wu, J.J. Recent developments in ZnS photocatalysts from synthesis to photocatalytic applications—A review. Powder Technol. 2017, 318, 8–22. https://doi.org/10.1016/j.powtec.2017.05.022.
- 15.
Muthukumar, R.; Balaji, G.; Vadivel, S. The charge transfer pathway of g-C3N4 decorated Au/Ni3(VO4)2 composites for highly efficient photocatalytic hydrogen evolution. Colloids Surf. A 2022, 655, 130183. https://doi.org/10.1016/j.colsurfa.2022.130183.
- 16.
Li, J.W.; Yang, X.Q.; Ma, C.R.; Lei, Y.; Cheng, Z.Y.; Rui, Z.B. Selectively recombining the photoinduced charges in bandgap-broken Ag3PO4/GdCrO3 with a plasmonic Ag bridge for efficient photothermocatalytic VOCs degradation and CO2 reduction. Appl. Catal. B Environ. 2021, 291, 120053. https://doi.org/10.1016/j.apcatb.2021.120053.
- 17.
Chi, Z.; Zhao, J.; Zhang, Y.; Yu, H.; Yu, H. Coral-like WO3/BiVO4 photoanode constructed via morphology and facet engineering for antibiotic wastewater detoxification and hydrogen recovery. Chem. Eng. J. 2022, 428, 131817. https://doi.org/10.1016/j.cej.2021.131817.
- 18.
Thamilselvan, A.; Dang, V.; Doong, R. Ni-Co bimetallic decorated dodecahedral ZIF as an efficient catalyst for photoelectrochemical degradation of sulfamethoxazole coupled with hydrogen production. Sci. Total Environ. 2023, 873, 162208. https://doi.org/10.1016/j.scitotenv.2023.162208.
- 19.
Wu, S.; Hu, Y. A comprehensive review on catalysts for electrocatalytic and photoelectrocatalytic degradation of antibiotics. Chem. Eng. J. 2021, 409, 127739. https://doi.org/10.1016/j.cej.2020.127739.
- 20.
Zheng, Z.; Zhang, Z.; Wong, K.; Lung, C.; Khan, M.; He, J.; Kumar, A.; Lo, I. Facilitating peroxymonosulfate activation for effective antibiotics degradation from drinking water by photoelectrocatalytic system using MoS2 embedded carbon substrate. Chem. Eng. J. 2023, 452, 139591. https://doi.org/10.1016/j.cej.2022.139591.
- 21.
Mirzaei, A.; Eddah, M.; Roualdes, S.; Ma, D.; Chaker, M. Multiple-homojunction gradient nitrogen doped TiO2 for photocatalytic degradation of sulfamethoxazole, degradation mechanism, and toxicity assessment. Chem. Eng. J. 2021, 422, 130507. https://doi.org/10.1016/j.cej.2021.130507.
- 22.
Balakrishnan, A.; Appunni, S.; Chinthala, M.; Vo, D.N. Biopolymer-supported TiO2 as a sustainable photocatalyst for wastewater treatment: a review. Environ. Chem. Lett. 2022, 20, 3071–3098. https://doi.org/10.1007/s10311-022-01443-8.
- 23.
Zhang, S.; Yi, J.; Chen, J.; Yin, Z.; Tang, T.; Wei, W.; Cao, S.; Xu, H. Spatially confined Fe2O3 in hierarchical SiO2@TiO2 hollow sphere exhibiting superior photocatalytic efficiency for degrading antibiotics. Chem. Eng. J. 2020, 380, 122583. https://doi.org/10.1016/j.cej.2019.122583.
- 24.
Jing, Y.; Fan, A.; Guo, J.; Shen, T.; Yuan, S.; Chu, Y. Synthesis of an ultrathin MnO2 nanosheet-coated Bi2WO6 nanosheet as a heterojunction photocatalyst with enhanced photocatalytic activity. Nano-Micro Lett. 2022, 429, 132193. https://doi.org/10.1016/j.cej.2021.132193.
