2508001189
  • Open Access
  • Review

Research Progress in Photocatalytic Organic Transformation: From Materials to Applications

  • Chuanzhe Wang 1,   
  • Junshan Li 2,   
  • Yongfa Zhu 1, *

Received: 27 Mar 2025 | Revised: 09 May 2025 | Accepted: 16 Jun 2025 | Published: 28 Aug 2025

Abstract

Photocatalytic organic transformation, as a mild, green, and environmentally friendly synthesis method, has attracted increasing attention as a sustainable development scheme to address the global energy crisis and environmental problems. At present, a variety of materials have been used to develop various photocatalytic organic conversion reactions. The development of high-efficiency photocatalytic materials, which necessitates a comprehensive understanding of their catalytic mechanisms, is essential to enhancing the performance of photocatalytic organic transformation. However, only a few studies summarize and discuss the results of research on materials and mechanisms involved in photocatalytic organic transformation. In this review, we aim to cover the development of photocatalysts, including metal and its oxide materials, organic semiconductors, metal-organic frameworks, covalent-organic frameworks, and other materials. Then, the general mechanisms, unique advantages, and strategies in photocatalysis synthesis are discussed. In addition, it also provides an overview of applications in various organic reactions, such as oxidation, reduction, coupling, cyclization, and asymmetric synthesis. Finally, we summarize the challenges and prospects of material design and reaction mechanisms in photocatalytic organic synthesis in the future.

References 

  • 1.
    Zhang, Z.; Jia, J.; Zhi, Y.; Ma, S.; Liu, X. Porous organic polymers for light-driven organic transformations. Chem. Soc. Rev. 2022, 51, 2444.
  • 2.
    Campos, K.R.; Coleman, P.J.; Alvarez, J.C.; Dreher, S.D.; Garbaccio, R.M.; Terrett, N.K.; Tillyer, R.D.; Truppo, M.D.; Parmee, E.R. The importance of synthetic chemistry in the pharmaceutical industry. Science 2019, 363, eaat0805.
  • 3.
    Xiao, L.; Liu, X.; Pan, L.; Shi, C.; Zhang, X.; Zou, J.J. Heterogeneous photocatalytic organic transformation reactions using conjugated polymers-based materials. ACS Catal. 2020, 10, 12256–12283.
  • 4.
    Nicolaou, K.C. Catalyst: Synthetic organic chemistry as a force for good. Chem 2016, 1, 331–334.
  • 5.
    Chng, L.L.; Erathodiyil, N.; Ying, J.Y. Nanostructured catalysts for organic transformations. Acc. Chem. Res. 2013, 46, 1825–1837.
  • 6.
    Mohamadpour, F.; Amani, A.M. Photocatalytic systems: Reactions, mechanism, and Applications. RSC Adv. 2024, 14, 20609–20645.
  • 7.
    Marzo, L.; Pagire, S.K.; Reiser, O.; König, B. Visible-light photocatalysis: Does it make a difference in organic synthesis? Angew. Chem. Int. Ed. 2018, 57, 10034–10072.
  • 8.
    Wang, Q.; Domen, K. Particulate photocatalysts for light-driven water splitting: Mechanisms, challenges, and design strategies. Chem. Rev. 2020, 120, 919–985.
  • 9.
    Bhattacharjee, J.; Subhasis Roy, S. A review on photocatalysis and nanocatalysts for advanced organic synthesis Hybrid Advances 2024, 6, 100268.
  • 10.
    Rahman, A.; Parwaiz, S.; Sohn, Y.; Khan, M.M. Advances in artificial photosynthesis: The role of chalcogenides and chalcogenide-based heterostructures. ChemPhotoChem 2025, 9, e202400234.
  • 11.
    Friedmann, D.; Hakki, A.; Kim, H.; Choi, W.; Bahnemann, D. Heterogeneous photocatalytic organic synthesis: State-of-the-art and future perspectives. Green Chem. 2016, 18, 5391–5411.
