- 1.
Zhang, Z.; Jia, J.; Zhi, Y.; Ma, S.; Liu, X. Porous organic polymers for light-driven organic transformations. Chem. Soc. Rev. 2022, 51, 2444.
- 2.
Campos, K.R.; Coleman, P.J.; Alvarez, J.C.; Dreher, S.D.; Garbaccio, R.M.; Terrett, N.K.; Tillyer, R.D.; Truppo, M.D.; Parmee, E.R. The importance of synthetic chemistry in the pharmaceutical industry. Science 2019, 363, eaat0805.
- 3.
Xiao, L.; Liu, X.; Pan, L.; Shi, C.; Zhang, X.; Zou, J.J. Heterogeneous photocatalytic organic transformation reactions using conjugated polymers-based materials. ACS Catal. 2020, 10, 12256–12283.
- 4.
Nicolaou, K.C. Catalyst: Synthetic organic chemistry as a force for good. Chem 2016, 1, 331–334.
- 5.
Chng, L.L.; Erathodiyil, N.; Ying, J.Y. Nanostructured catalysts for organic transformations. Acc. Chem. Res. 2013, 46, 1825–1837.
- 6.
Mohamadpour, F.; Amani, A.M. Photocatalytic systems: Reactions, mechanism, and Applications. RSC Adv. 2024, 14, 20609–20645.
- 7.
Marzo, L.; Pagire, S.K.; Reiser, O.; König, B. Visible-light photocatalysis: Does it make a difference in organic synthesis? Angew. Chem. Int. Ed. 2018, 57, 10034–10072.
- 8.
Wang, Q.; Domen, K. Particulate photocatalysts for light-driven water splitting: Mechanisms, challenges, and design strategies. Chem. Rev. 2020, 120, 919–985.
- 9.
Bhattacharjee, J.; Subhasis Roy, S. A review on photocatalysis and nanocatalysts for advanced organic synthesis Hybrid Advances 2024, 6, 100268.
- 10.
Rahman, A.; Parwaiz, S.; Sohn, Y.; Khan, M.M. Advances in artificial photosynthesis: The role of chalcogenides and chalcogenide-based heterostructures. ChemPhotoChem 2025, 9, e202400234.
- 11.
Friedmann, D.; Hakki, A.; Kim, H.; Choi, W.; Bahnemann, D. Heterogeneous photocatalytic organic synthesis: State-of-the-art and future perspectives. Green Chem. 2016, 18, 5391–5411.
- 12.
Jin, H.G.; Zhao, P.C.; Qian, Y.; Xiao, J.D.; Chao, Z.S.; Jiang, H.L.; Metal–organic frameworks for organic transformations by photocatalysis and photothermal catalysis. Chem. Soc. Rev. 2024, 53, 9378–9418.
- 13.
Kou, J.; Lu, C.; Wang, J.; Chen, Y.; Xu, Z.; Varma, R.S. Selectivity enhancement in heterogeneous photocatalytic transformations. Chem. Rev. 2017, 117, 1445−1514.
- 14.
Arango-Daza, J.C.; Rivero-Crespo, M.A. Multi-catalytic metal-based homogeneous-heterogeneous systems in organic chemistry. Chem. Eur. J. 2024, 30, e202400443.
- 15.
Cai, B.; Huang, P.; Fang, Y.; Tian, H. Recyclable and stable porphyrin-based self-assemblies by electrostatic force for efficient photocatalytic organic transformation. Adv. Sci. 2024, 11, 2308469.
- 16.
Yang, H.; Xu, J.; Cao, H.; Wu, J.; Zhao, D. Recovery of homogeneous photocatalysts by covalent organic framework membranes. Nat. Commun. 2023, 14, 2726.
- 17.
Alsheheri, S.Z.; Khedr, T.M. Green fabrication of aniline over mesoporous NiS/YVO4 S-type heterostructure photocatalyst under visible light exposure. Mater. Sci. Semicond. Process. 2025, 186, 109064.
- 18.
Khedr, T.M.; Wang, K.; Kowalski, D.; El-Sheikh, S.M.; Abdeldayem, H.M.; Ohtani, B.; Kowalska, E. Bi2WO6-based Z-scheme photocatalysts: Principles, mechanisms and photocatalytic applications. J. Environ. Chem. Eng. 2022, 10, 107838.
- 19.
Dhakshinamoorthy, A.; Li, Z.; Yang, S.; Garcia, H. Metal-organic framework heterojunctions for photocatalysis. Chem. Soc. Rev. 2024, 53, 3002–3035.
- 20.
Zhu, Y.Y.; He, Y.Y.; Li, Y.X.; Liu, C.H.; Lin, W. Heterogeneous porous synergistic photocatalysts for organic transformations. Chem. Eur. J. 2024, 30, e202400842.
- 21.
Mokhtar, M.; Basaleh, A.S.; Mohamed, R.M.; Khedr, T.M. Novel MnCo2O4/YVO4 heterostructure for promoting photocatalytic oxidative desulfurization of thiophene under visible light. Ceram. Internat. 2024, 50, 41145–41155.
- 22.
