2508001187
  • Open Access
  • Review

Recent Developments in Photocathodes for Solar-Driven Hydrogen Peroxide Production

  • Ying Zhang  1,   
  • Wangjun Tang  1,   
  • Yuchen Cong 1,   
  • Lei Wang 2, *

Received: 08 Jul 2025 | Revised: 21 Aug 2025 | Accepted: 27 Aug 2025 | Published: 29 Aug 2025

Abstract

Solar-driven photoelectrochemical (PEC) oxygen reduction reaction (ORR) using a photocathode that relies only on oxygen and water offers a promising on-site approach for hydrogen peroxide (H2O2) production. This method provides a sustainable and low-carbon alternative to the energy-intensive anthraquinone process. Both inorganic semiconductors and organic conjugated polymers have been developed as effective photocathode materials for PEC ORR, each with distinct advantages. Inorganic semiconductors generally generate free charge carriers with high mobilities, which leads to improved photocurrent densities. In contrast, organic conjugated polymers exhibit tunable band structures and allow molecular-level incorporation of catalytic sites that favor selective two-electron ORR. This review presents a comprehensive overview of recent advancements in photocathode development for H2O2 generation, focusing on both inorganic semiconductors and organic conjugated polymer-based materials. We emphasize key design strategies, including band structure engineering and active site modulation, to improve charge transfer efficiency and enhance product selectivity. Finally, we discuss the major challenges that currently limit photocathode development and outline emerging opportunities for future innovation. By providing these perspectives, this review seeks to guide the rational design of sustainable H2O2 production systems and contribute to the broader advancement of efficient solar-to-chemical energy conversion.

References 

  • 1.
    Wang, Y.; Waterhouse, G.I.N.; Shang, L.; Zhang, T. Electrocatalytic Oxygen Reduction to Hydrogen Peroxide: From Homogeneous to Heterogeneous Electrocatalysis. Adv. Energy Mater. 2021, 11, 2003323.
  • 2.
    Zhang, Y.; Xu, H. Backbone Engineering and Side Group Manipulation in Covalent Organic Frameworks for Overall Solar-Driven Hydrogen Peroxide Production. Giant 2024, 20, 100335.
  • 3.
    Zhang, F.; Lv, X.; Wang, H.; Cai, J.; Wang, H.; Bi, S.; Wei, R.; Yang, C.; Zheng, G.; Han, Q. p-π Conjugated Covalent Organic Frameworks Expedite Molecular Triplet Excitons for H2O2 Production Coupled with Biomass Upgrading. Adv. Mater. 2025, 37, 2502220.
  • 4.
    Chang, J.; Li, Q.; Shi, J.; Zhang, M.; Zhang, L.; Li, S.; Chen, Y.; Li, S.; Lan, Y. Oxidation-Reduction Molecular Junction Covalent Organic Frameworks for Full Reaction Photosynthesis of H2O2. Angew. Chem. Int. Ed. 2023, 62, e202218868.
  • 5.
    Liu, Y.; Li, L.; Sang, Z.; Tao, H.; Ye, N.; Sun, C.; Sun, Z.; Luo, M.; Guo, S. Enhanced Hydrogen Peroxide Photosynthesis in Covalent Organic Frameworks Through Induced Asymmetric Electron Distribution. Nat. Synth. 2025, 4, 134–141.
  • 6.
    Sun, Y.; Han, L.; Strasser, P. A Comparative Perspective of Electrochemical and Photochemical Approaches for Catalytic H2O2 Production. Chem. Soc. Rev. 2020, 49, 6605–6631.
  • 7.
    Yang, C.; Xiang, Y.; Wang, W.; Cheng, B.; Yang, K.; Yu, J.; Cao, S. Enhancing Photocatalytic H2O2 Production of Donor−Acceptor Polymers by Modulation of Polymerization Modes. Appl. Catal. B Environ. Energy 2025, 365, 124856.
  • 8.