  • 12.
    Jin, H.G.; Zhao, P.C.; Qian, Y.; Xiao, J.D.; Chao, Z.S.; Jiang, H.L.; Metal–organic frameworks for organic transformations by photocatalysis and photothermal catalysis. Chem. Soc. Rev. 2024, 53, 9378–9418.
  • 13.
    Kou, J.; Lu, C.; Wang, J.; Chen, Y.; Xu, Z.; Varma, R.S. Selectivity enhancement in heterogeneous photocatalytic transformations. Chem. Rev. 2017, 117, 1445−1514.
  • 14.
    Arango-Daza, J.C.; Rivero-Crespo, M.A. Multi-catalytic metal-based homogeneous-heterogeneous systems in organic chemistry. Chem. Eur. J. 2024, 30, e202400443.
  • 15.
    Cai, B.; Huang, P.; Fang, Y.; Tian, H. Recyclable and stable porphyrin-based self-assemblies by electrostatic force for efficient photocatalytic organic transformation. Adv. Sci. 2024, 11, 2308469.
  • 16.
    Yang, H.; Xu, J.; Cao, H.; Wu, J.; Zhao, D. Recovery of homogeneous photocatalysts by covalent organic framework membranes. Nat. Commun. 2023, 14, 2726.
  • 17.
    Alsheheri, S.Z.; Khedr, T.M. Green fabrication of aniline over mesoporous NiS/YVO4 S-type heterostructure photocatalyst under visible light exposure. Mater. Sci. Semicond. Process. 2025, 186, 109064.
  • 18.
    Khedr, T.M.; Wang, K.; Kowalski, D.; El-Sheikh, S.M.; Abdeldayem, H.M.; Ohtani, B.; Kowalska, E. Bi2WO6-based Z-scheme photocatalysts: Principles, mechanisms and photocatalytic applications. J. Environ. Chem. Eng. 2022, 10, 107838.
  • 19.
    Dhakshinamoorthy, A.; Li, Z.; Yang, S.; Garcia, H. Metal-organic framework heterojunctions for photocatalysis. Chem. Soc. Rev. 2024, 53, 3002–3035.
  • 20.
    Zhu, Y.Y.; He, Y.Y.; Li, Y.X.; Liu, C.H.; Lin, W. Heterogeneous porous synergistic photocatalysts for organic transformations. Chem. Eur. J. 2024, 30, e202400842.
  • 21.
    Mokhtar, M.; Basaleh, A.S.; Mohamed, R.M.; Khedr, T.M. Novel MnCo2O4/YVO4 heterostructure for promoting photocatalytic oxidative desulfurization of thiophene under visible light. Ceram. Internat. 2024, 50, 41145–41155.
  • 22.
    Xue, J.; Jia, X.; Sun, Z.; Li, H.; Shen, Q.; Liu, X.; Jia, H.; Zhu, Y. Selective CO2 photoreduction to C2 hydrocarbon via synergy between metastable ordered oxygen vacancies and hydrogen spillover over TiO2 nanobelts. Appl. Catal. B Environ. 2024, 342, 123372.
  • 23.
    Jia, T.; Meng, D.; Duan, R.; Ji, H.; Sheng, H.; Chen, C.; Li, J.; Song, W.; Zhao, J. Single-atom nickel on carbon nitride photocatalyst achieves semihydrogenation of alkynes with water protons via monovalent nickel. Angew. Chem. Int. Ed. 2023, 62, e202216511.
  • 24.
    Zhu, C.; Gong, C.; Cao, D.; Ma, L.L.; Liu, D.; Zhang, L.; Li, Y.; Peng, Y.; Yuan, G. Cobalt-metalated 1D perylene diimide carbon-organic framework for enhanced photocatalytic α-C(sp3)-H activation and CO2 reduction. Angew. Chem. Int. Ed. 2025, 137, e202504348.
  • 25.
