- 1.
Dzulkarnain, E.L.N.; Audu, J.O.; Wan Dagang, W.R.Z.; et al. Microbiomes of biohydrogen production from dark fermentation of industrial wastes: Current trends, advanced tools and future outlook. Bioresour. Bioprocess. 2022, 9, 16. https://doi.org/10.1186/s40643-022-00504-8.
- 2.
Baeyens, J.; Zhang, H.L.; Nie, J.P.; et al. Reviewing the potential of bio-hydrogen production by fermentation. Renew. Sust. Energ. Rev. 2020, 131, 110023. https://doi.org/10.1016/j.rser.2020.110023.
- 3.
Dahiya, S.; Chatterjee, S.; Sarkar, O.; et al. Renewable hydrogen production by dark-fermentation: Current status, challenges and perspectives. Bioresour. Technol. 2021, 321, 124354. https://doi.org/10.1016/j.biortech. 2020.124354.
- 4.
Rahman, S.N.A.; Masdar, M.S.; Rosli, M.I.; et al. Overview biohydrogen technologies and application in fuel cell technology. Renew. Sustain. Energy Rev. 2016, 66, 137–162.
- 5.
Bao, M.D.; Su, H.J.; Tan, T.W. Biohydrogen production by dark fermentation of starch using mixed bacterial cultures of Bacillus sp. and Brevumdimonas sp. Energy Fuels 2012, 26, 5872–5878. https://doi.org/10.1021/ef300666m.
- 6.
Lee, H.S.; Krajmalinik-Brown, R.; Zhang, H.; et al. An electron-flow model can predict complex redox reactions in mixed-culture fermentative BioH2: Microbial ecology evidence. Biotechnol. Bioeng. 2009, 104, 687–697. https://doi.org/10.1002/bit.22442.
- 7.
Li, Y.F.; Ren, N.Q.; Chen, Y.; et al. Ecological mechanism of fermentative hydrogen production by bacteria. Int. J. Hydrogen Energy 2007, 32, 755–760. https://doi.org/10.1016/j.ijhydene.2006.08.004.
- 8.
Hawkes, F.R.; Hussy, I.; Kyazze, G.; et al. Continuous dark fermentative hydrogen production by mesophilic microflora: Principles and progress. Int. J. Hydrogen Energy 2007, 32, 172–184. https://doi.org/10.1016/j.ijhydene.2006.08.014.
- 9.
Levin, D.B.; Islam, R.; Cicek, N.; et al. Hydrogen production by Clostridium thermocellum 27405 from cellulosic biomass substrates. Int. J. Hydrogen Energy 2006, 31, 1496–1503. https://doi.org/10.1016/j.ijhydene.2006.06.015.
- 10.
Yokoi, H.; Tokushige, T.; Hirose, J.; et al. Hydrogen production by immobilized cells of aciduric Enterobacter aerogenes strain HO-39. J. Ferment. Bioeng. 1997, 83, 481–484. https://doi.org/10.1016/S0922-338X(97)83006-1.
- 11.
Du, J.; Zhou, J.; Xue, J.; et al. Metabolomic profiling elucidates community dynamics of the Ketogulonicigenium vulgare-Bacillus megaterium consortium. Metabolomics 2012, 8, 960–973. https://doi.org/10.1007/s11306-011-0392-2.
- 12.
Wang, X.Y.; Jin, B. Process optimization of biological hydrogen production from molasses by a newly isolated Clostridium butyricum W5. J. Biosci. Bioeng. 2009, 107, 138–144. https://doi.org/10.1016/j.jbiosc.2008.10.012.
- 13.
Azman, N.F.; Abdeshahian, P.; Kadier, A.; et al. Utilization of palm kernel cake as a renewable feedstock for fermentative hydrogen production. Renew. Energy 2016, 93, 700–708. https://doi.org/10.1016/j.renene.2016. 03.046.
- 14.
Li, Q.; Liu, C.Z. Co-culture of Clostridium thermocellum and Clostridium thermosaccharolyticum for enhancing hydrogen production via thermophilic fermentation of cornstalk waste. Int. J. Hydrogen Energy 2012, 37, 10648–10654. https://doi.org/10.1016/j.ijhydene.2012.04.115.
- 15.
Ma, H.X.; Su, H.J. Effect of temperature on the fermentation of starch by two high efficient H2 producers. Renew. Energy 2019, 138, 964–970. https://doi.org/10.1016/j.renene.2019.01.126.
- 16.