    Cheng, J.; Wan, S.; Cao, S. Promoting Solar-Driven Hydrogen Peroxide Production Over Thiazole-Based Conjugated Polymers via Generating and Converting Singlet Oxygen. Angew. Chem. Int. Ed. 2023, 62, e202310476.
  • 9.
    Freese, T.; Meijer, J.T.; Feringa, B.L.; Beil, S.B. An Organic Perspective on Photocatalytic Production of Hydrogen Peroxide. Nat. Catal. 2023, 6, 553–558.
  • 10.
    Hou, H.; Zeng, X.; Zhang, X. Production of Hydrogen Peroxide by Photocatalytic Processes. Angew. Chem. Int. Ed. 2020, 59, 17356−17376.
  • 11.
    Bu, Y.; Wang, Y.; Han, G.; Zhao, Y.; Ge, X.; Li, F.; Zhang, Z.; Zhong, Q.; Baek, J.-B. Carbon-Based Electrocatalysts for Efficient Hydrogen Peroxide Production. Adv. Mater. 2021, 33, 2103266.
  • 12.
    Yu, F.; Zhou, Y.; Tan, H.; Li, Y.; Kang, Z. Versatile Photoelectrocatalysis Strategy Raising Up the Green Production of Hydrogen Peroxide. Adv. Energy Mater. 2023, 13, 2300119.
  • 13.
    Ko, M.; Lim, J.S.; J.-Jang, W.; Joo, S.H. Bias-Free Photoelectrochemical H2O2 Production and its In-Situ Applications. ACS. Est. Engg. 2023, 3, 910–922.
  • 14.
    Wu, H.; Tan, H.L.; Toe, C.Y.; Scott, J.; Wang, L.; Amal, R.; Ng, Y.H. Photocatalytic and Photoelectrochemical Systems: Similarities and Differences. Adv. Mater. 2020, 32, 1904717.
  • 15.
    Wang, L.; Guo, F.; Ren, S.; Gao, R.T.; Wu, L. Unbiased Photoelectrochemical H2O2 Coupled to H2 Production via Dual Sb2S3-Based Photoelectrodes with Ultralow Onset Potential. Angew. Chem. Int. Ed. 2024, 63, e202411305.
  • 16.
    An, Y.; Lin, C.; Dong, C.; Wang, R.; Hao, J.; Miao, J.; Fan, X.; Min, Y.; Zhang, K. Scalable Photoelectrochemical Cell for Overall Solar Water Splitting into H2 and H2O2. ACS. Energy Lett. 2024, 9, 1415–1422.
  • 17.
    Lu, H.; Li, X.; Monny, S.A.; Wang, Z.; Wang, L. Photoelectrocatalytic Hydrogen Peroxide Production Based on Transition-Metal-Oxide Semiconductors. Chin. J. Catal. 2022, 43, 1204–1215.
  • 18.
    Oka, K.; Winther-Jensen, B.; Nishide, H. Organic π-Conjugated Polymers as Photocathode Materials for Visible-Light-Enhanced Hydrogen and Hydrogen Peroxide Production from Water. Adv. Energy Mater. 2021, 11, 2003724.
  • 19.
    Mehrotra, R.; Oh, D.; Jang, J.W. Unassisted Selective Solar Hydrogen Peroxide Production by an Oxidised Buckypaper-Integrated Perovskite Photocathode. Nat. Commun. 2021, 12, 6644.
  • 20.
    Ge, Z.-Q.; Chu, C.; Wang, C.; Li, R.; Li, J.; Jiang, S.P. Recent Progress on Layered Double Hydroxides for Electrocatalytic Small Molecules Oxidation to Synthesize High-Value Chemicals and Degrade Pollutants. Sci. Energy Environ. 2024, 1, 10.
  • 21.
    Seo, D.; Somjit, V.; Wi, D.H.; Galli, G.; Choi, K.-S. p-Type BiVO4 for Solar O2 Reduction to H2O2. J. Am. Chem. Soc. 2025, 147, 3261−3273.