    Hu, H.; Wang, Z.; Cao, L.; Zeng, L.; Zhang, C.; Lin, W.; Wang, C. Metal–organic frameworks embedded in a liposome facilitate overall photocatalytic water splitting. Nat. Chem. 2021, 13, 358–366.
  • 26.
    Basaleh, A.S.; Khedr, T.M.; Mohamed, R.M. Novel CoFe2O4/Bi2WO6 S-scheme heterostructure photocatalyst for effective and rapid visible-light-driven reduction of toxic nitrobenzene into industrially valuable aniline. Mater. Sci. Eng. B. 2024, 307, 117515.
  • 27.
    Chen, H.; Jena, H.S.; Feng, X.; Leus, K.; Voort, P.V.D. Engineering covalent organic frameworks as heterogeneous photocatalysts for organic transformations. Angew. Chem. Int. Ed. 2022, 61, e202204938.
  • 28.
    Zhang, T.; Jin, Y.; Shi, Y.; Li, M.; Li, J.; Duan, C. Modulating photoelectronic performance of metal–organic frameworks for premium photocatalysis. Coord. Chem. Rev. 2019, 380, 201–229.
  • 29.
    Yuan, L.; Qi, M.Y.; Tang, Z.R.; Xu, Y.J. Coupling strategy for CO2 valorization integrated with organic synthesis by heterogeneous photocatalysis. Angew. Chem. Int. Ed. 2021, 60, 21150–21172.
  • 30.
    Yang, X.; Wang, D. Photocatalysis: From fundamental principles to materials and applications. ACS Appl. Energy Mater. 2018, 1, 6657–6693.
  • 31.
    Adamowicz, W.; Yaemsunthorn, K.; Kobielusz, M.; Macyk, W. Photocatalytic transformation of organics to valuable chemicals-quo vadis? ChemPlusChem 2024, 89, e202400171.
  • 32.
    Kobielusz, M.; Mikrut, P.; Macyk, W. Photocatalytic synthesis of chemicals. Adv. Inorg. Chem. 2018, 72, 93–144.
  • 33.
    Wang, H.; Cao, C.; Li, D.; Ge, Y.; Chen, R.; Song, R.; Gao, W.; Wang, X.; Deng, X.; Zhang, H.; et al. Achieving high selectivity in photocatalytic oxidation of toluene on amorphous BiOCl nanosheets coupled with TiO2. J. Am. Chem. Soc. 2023, 145, 16852–16861.
  • 34.
    Fan, Q.; Zhu, L.; Li, X.; Ren, H.; Zhu, H.; Wu, G.; Ding, J. Visible-light photocatalytic selective oxidation of amine and sulfide with CsPbBr3 as photocatalyst. New J. Chem. 2021, 45, 13317.
  • 35.
    Wang, Y.; Huang, F.; Sheng, W.; Miao, X.; Li, X.; Gu, X.K.; Lang, X. Blue light photocatalytic oxidation of sulfides to sulfoxides with oxygen over a thiazole-linked 2D covalent organic framework. Appl. Catal. B Environ. 2023, 338, 123070.
  • 36.
    Jiang, X.; Wang, W.; Wang, H.; He, Z.H.; Yang, Y.; Wang, K.; Liu, Z.T.; Han, B. Solvent-free aerobic photocatalytic oxidation of alcohols to aldehydes over ZnO/C3N4. Green Chem. 2022, 24, 7652–7660.
  • 37.
    Li, Y.; Luan, T.X.; Cheng, K.; Zhang, D.; Fan, W.; Li, P.Z.; Zhao, Y.; Effective photocatalytic initiation of reactive oxygen species by a photoactive covalent organic framework for oxidation reactions. ACS Mater. Lett. 2022, 4, 1160–1167.
  • 38.
    Luo, L.; Zhang, T.; Wang, M.; Yun, R.; Xiang, X. Recent advances in heterogeneous photo-driven oxidation of organic molecules by reactive oxygen species. ChemSusChem 2020, 13, 5173–5184.