- 25.
Barbosa, M.L.; Costa, M.J.S.; Lima, A.E.B.; Batista, A.M.; Longo, E.; Cavalcante, L.S.; Santos, R.S. Anionic and cationic dyes removal by degradation via photoelectrocatalysis using a WO3/CuWO4 heterojunction film as a photoanode. Nano-Struct. Nano-Objects 2023, 35, 100993. https://doi.org/10.1016/j.nanoso.2023.100993.
- 26.
Gómez, E.; Cestaro, R.; Philippe, L.; Serrà, A. Electrodeposition of nanostructured Bi2MoO6@Bi2MoO6–x homojunction films for the enhanced visible-light-driven photocatalytic degradation of antibiotics. Appl. Catal. B Environ. 2022, 317, 121703. https://doi.org/10.1016/j.apcatb.2022.121703.
- 27.
Liu, Z.; Tian, J.; Yu, C.; Fan, Q.; Liu, X. Solvothermal fabrication of Bi2MoO6 nanocrystals with tunable oxygen vacancies and excellent photocatalytic oxidation performance in quinoline production and antibiotics degradation. Chin. J. Catal. 2022, 43, 472–484. https://doi.org/10.1016/S1872-2067(21)63876-7.
- 28.
Wang, Z.M.; Wang, Z.H.; Li, W.; Lan, Y.Q.; Chen, C. Performance comparison and mechanism investigation of Co3O4-modified different crystallographic MnO2 (α, β, γ, and δ) as an activator of peroxymonosulfate (PMS) for sulfisoxazole degradation. Chem. Eng. J. 2022, 427, 130888. https://doi.org/10.1016/j.cej.2021.130888.
- 29.
Li, H.J.; Chen, Y.; Liu, X.H.; Sun, D.D.; Wang, P.Y.; Wang, G.W.; Zhang, X.X.; Ma, H.C. A type-II α-MnO2@Co3O4 architecture with superior photoelectrocatalytic performance toward water purification. Surf. Interfaces 2023, 39, 102901. https://doi.org/10.1016/j.surfin.2023.102901.
- 30.
Dang, V.; Annadurai, T.; Khedulkar, A.P.; Lin, J.; Adorna, J.; Yu, W.; Pandit, B.; Huynh, T.; Doong, R. S-scheme N-doped carbon dots anchored g-C3N4/Fe2O3 shell/core composite for photoelectrocatalytic trimethoprim degradation and water splitting. Appl. Catal. B Environ. 2023, 320, 121928. https://doi.org/10.1016/j.apcatb.2022.121928.
- 31.
Leng, H.; Li, Z.; Li, W.; Lv, Z.; Guo, J.; You, H.; Jia, Y.; Zhang, G.; Wang, L. Synergy of dual photoelectrodes for simultaneous antibiotic degradation and CO2 reduction by Z-scheme PEC system. Sep. Purif. Technol. 2024, 338, 126504. https://doi.org/10.1016/j.seppur.2024.126504.
- 32.
Liu, J.; Li, J.; Li, Y.; Guo, J.; Xu, S.; Zhang, R.; Shao, M. Photoelectrochemical water splitting coupled with degradation of organic pollutants enhanced by surface and interface engineering of BiVO4 photoanode. Appl. Catal. B Environ. 2020, 278, 119268. https://doi.org/10.1016/j.apcatb.2020.119268.
- 33.
Nguyen, T.; Huang, C.P.; Doong, R.; Chen, C.; Dong, C. Visible-light photodegradation of sulfamethoxazole (SMX) over Ag-P-codoped g-C3N4 (Ag-P@UCN) photocatalyst in water. Chem. Eng. J. 2020, 384, 123383. https://doi.org/10.1016/j.cej.2019.123383.
- 34.