  • 22.
    Seo, D.; Grieder, A.; Radmilovic, A.; Alamudun, S.F.; Yun, X.; Ping, Y.; Choi, K.-S. Atomic Doping to Enhance The p-Type Behavior of BiFeO3 Photoelectrodes for Solar H2O2 Production. J. Mater. Chem. A 2024, 12, 20437.
  • 23.
    Moon, S.; Park, Y.S.; Lee, H.; Jeong, W.; Kwon, E.; Lee, J.; Yun, J.; Lee, S.; Kim, J.H.; Yu, S.; et al. Unassisted Photoelectrochemical Hydrogen Peroxide Production Over MoOx-Supported Mo on A Cu3BiS3 Photocathode. Energy Environ. Sci. 2024, 17, 5588.
  • 24.
    Shi, S.; Song, Y.; Jiao, Y.; Jin, D.; Li, Z.; Xie, H.; Gao, L.; Sun, L.; Hou, J. BiVO4-Based Heterojunction Photocathode for High-Performance Photoelectrochemical Hydrogen Peroxide Production. Nano Lett. 2024, 24, 6051.
  • 25.
    Zhang, Z.; Chen, X.; Hao, R.; Feng, Q.; Xie, E. Van Der Waals Heterojunction Modulated Charge Collection for H2O2 Production Photocathode. Adv. Funct. Mater. 2023, 33, 2303391.
  • 26.
    Jakesova, M.; Apaydin, D.H.; Sytnyk, M.; Oppelt, K.; Heiss, W.; Sariciftci, N.S.; Glowacki, E.D. Hydrogen-Bonded Organic Semiconductors as Stable Photoelectrocatalysts for Efficient Hydrogen Peroxide Photosynthesis. Adv. Funct. Mater. 2016, 26, 5248–5254.
  • 27.
    Fan, W.; Zhang, B.; Wang, X.; Ma, W.; Li, D.; Wang, Z.; Michel, D.; Shi, J.; Liao, S.; Li, C. Efficient Hydrogen Peroxide Synthesis by Metal-Free Polyterthiophene via Photoelectrocatalytic Dioxygen Reduction. Energy Environ. Sci. 2020, 13, 238–245.
  • 28.
    Zhang, B.; Wang, S.; Fan, W.; Ma, W.; Liang, Z.; Shi, J.; Liao, S.; Li, C. Photoassisted Oxygen Reduction Reaction in H2–O2 Fuel Cells. Angew. Chem. Int. Ed. 2016, 55, 14748–14751.
  • 29.
    Oka, K.; Nishide, H.; Winther-Jensen, B. Copolymer of Phenylene and Thiophene Toward a Visible-Light-Driven Photocatalytic Oxygen Reduction to Hydrogen Peroxide. Adv. Sci. 2021, 8, 2003077.
  • 30.
    Ganczarczyk, R.; Rybakiewicz-Sekita, R.; Gryszel, M.; Drapała, J.; Zagorska, M.; Glowacki, E.D. Polymeric Benzothiadiazole, Benzooxadiazole, and Benzoselenadiazole Photocathodes for Photocatalytic Oxygen Reduction to Hydrogen Peroxide. Adv. Mater. Interfaces 2023, 10, 2300270.
  • 31.
    Braun, H.; Mitoraj, D.; Kuncewicz, J.; Hellmann, A.; Elnagar, M.M.; Bansmann, J.; Kranz, C.; Jacob, T.; Macyk, W.; Beranek, R. Polymeric carbon nitride-based photocathodes for visible light-driven selective reduction of oxygen to hydrogen peroxide. Appl. Catal. A Gen. 2023, 660, 119173.
  • 32.
    Oka, K.; Kamimori, K.; Winther-Jensen, B.; Nishide, H. Poly(3-alkylthiophene) Films as Solvent-Processable Photoelectrocatalysts for Efficient Oxygen Reduction to Hydrogen Peroxide. Adv. Energy Sustain. Res. 2021, 2, 2100103.