  • 39.
    Tao, X.; Zhao, Y.; Wang, S.; Li, C.; Li, R. Recent advances and perspectives for solar-driven water splitting using particulate photocatalysts. Chem. Soc. Rev. 2022, 51, 3561.
  • 40.
    Broggi, J.; Terme, T.; Vanelle, P. Organic electron donors as powerful single-electron reducing agents in organic synthesis. Angew. Chem. Int. Ed. 2014, 53, 384–413.
  • 41.
    Barham, J.P.; König, B. Synthetic photoelectrochemistry. Angew. Chem. Int. Ed. 2020, 59, 11732–11747.
  • 42.
    Narayanam, J.M.R.; Stephenson, C.R.J.; Visible light photoredox catalysis: Applications in organic synthesis. Chem. Soc. Rev. 2011, 40, 102–113.
  • 43.
    Liao, L.L.; Song, L.; Yan, S.S.; Ye, J.H.; Yu, D.G. Highly reductive photocatalytic systems in organic synthesis. Trends Chem. 2022, 4, 512–527.
  • 44.
    Charboneau, D.J.; Hazari, N.; Huang, H.; Uehling, M.R.; Zultanski, S.L. Homogeneous organic electron donors in nickel-catalyzed reductive transformations. J. Org. Chem. 2022, 87, 12, 7589–7609.
  • 45.
    Das, P.; Chakraborty, G.; Roeser, J.; Vogl, S.; Rabeah, J.; Thomas, A. Integrating bifunctionality and chemical stability in covalent organic frameworks via one-pot multicomponent reactions for solar-driven H2O2 production. J. Am. Chem. Soc. 2023, 145, 2975–2984.
  • 46.
    Cybularczyk-Cecotka, M.; Szczepanik, J.; Giedyk, M. Photocatalytic strategies for the activation of organic chlorides. Nat. Catal. 2020, 3, 872–886.
  • 47.
    Chang, P.; Cheng, H.; Zhao, F. Photocatalytic reduction of aromatic nitro compounds with Ag/AgxS composites under visible light irradiation. J. Phys. Chem. C 2021, 125, 26021–26030.
  • 48.
    Zhong, L.; Liao, X.; Cui, H.; Luo, H.; Lv, Y.; Liu, P. Highly efficient hydrogenation of α,β-unsaturated aldehydes to unsaturated alcohols over defective MOF-808 with constructed frustrated lewis pairs. ACS Catal. 2024, 14, 857–873.
  • 49.
    Wang, R.; Zheng, Z.; Li, Z.; Xu, X. Photocatalytic C-C coupling and H2 production with tunable selectivity based on ZnxCd1-xS solid solutions for benzyl alcohol conversions under visible light. Chem. Eng. J. 2024, 480, 147970.
  • 50.
    Blakemore, D.C.; Castro, L.; Churcher, I.; Rees, D.C.; Thomas, A.W.; Wilson, D.M.; Wood, A. Organic synthesis provides opportunities to transform drug discovery. Nat. Chem. 2018, 10, 383–394.
  • 51.
    Chen, B.; Wu, L.Z.; Tung, C.H. Photocatalytic activation of less reactive bonds and their functionalization via hydrogen-evolution cross-couplings. Acc. Chem. Res. 2018, 51, 2512–2523.
  • 52.
    Li, J.; Liu, T.; Singh, N.; Huang, Z.; Ding, Y.; Huang, J.; Sudarsanam, P.; Li, H. Photocatalytic C–N bond construction toward high-value nitrogenous chemicals. Chem. Commun. 2023, 59, 14341–14352.
  • 53.
    Fagnoni, M.; Dondi, D.; Ravelli, D.; Albini, A. Photocatalysis for the formation of the C−C bond. Chem. Rev. 2007, 107, 2725–2756.
  • 54.