Ma, H.X.; Liu, Y.; Li, Z.P. The synergistic hydrogen production of bicellular fermentation systems and fluid dynamics simulation in reactor under stirring. Bioresour. Technol. Rep. 2023, 22, 101473. https://doi.org/10.1016/j.biteb.2023.101473.
- 17.
Bao, M.D.; Su, H.J.; Tan, T.W. Dark fermentative bio-hydrogen production: Effects of substrate pre-treatment and addition of metal ions or L-cysteine. Fuel 2013, 112, 38–44. https://doi.org/10.1016/j.fuel.2013.04.063.
- 18.
Wang, S.J.; Ma, Z.H.; Zhang, T.; et al. Optimization and modeling of biohydrogen production by mixed bacterial cultures from raw cassava starch. Front. Chem. Sci. Eng. 2017, 11, 100–106. https://doi.org/10.1007/s11705-017-1617-3.
- 19.
Miller, G.L. Use of dinitrosalicylic acid reagent for determination of reducing sugars. Anal. Chem. 1959, 31, 426–428. https://doi.org/10.1021/ac60147a030.
- 20.
Abdeshahian, P.; Al-Shorgani, N.K.N.; Salih, N.K.M.; et al. The production of biohydrogen by a novel strain Clostridium sp. YM1 in dark fermentation process. Int. J. Hydrogen Energy 2014, 39, 12524–12531. https://doi.org/10.1016/j.ijhydene.2014.05.081.
- 21.
Wang, S.J.; Tang, H.Z.; Peng, F.; et al. Metabolite-based mutualism enhances hydrogen production in a two-species microbial consortium. Commun. Biol. 2019, 2, 82. https://doi.org/10.1038/s42003-019-0331-8.
- 22.
Liu, I.C.; Whang, L.M.; Ren, W.J.; et al. The effect of pH on the production of biohydrogen by clostridia: Thermodynamic and metabolic considerations. Int. J. Hydrogen Energy 2011, 36, 439–449. https://doi.org/10.1016/j.ijhydene.2010.10.045.
- 23.
Dada, O.; Yusoff, W.M.W.; Kalil, M.S. Biohydrogen production from ricebran using Clostridium saccharoperbutylacetonicum N1-4. Int. J. Hydrogen Energy 2013, 38, 15063–15073. https://doi.org/10.1016/j.ijhydene.2013.07.048.
- 24.
Li, W.M.; Cheng, C.; Ren, N.Q.; et al. Different feedback effects of aqueous end products on hydrogen production of Clostridium tyrobutyricum. Int. J. Hydrogen Energy 2022, 47, 35156–35170. https://doi.org/10.1016/j.ijhydene.2022.08.120.
- 25.
Vassilev, I.; Gießelmann, G.; Schwechheimer, S.K.; et al. Anodic electro-fermentation: Anaerobic production of L-Lysine by recombinant Corynebacterium glutamicum. Biotechnol. Bioeng. 2018, 115, 1499–1508. https://doi.org/10.1002/bit.26562.
- 26.
Rasdi, Z.; Mumtaz, T.; Rahman, N.A.A.; et al. Kinetic analysis of biohydrogen production from anaerobically treated POME in bioreactor under optimized condition. Int. J. Hydrogen Energy 2012, 37, 17724–17730. https://doi.org/10.1016/j.ijhydene.2012.08.095.
- 27.
Khanal, S.K.; Chen, W.H.; Li, L.; et al. Biological hydrogen production: Effects of pH and intermediate products. Int. J. Hydrogen Energy 2004, 29, 1123–1131. https://doi.org/10.1016/j.ijhydene.2003.11.002.
- 28.
Chin, H.L.; Chen, Z.S.; Chou, C.P. Fedbatch operation using Clostridium acetobutylicum suspension culture as biocatalyst for enhancing hydrogen production. Biotechnol. Prog. 2003, 19, 383–388. https://doi.org/10.1021/bp0200604.
- 29.
Ergal, İ.; Fuchs, W.; Hasibar, B.; et al. The physiology and biotechnology of dark fermentative biohydrogen production. Biotechnol. Adv. 2018, 36, 2165–2186. https://doi.org/10.1016/j.biotechadv.2018.10.005.
- 30.
Verhaart, M.R.A.; Bielen, A.A.M.; Van der Oost, J.; et al. Hydrogen production by hyperthermophilic and extremely thermophilic bacteria and archaea: Mechanisms for reductant disposal. Environ. Technol. 2010, 31, 993–1003. https://doi.org/10.1080/09593331003710244.