  • 33.
    Gryszel, M.; Markov, A.; Vagin, M.; Glowacki, E.D. Organic Heterojunction Photocathodes for Optimized Photoelectrochemical Hydrogen Peroxide Production. J. Mater. Chem. A 2018, 6, 24709–24716.
  • 34.
    Wang, L.; Wu, Y.; Mao, S.; Zhou, J.; Zhang, Y.; Zheng, X.; Wu, X.; Xu, H. Bias-Free Photoelectrochemical System for Scalable Solar-Driven Hydrogen Peroxide Production via Molecularly Engineered Conjugated Polycarbazole Frameworks. Adv. Mater. 2025, e08326. https://doi.org/10.1002/adma.202508326.
  • 35.
    Cheng, H.; Cheng, J.; Wang, L.; Xu, H. Reaction Pathways Toward Sustainable Photosynthesis of Hydrogen Peroxide by Polymer Photocatalysts. Chem. Mater. 2022, 34, 4259–4273.
  • 36.
    Wu, B.; Wang, T.; Liu, B.; Li, H.; Wang, Y.; Wang, S.; Zhang, L.; Jiang, S.; Pei, C.; Gong, J. Stable Solar Water Splitting with Wettable Organic-Layer-Protected Silicon Photocathodes. Nat. Commun. 2022, 13, 4460.
  • 37.
    Kenney, M.J.; Gong, M.; Li, Y.; Wu, J.Z.; Feng, J.; Lanza, M.; Dai, H. High-Performance Silicon Photoanodes Passivated with Ultrathin Nickel Films for Water Oxidation. Science 2013, 342, 836.
  • 38.
    Chung, C.C.; Yeh, H.; Wu, P.H.; Lin, C.C.; Li, C.S.; Yeh, T.T.; Chou, Y.; Wei, C.Y.; Wen, C.Y.; Chou, Y.C.; et al. Atomic-Layer Controlled Interfacial Band Engineering at Two-Dimensional Layered PtSe2/Si Heterojunctions for Efficient Photoelectrochemical Hydrogen Production. ACS. Nano 2021, 15, 4627–4635.
  • 39.
    Vilanova, A.; Dias, P.; Lopes, T.; Mendes, A. The Route for Commercial Photoelectrochemical Water Splitting: A Review of Large-Area Devices and Key Upscaling Challenges. Chem. Soc. Rev. 2024, 53, 2388–2434.
  • 40.
    Corby, S.; Rao, R.R.; Steier, L.; Durrant, J.R. The Kinetics of Metal Oxide Photoanodes from Charge Generation to Catalysis. Nat. Rev. Mater. 2021, 6, 1136–1155.
  • 41.
    Wang, Z.; Wu, L.; Cheng, J.; Chen, H.; Luo, J. Gradient Surface Gallium-Doped Hematite Photoelectrode for Enhanced Photoelectrochemical Water Oxidation. Nano Lett. 2025, 25, 707–714.
  • 42.
    Yan, Z.; Sun, H.; Chen, X.; Liu, H.; Zhao, Y.; Li, H.; Xie, W.; Cheng, F.; Chen, J. Anion Insertion Enhanced Electrodeposition of Robust Metal Hydroxide/Oxide Electrodes for Oxygen Evolution. Nat. Commun. 2018, 9, 2373.
  • 43.
    Xu, J.; Che, H.; Tang, C.; Liu, B.; Ao, Y. Tandem Fields Facilitating Directional Carrier Migration in Van Der Waals Heterojunction for Efficient Overall Piezo-Synthesis of H2O2. Adv. Mater. 2024, 36, 2404539.
  • 44.
    Tan, B.; Sun, M.; Liu, B.; Jiang, X.; Feng, Q.; Xie, E.; Xi, P.; Zhang, Z. Boosting Photocarrier Collection in Semiconductors by Synergizing Photothermoelectric and Photoelectric. Nano Energy 2023, 107, 108138.