    Luo, M.J.; Xiao, Q.; Li, J.H. Electro-/photocatalytic alkene-derived radical cation chemistry: Recent advances in synthetic applications. Chem. Soc. Rev. 2022, 51, 7206–7237.
  • 55.
    Juliá, F.; Constantin, T.; Leonori, D. Applications of halogen-atom transfer (XAT) for the generation of carbon radicals in synthetic photochemistry and photocatalysis. Chem. Rev. 2022, 122, 2292–2352.
  • 56.
    Ha, S.; Lee, Y.; Kwak, Y.; Mishra, A.; Yu, E.; Ryou, B.; Park, C.M. Alkyne-alkene [2 + 2] cycloaddition based on visible light photocatalysis. Nat. Commun. 2020, 11, 2509.
  • 57.
    Yoon, T.P. Visible light photocatalysis: The development of photocatalytic radical ion cycloadditions. ACS Catal. 2013, 3, 895–902.
  • 58.
    Latrache, M.; Hoffmann, N. Photochemical radical cyclization reactions with imines, hydrazones, oximes and related compounds. Chem. Soc. Rev. 2021, 50, 7418–7435.
  • 59.
    Ravelli, D.; Protti, S.; Fagnoni, M. Carbon-carbon bond forming reactions via photogenerated intermediates. Chem. Rev. 2016, 116, 9850–9913.
  • 60.
    Genzink, M.J.; Kidd, J.B.; Swords, W.B.; Yoon, T.P. Chiral photocatalyst structures in asymmetric photochemical synthesis. Chem. Rev. 2022, 122, 1654–1716.
  • 61.
    Liu, Q.; Wu, L.Z. Recent advances in visible-light-driven organic reactions. Natl. Sci. Rev. 2017, 4, 359–380.
  • 62.
    Nunzi, F.; Angelis, F.D. Modeling titanium dioxide nanostructures for photocatalysis and photovoltaics. Chem. Sci. 2022, 13, 9485–9497.
  • 63.
    Zhong, S.; Yu, D.; Ma, Y.; Lin, Y.; Wang, X.; Yu, Z.; Huang, M.; Hou, Y.; Anpo, M.; Yu, J.C.; et al. Oxygen vacancy-enhanced selectivity in aerobic oxidation of benzene to phenol over TiO2 photocatalysts. Angew. Chem. Int. Ed. 2025, 137, e202502823.
  • 64.
    Zoller, J.; Fabry, D.C.; Rueping, M. Unexpected dual role of titanium dioxide in the visible light heterogeneous catalyzed C−H arylation of heteroarenes. ACS Catal. 2015, 5, 3900–3904.
  • 65.
    Franchi, D.; Amara, Z.; Applications of sensitized semiconductors as heterogeneous visible-light photocatalysts in organic synthesis. ACS Sustainable Chem. Eng. 2020, 8, 15405–15429.
  • 66.
    Zhang, N.; Li, X.; Ye, H.; Chen, S.; Ju, H.; Liu, D.; Lin, Y.; Ye, W.; Wang, C.; Xu, Q.; et al. Oxide defect engineering enables to couple solar energy into oxygen activation. J. Am. Chem. Soc. 2016, 138, 8928–8935.
  • 67.
    Liu, C.; Chen, Z.; Su, C.; Zhao, X.; Qiang Gao, Q.; Ning, G.H.; Zhu, H.; Tang, W.; Leng, K.; Fu, W.; et al. Controllable deuteration of halogenated compounds by photocatalytic D2O splitting. Nat. Commun. 2018, 9, 80.
  • 68.
    Zhu, X.; Lin, Y.; Martin, J.S.; Sun, Y.; Zhu, D.; Yan, Y. Lead halide perovskites for photocatalytic organic synthesis. Nat. Commun. 2019, 10, 2843.
  • 69.
    Guo, Y.; Zhou, Q.; Zhu, B.; Tang, C.Y.; Zhu, Y. Advances in organic semiconductors for photocatalytic hydrogen evolution reaction. EES. Catal. 2023, 1, 333–352.