Jia, L.; Li, F.; Yang, C.; Yang, X.; Kou, B.; Xing, Y.; Peng, J.; Ni, G.; Cao, Z.; Zhang, S.; et al. Direct Z-Scheme Heterojunction α-MnO2/BiOI with Oxygen-Rich Vacancies Enhanced Photoelectrocatalytic Degradation of Organic Pollutants under Visible Light. Catalysts 2022, 12, 1596. https://doi.org/10.3390/catal12121596.
- 35.
Guan, C.; Liu, X.M.; Ren, W.N.; Li, X.; Cheng, C.W.; Wang, J. Rational design of metalorganic framework derived hollow NiCo2O4 arrays for flexible supercapacitor and electrocatalysis. Adv. Energy Mater. 2017, 7, 1602391. https://doi.org/10.1002/aenm.201602391.
- 36.
Xiao, F.; Guo, R.; He, X.; Chen, H.; Fang, W.; Li, W.; Wang, H.; Sun, Z.; Tian, P.; Zhao, L. Enhanced photocurrent by MOFs layer on Ti-doped α-Fe2O3 for PEC water oxidation. Int. J. Hydrogen Energy 2021, 46, 7954–7963. https://doi.org/10.1016/j.ijhydene.2020.12.023.
- 37.
Dutta, R.; Shrivastav, R.; Srivastava, M.; Verma, A.; Saxena, S.; Biswas, N.; Satsangi, V.; Dass, S. MOFs in photoelectrochemical water splitting: New horizons and challenges. Int. J. Hydrogen Energy 2022, 47, 5192–5210. https://doi.org/10.1016/j.ijhydene.2021.11.185.
- 38.
Toe, C.; Zhou, S.; Michael, G.; Lu, X.; Ng, Y.; Amal, R. Recent advances and the design criteria of metal sulfide photocathodes and photoanodes for photoelectrocatalysis. J. Mater. Chem. A 2021, 9, 20277–20319. https://doi.org/10.1039/D1TA05407D.
- 39.
Li, X.C.; Wang, J.W.; Xia, J.W.; Fang, Y.X.; Hou, Y.D.; Fu, X.Z.; Shalom, M.; Wang, X.C. One-Pot Synthesis of CoS2 Merged in Polymeric Carbon Nitride Films for Photoelectrochemical Water Splitting. ChemSusChem 2022, 15, e202200330. https://doi.org/10.1002/cssc.202200330.
- 40.
Zhang, L.; Feng, L.; Zhuang, X.; Tang, P.; Chen, G.; Wang, H. A visible-light-driven photoelectrochemical sensor for the sensitive and selective detection of chlorpyrifos via CoS2 quantum dots/CdS nanowires nanocomposites with 0D/1D heterostructure. Chem. Eng. J. 2023, 476, 146770. https://doi.org/10.1016/j.cej.2023.146770.
- 41.
Lee, K.M.; Lee, Y.R.; Kim, I.Y.; Kim, T.W.; Han, S.Y.; Hwang, S.J. Heterolayered Li+–MnO2–[Mn1/3Co1/3Ni1/3] O2 Nanocomposites with Improved Electrode Functionality: Effects of Heat Treatment and Layer Doping on the Electrode Performance of Reassembled Lithium Manganate. J. Phys. Chem. C 2012, 116, 3311–3319. https://doi.org/10.1021/jp210063c.
- 42.
Wang, X.H.; Huang, F.H.; Rong, F.; He, P.; Que, R.H.; Jiang, S.P. Unique MOF-derived hierarchical MnO2 nanotubes@NiCo-LDH/CoS2 nanocage materials as high performance supercapacitors. J. Mater. Chem. A 2019, 7, 12018–12028. https://doi.org/10.1039/C9TA01951K.
- 43.
Li, H.; Lyu, J.; Chen, Y.; Jian, L.; Li, R.; Liu, X.; Dong, X.; Ma, C.; Ma, H. Consecutive metal oxides with self-supported nanoarchitecture achieves highly stable and enhanced photoelectrocatalytic oxidation for water purification. Solid State Electrochem. 2021, 25, 1083–1092. https://doi.org/10.1007/s10008-020-04886-7
- 44.