  • 45.
    Thangamuthu, M.; Ruan, Q.; Ohemeng, P.O.; Luo, B.; Jing, D.; Godin, R.; Tang, J. Polymer Photoelectrodes for Solar Fuel Production: Progress and Challenges. Chem. Rev. 2022, 122, 11778–11829.
  • 46.
    Wang, L.; Xun, H. Two-Dimensional Conjugated Polymer Frameworks for Solar Fuel Generation from Water. Prog. Polym. Sci. 2023, 145, 101734.
  • 47.
    Cheng, J.; Wu, Y.; Zhang, W.; Zhang, J.; Wang, L.; Zhou, M.; Fan, F.; Wu, X.; Xu, H. Fully Conjugated 2d Sp2 Carbon-Linked Covalent Organic Frameworks for Photocatalytic Overall Water Splitting. Adv. Mater. 2024, 36, 2305313.
  • 48.
    Chen, L.; Wang, L.; Wan, Y.; Zhang, Y.; Qi, Z.; Wu, X.; Xu, H. Acetylene and Diacetylene Functionalized Covalent Triazine Frameworks as Metal-Free Photocatalysts for Hydrogen Peroxide Production: A New Two-Electron Water Oxidation Pathway. Adv. Mater. 2020, 32, 1904433.
  • 49.
    Zhang, P.; Li, L.; Zhao, J.; Wang, H.; Zhang, X.; Xie, Y. Elemental Doping Boosts Charge-Transfer Excitonic States in Polymeric Photocatalysts for Selective Oxidation Reaction. Precis. Chem. 2023, 1, 40–48.
  • 50.
    Liao, Q.; Sun, Q.; Xu, H.; Wang, Y.; Xu, Y.; Li, Z.; Hu, J.; Wang, D.; Li, H.; Xi, K. Regulating Relative Nitrogen Locations of Diazine Functionalized Covalent Organic Frameworks for Overall H2O2 Photosynthesis. Angew. Chem. Int. Ed. 2023, 62, e202310556.
  • 51.
    Luo, Y.; Zhang, B.; Liu, C.; Xia, D.; Ou, X.; Cai, Y.; Zhou, Y.; Jiang, J.; Han, B. Sulfone-Modified Covalent Organic Frameworks Enabling Efficient Photocatalytic Hydrogen Peroxide Generation via One-Step Two-Electron O2 Reduction. Angew. Chem. Int. Ed. 2023, 62, e202305355.
  • 52.
    Xu, W.; Meng, L.; Tian, W.; Li, S.; Cao, F.; Li, L. Polypyrrole Serving as Multifunctional Surface Modifier for Photoanode Enables Efficient Photoelectrochemical Water Oxidation. Small 2022, 18, e2105240.
  • 53.
    Wang, Y.; Shi, H.; Cui, K.; Yu, J. Engineering Organic/Inorganic Hierarchical Photocathode for Efficient and Stable Quasi-Solid-State Photoelectrochemical Fuel Cells. Appl. Catal. B 2019, 250, 171–180.
  • 54.
    Ng, C.H.; Winther-Jensen, O.; Ohlin, C.A.; Winther-Jensen, B. Exploration and Optimisation of Poly(2,2′-Bithiophene) as a Stable Photo-Electrocatalyst for Hydrogen Production. J. Mater. Chem. A 2015, 3, 11358–11366.
  • 55.
    Sun, H.; Dong, C.; Liu, Q.; Yuan, Y.; Zhang, T.; Zhang, J.; Hou, Y.; Zhang, D.; Feng, X. Conjugated Acetylenic Polymers Grafted Cuprous Oxide as an Efficient Z-Scheme Heterojunction for Photoelectrochemical Water Reduction. Adv. Mater. 2020, 32, e2002486.
  • 56.