- 31.
Chittibabu, G.; Nath, K.; Das, D. Feasibility studies on the fermentative hydrogen production by recombinant Escherichia coli BL-21. Process Biochem. 2006, 41, 682–688. https://doi.org/10.1016/j.procbio.2005.08.020.
- 32.
Willquist, K.; van Niel, E.W.J. Lactate formation in Caldicellulosiruptor saccharolyticus is regulated by the energy carriers pyrophosphate and ATP. Metab. Eng. 2010, 12, 282–290. https://doi.org/10.1016/j.ymben.2010.01.001.
- 33.
Antonopoulou, G.; Gavala, H.N.; Skiadas, I.V.; et al. Influence of pH on fermentative hydrogen production from sweet sorghum extract. Int. J. Hydrogen Energy 2010, 35, 1921–1928. https://doi.org/10.1016/j.ijhydene.2009.12.175.
- 34.
Hallenbeck, P.C. Fermentative hydrogen production: Principles, progress, and prognosis. Int. J. Hydrogen Energy 2009, 34, 7379–7389. https://doi.org/10.1016/j.ijhydene.2008.12.080.
- 35.
Ciranna, A.; Ferrari, R.; Santala, V.; et al. Inhibitory effects of substrate and soluble end products on biohydrogen production of the alkalithermophile Caloramator celer: Kinetic, metabolic and transcription analyses. Int. J. Hydrogen Energy 2014, 39, 6391–6401. https://doi.org/10.1016/j.ijhydene.2014.02.047.
- 36.
Nicolaou, S.A.; Gaida, S.M.; Papoutsakis, E.T. A comparative view of metabolite and substrate stress and tolerance in microbial bioprocessing: From biofuels and chemicals, to biocatalysis and bioremediation. Metab. Eng. 2010, 12, 307–331. https://doi.org/10.1016/j.ymben. 2010.03.004.
- 37.
Li, W.M.; He, L.; Cheng, C.; et al. Effects of biochar on ethanol-type and butyrate-type fermentative hydrogen productions. Bioresour. Technol. 2020, 306, 123088. https://doi.org/10.1016/j.biortech.2020.123088.
- 38.
Li, S.; Kang, Q.; Baeyens, J.; et al. Hydrogen production: State of technology. IOP Conf. Ser. Earth Environ. Sci. 2020, 544, 012011. https://doi.org/10.1088/1755-1315/544/1/012011.
- 39.
Zhao, M.X.; Ruan, W.Q. Improving hydrogen generation from kitchen wastes by microbial acetate tolerance response. Energ. Convers. Manag. 2014, 77, 419–423. https://doi.org/10.1016/j.enconman.2013.10.007.
- 40.
Cotter, P.D.; Hill, C. Surviving the acid test: Responses of gram-positive bacteria to low pH. Microbiol. Mol. Biol. Rev. 2003, 67, 429–453. https://doi.org/10.1128/MMBR.67.3.429-453.2003.
- 41.
Junghare, M.; Subudhi, S.; Lal, B. Improvement of hydrogen production under decreased partial pressure by newly isolated alkaline tolerant anaerobe, Clostridium butyricum TM-9A: Optimization of process parameters. Int. J. Hydrogen Energy 2012, 37, 3160–3168. https://doi.org/10.1016/j.ijhydene.2011.11.043.
- 42.
Keskin, T.; Abubackar, H.N.; Yazgin, O.; et al. Effect of percolation frequency on biohydrogen production from fruit and vegetable wastes by dry fermentation. Int. J. Hydrogen Energy 2019, 44, 18767–18775. https://doi.org/10.1016/j.ijhydene.2018.12.099.
- 43.
Vardar-Schara, G.; Maeda, T.; Wood, T.K. Metabolically engineered bacteria for producing hydrogen via fermentation. Microb. Biotechnol. 2008, 1, 107–125. https://doi.org/10.1111/j.1751-7915.2007.00009.x.
- 44.
Wang, S.J.; Zhang, T.; Su, H.J. Enhanced hydrogen production from corn starch wastewater as nitrogen source by mixed cultures. Renew. Energy 2016, 96, 1135–1141. https://doi.org/10.1016/j.renene.2015.11.072.
- 45.
Elsharnouby, O.; Hafez, H.; Nakhla, G.; et al. A critical literature review on biohydrogen production by pure cultures. Int. J. Hydrogen Energy 2013, 38, 4945–4966. https://doi.org/10.1016/j.ijhydene.2013.02.032.