Wang, H.; Liang, Y.; Liu, L.; Hu, J.; Wu, P.; Cui, W. Enriched photoelectrocatalytic degradation and photoelectric performance of BiOI photoelectrode by coupling rGo. Appl. Catal. B Environ. 2017, 208, 22–34. https://doi.org/10.1016/j.apcatb.2017.02.055.
- 45.
Costa, M.J.S.; Costa, G.S.; Lima, A.E.B.; Luz, G.E., Jr.; Longo, E.; Cavalcante, L.S.; Santos, R.S. Investigation of charge recombination lifetime in γ-WO3 films modified with Ag0 and Pt0 nanoparticles and its influence on photocurrent density. Ionics 2018, 24, 3291–3297. https://doi.org/10.1007/s11581-018-2640-1.
- 46.
Li, J.W.; Wang, X.Y.; Fang, H.L.; Guo, X.M.; Zhou, R.F.; Wang, C.; Li, J.; Ghazzal, M.N.; Rui, Z.B. Unraveling the role of surface and interfacial defects in hydrogen production to construct an all-in-one broken-gap photocatalyst. J. Mater. Chem. A 2023, 11, 25639–25649. https://doi.org/10.1039/D3TA03079B.
- 47.
Guo, F.; Shi, W.L.; Wang, H.B.; Han, M.M.; Huang, H.; Liu, Y.; Kang, Z.H. Facile fabrication of a CoO/g-C3N4 p–n heterojunction with enhanced photocatalytic activity and stability for tetracycline degradation under visible light. Catal. Sci. Technol. 2017, 7, 3325–3331. https://doi.org/10.1039/C7CY00960G.
- 48.
Pinaud, B.A.; Chen, Z.; Abram, D.N.; Jaramilo, T.F. Thin Films of Sodium Birnessite-Type MnO2: Optical Properties, Electronic Band Structure, and Solar Photoelectrochemistry. J. Phys. Chem. C 2011, 115, 11830–11838. https://doi.org/10.1021/jp200015p.
- 49.
Sboui, M.; Niu, W.K.; Li, D.Z.; Lu, G.; Zhou, N.; Zhang, K.; Pan, J.H. Fabrication of electrically conductive TiO2/PANI/PVDF composite membranes for simultaneous photoelectrocatalysis and microfiltration of azo dye from wastewater. Appl. Catal. A-Gen. 2022, 644, 118837. https://doi.org/10.1016/j.apcata.2022.118837.
- 50.
Li, J.W.; Fang, H.L.; Wu, M.Q.; Ma, C.R.; Lian, R.Q.; Jiang, S.P.; Ghazzal, M.N.; Rui, Z.B. Selective Cocatalyst Decoration of Narrow-Bandgap Broken-Gap Heterojunction for Directional Charge Transfer and High Photocatalytic Properties. Small 2023, 19, 2300559. https://doi.org/10.1002/small.202300559.
- 51.
Li, J.W.; Huang, Z.Y.; Wang, C.; Tian, L.; Yang, X.Q.; Zhou, R.F.; Ghazzal, M.N.; Liu, Z.Q. Linkage effect in the bandgap-broken V2O5-GdCrO3 heterojunction by carbon allotropes for boosting photocatalytic H2 production. Appl. Catal. B Environ. 2024, 340, 123181. https://doi.org/10.1016/j.apcatb.2023.123181.
- 52.
Li, J.W.; Xiang, T.C.; Liu, X.; Ghazzl, M.N.; Liu, Z.Q. Structure-function Relationship of P-Block Bismuth for Selective Photocatalytic CO2 Reduction. Angew. Chem. Int. Ed. 2024, 63, e202407287. https://doi.org/10.1002/anie.202407287.
- 53.