    Cheng, H.; Lv, H.; Cheng, J.; Wang, L.; Wu, X.; Xu, H. Rational Design of Covalent Heptazine Frameworks with Spatially Separated Redox Centers for High-Efficiency Photocatalytic Hydrogen Peroxide Production. Adv. Mater. 2022, 34, 2107480.
  • 57.
    Xia, Y.; Zhang, W.; Yang, S.; Wang, L.; Yu, G. Research Progress in Donor−Acceptor Type Covalent Organic Frameworks. Adv. Mater. 2023, 35, 2301190.
  • 58.
    Xu, B.; Yi, X.; Huang, T.Y.; Zheng, Z.; Zhang, J.; Salehi, A.; Coropceanu, V.; Ho, C.H.Y.; Marder, S.R.; Toney, M.F.; et al. Donor Conjugated Polymers with Polar Side Chain Groups: The Role of Dielectric Constant and Energetic Disorder on Photovoltaic Performance. Adv. Funct. Mater. 2018, 28, 1803418.
  • 59.
    Mikhnenko, V.; Blom, P.W.M.; Nguyen, T.-Q. Exciton Diffusion in Organic Semiconductors. Energy Environ. Sci. 2015, 8, 1867–1888.
  • 60.
    Wang, H.; Jin, S.; Zhang, X.; Xie, Y. Excitonic Effects in Polymeric Photocatalysts. Angew. Chem. Int. Ed. 2020, 59, 22828.
  • 61.
    Li, G.; Fu, P.; Yue, Q.; Ma, F.; Zhao, X.; Dong, S.; Han, X.; Wang, J. Boosting Exciton Dissociation by Regulating Dielectric Constant in Covalent Organic Framework for Photocatalysis. Chem Catal. 2022, 2, 1734–1747.
  • 62.
    Zhang, W.; Zhong, Z.; Wei, X.; Zhang, Y.; Ma, W.; Liu, D.; Han, X.; Dong, J.; Gong, W.; Dai, D.; et al. Single-Crystal Metal–Organic and Covalent Organic Framework Hybrids Enable Efficient Photoelectrochemical CO2 Reduction to Ethanol. J. Am. Chem. Soc. 2025, 147, 17975–17984.
  • 63.
    Yao, L.; Rodriguez-Camargo, A.; Xia, M.; Mucke, D.; Guntermann, R.; Liu, Y.; Grunenberg, L.; Jimenez-Solano, A.; Emmerling, S.T.; Duppel, V.; et al. Covalent Organic Framework Nanoplates Enable Solution-Processed Crystalline Nanofilms for Photoelectrochemical Hydrogen Evolution. J. Am. Chem. Soc. 2022, 144, 10291–10300.
  • 64.
    Weng, W.; Guo, J. Chiral Covalent Organic Framework Films with Enhanced Photoelectrical Performances. J. Am. Chem. Soc. 2024, 146, 13201–13209.
  • 65.
    Li, J.; Huang, Z.; Wang, C.; Tian, L.; Yang, X.; Zhou, R.; Ghazzal, N.M.; Liu, Z.-Q. Linkage Effect in the Bandgap-broken V2O5-GdCrO3 Heterojunction by Carbon Allotropes for Boosting Photocatalytic H2 Production. Appl. Catal. B Environ. 2024, 340, 123181.
  • 66.
    Li, J.; Xiang, T.; Liu, X.; Ghazzal, M.N.; Z.-Liu, Q. Structure-Function Relationship of p-Block Bismuth for Selective Photocatalytic CO2 Reduction. Angew. Chem. Int. Ed. 2024, 63, e202407287.
  • 67.
    Li, J.; Wang, X.; Fang, H.; Guo, X.; Zhou, R.; Wang, C.; Li, J.; Ghazzal, M.N.; Rui, Z. Unraveling the Role of Surface and Interfacial Defects in Hydrogen Production to Construct an All-in-one Broken-gap Photocatalyst. J. Mater. Chem. A 2023, 11, 25639–25649.