  • 70.
    Jia, T.; Meng, D.; Ji, H.; Sheng, H.; Chen, C.; Song, W.; Zhao, J.; Visible-light-driven semihydrogenation of alkynes via proton reduction over carbon nitride supported nickel. Appl. Catal. B Environ. 2022, 304, 121004.
  • 71.
    Ghos, I.; Khamrai, J.; Savateev, A.; Shlapakov, N.; Antonietti, M.; König, B. Organic semiconductor photocatalyst can bifunctionalize arenes and heteroarenes. Science 2019, 365, 360–366.
  • 72.
    Wang, L.; Huang, W.; Li, R.; Gehrig, D.; Blom, P.W.M.; Landfester, K.; Zhang, K.A.I. Structural design principle of small-molecule organic semiconductors for metal-free, visible-light-promoted photocatalysis. Angew. Chem. Int. Ed. 2016, 55, 9783–9787.
  • 73.
    Zhang, H.; Yu, K.; Wu, Z.; Zhu, Y. Ultrathin triphenylamine–perylene diimide polymer with D–A structure for photocatalytic oxidation of N-heterocycles using ambient air. EcoMat. 2022, 4, e12215.
  • 74.
    Deng, X.; Li, Z.; García, H. Visible light induced organic transformations using metal-organic-frameworks (MOFs). Chem. Eur. J. 2017, 23, 11189–11209.
  • 75.
    Chen, Y.Z.; Wang, Z.U.; Wang, H.; Lu, J.; Yu, S.H.; Jiang, H.L. Singlet oxygen-engaged selective photo-oxidation over Pt nanocrystals/porphyrinic MOF: The roles of photothermal effect and Pt electronic state. J. Am. Chem. Soc. 2017, 139, 2035–2044.
  • 76.
    Li, H.; Yang, Y.; He, C.; Zeng, L.; Duan, C. Mixed-ligand metal−organic framework for two-photon responsive photocatalytic C−N and C−C coupling reactions. ACS Catal. 2019, 9, 422–430.
  • 77.
    López-Magano, A.; Daliran, S.; Oveisi, A.R.; Mas-Ballesté, R.; Dhakshinamoorthy, A.; Alemán, J.; Garcia, H.; Luque, R. Recent advances in the use of covalent organic frameworks as heterogenous photocatalysts in organic synthesis. Adv. Mater. 2023, 35, 2209475.
  • 78.
    Jia, T.; Zhao, Y.; Song, W.; Zhao, J. Metallaphotocatalytic platforms based on covalent organic frameworks for cross-coupling reactions. ChemCatChem 2024, 16, e202301522.
  • 79.
    Zhi, Y.; Li, Z.; Feng, X.; Xia, H.; Zhang, Y.; Shi, Z.; Mu, Y.; Liu, M. Covalent organic frameworks as metal-free heterogeneous photocatalysts for organic transformations. J. Mater. Chem. A 2017, 5, 22933–22938.
  • 80.
    López-Magano, A.; Ortín-Rubio, B.; Imaz, I.; Maspoch, D.; Alemán, J.; Mas-Ballesté, R. Photoredox heterobimetallic dual catalysis using engineered covalent organic frameworks. ACS Catal. 2021, 11, 12344–12354.
  • 81.
    Zhang, M.Y.; Li, J.K.; Wang, R.; Zhao, S.N.; Zang, S.Q.; Mak, T.C.W. Construction of core–shell MOF@COF hybrids with controllable morphology adjustment of COF shell as a novel platform for photocatalytic cascade reactions. Adv. Sci. 2021, 8, 2101884.
  • 82.
    Nosaka, Y.; Nosaka, A.Y. Generation and detection of reactive oxygen species in photocatalysis. Chem. Rev. 2017, 117, 11302–11336.
  • 83.