Sheng, H.; Janes, A.N.; Ross, R.D.; Ross, R.D.; Kaiman, D.; Huang, J.Z.; Song, B.; Schmidt, J.R.; Jin, S. Stable and Selective Electrosynthesis of Hydrogen Peroxide and the Electro-Fenton Process on CoSe2 Polymorph Catalysts. Energy Environ. Sci. 2020, 13, 4189–4203. https://doi.org/10.1039/D0EE01925A.
- 54.
Wu, Q.; Zou, H.; Mao, X.; He, J.H.; Shi, Y.M.; Chen, S.M.; Yan, X.C.; Wu, L.Y.; Lang, C.G.; Zhang, B.; et al. Unveiling the dynamic active site of defective carbon-based electrocatalysts for hydrogen peroxide production. Nat. Commun. 2023, 14, 6275. https://doi.org/10.1038/s41467-023-41947-7.
- 55.
Ao, X.W.; Liu, W.J. Degradation of sulfamethoxazole by medium pressure UV and oxidants: Peroxymonosulfate, persulfate, and hydrogen peroxide. Chem. Eng. J. 2017, 313, 629–637. https://doi.org/10.1016/j.cej.2016.12.089.
- 56.
Luo, K.; Yang, Q.; Pang, Y.; Wang, D.B.; Li, X.; Lei, M.; Huang, Q. Unveiling the mechanism of biochar-activated hydrogen peroxide on the degradation of ciprofloxacin. Chem. Eng. J. 2019, 374, 520–530. https://doi.org/10.1016/j.cej.2019.05.204.
- 57.
Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–177.
- 58.
Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.
- 59.
Magesh, G.; Arun, A.P.; Poonguzhali, R.V.; Kumar, E.R.; Pradeep, I.; Kumar, R.R.; Abd El-Rehim, A.F. Pure α-MnO2 and Ag decorated α-MnO2 nanorods for photocatalytic activity. J. Mol. Struct. 2025, 1329, 141444. https://doi.org/10.1016/j.molstruc.2025.141444.
- 60.
Ma, H.; Li, H.; Wang, J.; Wang, X.; Wang, G.; Liu, X. Developing Z-scheme Bi2MoO6@ α-MnO2 beaded core-shell heterostructure in photoelectrocatalytic treatment of organic wastewater. J. Environ. Manag. 2024, 3677, 121964. https://doi.org/10.1016/j.jenvman.2024.121964.
- 61.
Wu, Y.; Fang, X.; Shen, X.; Yu, X.; Xia, C.; Xu, L.; Zhang, Y.; Gan, L. Synergetic effect of photocatalytic oxidation plus catalytic oxidation on the performance of coconut shell fiber biochar decorated α-MnO2 under visible light towards BPA degradation. J. Environ. Manag. 2023, 345, 118911. https://doi.org/10.1016/j.jenvman.2023.118911.
- 62.
Ullah, A.; Rahman, L.; Hussain, S.Z.; Abbas, W.; Tawab, A.; Jilani, A.; Bajwa, S.Z.; Khan, W.S.; Riaz, R.; Hussain, I.; et al. Mechanistic insight of dye degradation using TiO2 anchored α-MnO2 nanorods as promising sunlight driven photocatalyst. Mater. Sci. Eng. B 2021, 271, 115257. https://doi.org/10.1016/j.mseb.2021.115257.
- 63.
Yusuf, T.L.; Ogundare, S.A.; Opoku, F.; Mabuba, N. Photoelectrocatalytic degradation of sulfamethoxazole over S–Scheme Co3Se4/BiVO4 heterojunction photoanode: An experimental and density functional theory investigations. Surf. Interfaces 2023, 36, 102534. https://doi.org/10.1016/j.surfin.2022.102534.
- 64.
Mafa, P.J.; Kuvarega, A.T.; Mamba, B.B.; Ntsendwana, B. Photoelectrocatalytic degradation of sulfamethoxazole on g-C3N4/BiOI/EG pn heterojunction photoanode under visible light irradiation. Appl. Surf. Sci. 2019, 483, 506–520. https://doi.org/10.1016/j.apsusc.2019.03.281.