  • 68.
    Li, J.; Fang, H.; Wu, M.; Ma, C.; Lian, R.; Jiang, S.P.; Ghazzal, M.N.; Rui, Z. Selective Cocatalyst Decoration of Narrow-Bandgap Broken-Gap Heterojunction for Directional Charge Transfer and High Photocatalytic Properties. Small 2023, 19, 2300559.
  • 69.
    Zhang, Y.; Lv, H.; Zhang, Z.; Wang, L.; Wu, X.; Xu, H. Stable Unbiased Photo-Electrochemical Overall Water Splitting Exceeding 3% Efficiency via Covalent Triazine Framework/Metal Oxide Hybrid Photoelectrodes. Adv. Mater. 2021, 33, e2008264.
  • 70.
    Wang, L.; Lian, W.; Liu, B.; Lv, H.; Zhang, Y.; Wu, X.; Wang, T.; Gong, J.; Chen, T.; Xu, H. A Transparent, High-Performance, and Stable Sb2S3 Photoanode Enabled by Heterojunction Engineering with Conjugated Polycarbazole Frameworks for Unbiased Photoelectrochemical Overall Water Splitting Devices. Adv. Mater. 2022, 34, e2200723.
  • 71.
    Yang, W.; Kwon, H.R.; Ji, S.G.; Kim, J.; Lee, S.A.; Lee, T.H.; Choi, S.; Cheon, W.S.; Kim, Y.; Park, J.; et al. Conjugated Polythiophene Frameworks as a Hole-Selective Layer on Ta3N5 Photoanode for High-Performance Solar Water Oxidation. Adv. Funct. Mater. 2024, 34, 2400806.
  • 72.

    Ou, M.; Geng, M.; Fang, X.; Shao, W.; Bai, F.; Wan, S.; Ye, C.; Wu, Y.; Chen, Y. Tailored BiVO4 photoanode hydrophobic microenvironment enables water oxidative H2O2 accumulation. Adv. Sci. 2023, 10, 2300169.

  • 73.
    Wang, Q.; Ren, L.; Zhang, J.; Chen, X.; Chen, C.; Zhang, F.; Wang, S.; Wei, J. Recent Progress on the Catalysts and Device Designs for (Photo) Electrochemical On-Site H2O2 Production. Adv. Energy Mater. 2025, 13, 2301543.
  • 74.
    Kim, J.H.; Hansora, D.; Sharma, P.; Jang, J.W.; Lee, J.S. Toward Practical Solar Hydrogen Production–An Artificial Photosynthetic Leaf-to-Farm Challenge. Chem. Soc. Rev. 2019, 48, 1908–1971.
  • 75.
    Choi, H.; Seo, S.; Yoon, C.J.; Ahn, J.B.; Kim, C.S.; Jung, Y.; Kim, Y.; Toma, F.M.; Kim, H.; Lee, S. Organometal Halide Perovskite-Based Photoelectrochemical Module Systems for Scalable Unassisted Solar Water Splitting. Adv. Sci. 2023, 10, 2303106.
  • 76.
    Hansora, D.; Yoo, J.W.; Mehrotra, R.; Byun, W.J.; Lim, D.; Kim, Y.K.; Noh, E.; Lim, H.; Jang, J.-W.; Seok, S.I.; et al. All-Perovskite-Based Unassisted Photoelectrochemical Water Splitting System for Efficient, Stable and Scalable Solar Hydrogen Production. Nat. Energy 2024, 9, 272–284.
Share this article:
How to Cite
Zhang , Y.; Tang , W.; Cong, Y.; Wang, L. Recent Developments in Photocathodes for Solar-Driven Hydrogen Peroxide Production. Science for Energy and Environment 2025, 2 (3), 12. https://doi.org/10.53941/see.2025.100012.
RIS
BibTex
Copyright & License
article copyright Image
Copyright (c) 2025 by the authors.