    Huang, N.Y.; Zheng, Y.T.; Chen, D.; Chen, Z.Y.; Huang, C.Z.; Xu, Q. Reticular framework materials for photocatalytic organic reactions. Chem. Soc. Rev. 2023, 52, 7949–8004.
  • 84.
    Sheng, W.; Wang, X.; Wang, Y.; Chen, S.; Lang, X. Integrating TEMPO into a metal–organic framework for cooperative photocatalysis: Selective aerobic oxidation of sulfides. ACS Catal. 2022, 12, 11078–11088.
  • 85.
    Deng, Y.; Liu, Q.; Smith III, A.B. Oxidative [1,2]-brook rearrangements exploiting single-electron transfer: Photoredox-catalyzed alkylations and arylations. J. Am. Chem. Soc. 2017, 139, 9487–9490.
  • 86.
    Xiong, L.; Tang, J. Strategies and challenges on selectivity of photocatalytic oxidation of organic substances. Adv. Energy Mater. 2021, 11, 2003216.
  • 87.
    Li, Q.; Li, F.T. Recent advances in molecular oxygen activation via photocatalysis and its application in oxidation reactions. Chem. Eng. J. 2021, 421, 129915.
  • 88.
    Cheng, Q.; Yuan, Y.J.; Tang, R.; Liu, Q.Y.; Bao, L.; Wang, P.; Zhong, J.; Zhao, Z.; Yu, Z.T.; Zou, Z. Rapid hydroxyl radical generation on (001)-facet-exposed ultrathin anatase TiO2 nanosheets for enhanced photocatalytic lignocellulose-to-H2 conversion. ACS Catal. 2022, 12, 2118−2125.
  • 89.
    Zhang, H.; Li, S.; Qian, Z.; Yin, J.; Wei, W.; Zhao, Y.; Zhang, K.A.I. Efficient photocatalytic chloride dehalogenation by planar conjugated microporous polymers with enhanced charge separation and transport. Mater. Adv. 2024, 5, 2169–2174.
  • 90.
    Ghosh, I.; Ghosh, T.; Bardagi, J.I.; König, B. Reduction of aryl halides byconsecutive visible light-inducedelectron transfer processes. Science 2014, 346, 725–728.
  • 91.
    Luo, T.; Jeppesen, H.S.; Schoekel, A.; Bönisch, N.; Xu, F.; Zhuang, R.; Huang, Q.; Senkovska, I.; Bon, V.; Heine, T.; et al. Photocatalytic dehalogenation of aryl halides mediated by the flexible metal–organic framework MIL-53(Cr). Angew. Chem. Int. Ed. 2025, 64, e202422776.
  • 92.
    Wang, M.; Qian, J.; Wang, S.; Wen, Z.; Xiao, S.; Hu, H.; Gao, Y. Benzodiazole-based covalent organic frameworks for enhanced photocatalytic dehalogenation of phenacyl bromide derivatives. Polymers 2024, 16, 2578.
  • 93.
    Wang, Y.; Yang, Y.; Deng, Q.; Chen, W.; Zhang, Y.; Zhou, Y.; Zou, Z. Recent progress of amorphous porous organic polymers as heterogeneous photocatalysts for organic synthesis. Adv. Funct. Mater. 2023, 33, 2307179.
  • 94.
    Ma, L.; Liu, Y.L.; Liu, Y.; Jiang, S.Y.; Li, P.; Hao, Y.C.; Shao, P.P.; Yin, A.X.; Feng, X.; Wang, B. Ferrocene-linkage-facilitated charge separation in conjugated microporous polymers. Angew. Chem. Int. Ed. 2019, 58, 4221–4226.
  • 95.
    Li, Z.; Jiao, J.; Fu, W.; Gao, K.; Peng, X.; Wang, Z.; Zhuo, H.; Yang, C.; Yang, M.; Chang, G.; et al. Integration of perylene diimide into a covalent organic framework for photocatalytic oxidation. Angew. Chem. Int. Ed. 2024, 63, e202412977.
  • 96.
    Huang, T.; Kou, J.; Yuan, H.; Guo, H.; Yuan, K.; Li, H.; Wang, F.; Dong, Z. Linker modulation of covalent organic frameworks at atomic level for enhanced and selective photocatalytic oxidation of thioether. Adv. Funct. Mater. 2025, 35, 2413943.
  • 97.
    Shi, L.; Wang, Y.; Yan, B.; Song, W.; Shao, D.; Lu, A.H. Progress in selective oxidative dehydrogenation of light alkanes to olefins promoted by boron nitride catalysts. Chem. Commun. 2018, 54, 10936–10946.
  • 98.
    Wang, P.; Zhang, X.; Shi, R.; Jiaqi Zhao, J.; Waterhouse, G.I.N.; Tang, J.; Zhang, T. Photocatalytic ethylene production by oxidative dehydrogenation of ethane with dioxygen on ZnO-supported PdZn intermetallic nanoparticles. Nat. Commun. 2024, 15, 789.
  • 99.
    Hsueh, C.H.; He, C.; Zhang, J.; Tan, X.; Zhu, H.; Cheong, W.C.M.; Li, A.Z.; Chen, X.; Duan, H.; Zhao, Y.; et al. Three-dimensional mesoporous covalent organic framework for photocatalytic oxidative dehydrogenation to quinoline. J. Am. Chem. Soc. 2024, 146, 33857–33864.
  • 100.
    Chakraborty, A.; Roy, M.; Alam, A.; Adhikari, D.; Pachfule, P. Covalent organic frameworks as heterogeneous photocatalysts for cross-coupling reactions. Green Chem. 2024, 26, 9619–9651.
  • 101.
    Ghasimi, S.; Bretschneider, S.A.; Huang, W.; Landfester, K.; Zhang, K.A.I. A conjugated microporous polymer for palladium-free, visible light-promoted photocatalytic stille-type coupling reactions. Adv. Sci. 2017, 4, 1700101.
  • 102.
    Talekar, S.S.; Dutta, S.; Mane, M.V.; Maity, B. Visible light-induced photoredox and copper-catalyzed C−N cross-coupling: A mechanistic perspective. Eur. J. Org. Chem. 2024, 27, e202301312.
  • 103.
    Xing, C.; Yu, G.; Chen, T.; Liu, S.; Sun, Q.; Liu, Q.; Hu, Y.; Liu, H.; Li, X. Perylenetetracarboxylic diimide covalently bonded with mesoporous g-C3N4 to construct direct Z-scheme heterojunctions for efficient photocatalytic oxidative coupling of amines. Appl. Catal. B Environ. 2021, 298, 120534.
  • 104.
    Li, S.; Li, L.; Li, Y.; Dai, L.; Liu, C.; Liu, Y.; Li, J.; Lv, J.; Li, P.; Wang, B. Fully conjugated donor-acceptor covalent organic frameworks for photocatalytic oxidative amine coupling and thioamide cyclization. ACS Catal. 2020, 10, 8717–8726.
  • 105.
    Yang, M.; Lian, R.; Zhang, X.; Wang, C.; Cheng, J.; Wang, X. Photocatalytic cyclization of nitrogencentered radicals with carbon nitride through promoting substrate/catalyst interaction. Nat. Commun. 2022, 13, 4900.
  • 106.
    Subudhi, S.; Rath, D.; Parida, K.M. A mechanistic approach towards the photocatalytic organic transformations over functionalised metal organic frameworks: A review. Catal. Sci. Technol. 2018, 8, 679–696.
Share this article:
How to Cite
Wang, C.; Li, J.; Zhu, Y. Research Progress in Photocatalytic Organic Transformation: From Materials to Applications. Science for Energy and Environment 2025, 2 (3), 11. https://doi.org/10.53941/see.2025.100011.
RIS
BibTex
Copyright & License
article copyright Image
Copyright (c) 2025 by the authors.