Xue, J.; Jia, X.; Sun, Z.; Li, H.; Shen, Q.; Liu, X.; Jia, H.; Zhu, Y. Selective CO2 photoreduction to C2 hydrocarbon via synergy between metastable ordered oxygen vacancies and hydrogen spillover over TiO2 nanobelts. Appl. Catal. B Environ. 2024, 342, 123372.
- 23.
Jia, T.; Meng, D.; Duan, R.; Ji, H.; Sheng, H.; Chen, C.; Li, J.; Song, W.; Zhao, J. Single-atom nickel on carbon nitride photocatalyst achieves semihydrogenation of alkynes with water protons via monovalent nickel. Angew. Chem. Int. Ed. 2023, 62, e202216511.
- 24.
Zhu, C.; Gong, C.; Cao, D.; Ma, L.L.; Liu, D.; Zhang, L.; Li, Y.; Peng, Y.; Yuan, G. Cobalt-metalated 1D perylene diimide carbon-organic framework for enhanced photocatalytic α-C(sp3)-H activation and CO2 reduction. Angew. Chem. Int. Ed. 2025, 137, e202504348.
- 25.
Hu, H.; Wang, Z.; Cao, L.; Zeng, L.; Zhang, C.; Lin, W.; Wang, C. Metal–organic frameworks embedded in a liposome facilitate overall photocatalytic water splitting. Nat. Chem. 2021, 13, 358–366.
- 26.
Basaleh, A.S.; Khedr, T.M.; Mohamed, R.M. Novel CoFe2O4/Bi2WO6 S-scheme heterostructure photocatalyst for effective and rapid visible-light-driven reduction of toxic nitrobenzene into industrially valuable aniline. Mater. Sci. Eng. B. 2024, 307, 117515.
- 27.
Chen, H.; Jena, H.S.; Feng, X.; Leus, K.; Voort, P.V.D. Engineering covalent organic frameworks as heterogeneous photocatalysts for organic transformations. Angew. Chem. Int. Ed. 2022, 61, e202204938.
- 28.
Zhang, T.; Jin, Y.; Shi, Y.; Li, M.; Li, J.; Duan, C. Modulating photoelectronic performance of metal–organic frameworks for premium photocatalysis. Coord. Chem. Rev. 2019, 380, 201–229.
- 29.
Yuan, L.; Qi, M.Y.; Tang, Z.R.; Xu, Y.J. Coupling strategy for CO2 valorization integrated with organic synthesis by heterogeneous photocatalysis. Angew. Chem. Int. Ed. 2021, 60, 21150–21172.
- 30.
Yang, X.; Wang, D. Photocatalysis: From fundamental principles to materials and applications. ACS Appl. Energy Mater. 2018, 1, 6657–6693.
- 31.
Adamowicz, W.; Yaemsunthorn, K.; Kobielusz, M.; Macyk, W. Photocatalytic transformation of organics to valuable chemicals-quo vadis? ChemPlusChem 2024, 89, e202400171.
- 32.
Kobielusz, M.; Mikrut, P.; Macyk, W. Photocatalytic synthesis of chemicals. Adv. Inorg. Chem. 2018, 72, 93–144.
- 33.
Wang, H.; Cao, C.; Li, D.; Ge, Y.; Chen, R.; Song, R.; Gao, W.; Wang, X.; Deng, X.; Zhang, H.; et al. Achieving high selectivity in photocatalytic oxidation of toluene on amorphous BiOCl nanosheets coupled with TiO2. J. Am. Chem. Soc. 2023, 145, 16852–16861.
- 34.
Fan, Q.; Zhu, L.; Li, X.; Ren, H.; Zhu, H.; Wu, G.; Ding, J. Visible-light photocatalytic selective oxidation of amine and sulfide with CsPbBr3 as photocatalyst. New J. Chem. 2021, 45, 13317.
- 35.
Wang, Y.; Huang, F.; Sheng, W.; Miao, X.; Li, X.; Gu, X.K.; Lang, X. Blue light photocatalytic oxidation of sulfides to sulfoxides with oxygen over a thiazole-linked 2D covalent organic framework. Appl. Catal. B Environ. 2023, 338, 123070.
- 36.
Jiang, X.; Wang, W.; Wang, H.; He, Z.H.; Yang, Y.; Wang, K.; Liu, Z.T.; Han, B. Solvent-free aerobic photocatalytic oxidation of alcohols to aldehydes over ZnO/C3N4. Green Chem. 2022, 24, 7652–7660.
- 37.
Li, Y.; Luan, T.X.; Cheng, K.; Zhang, D.; Fan, W.; Li, P.Z.; Zhao, Y.; Effective photocatalytic initiation of reactive oxygen species by a photoactive covalent organic framework for oxidation reactions. ACS Mater. Lett. 2022, 4, 1160–1167.
- 38.
Luo, L.; Zhang, T.; Wang, M.; Yun, R.; Xiang, X. Recent advances in heterogeneous photo-driven oxidation of organic molecules by reactive oxygen species. ChemSusChem 2020, 13, 5173–5184.
- 39.
Tao, X.; Zhao, Y.; Wang, S.; Li, C.; Li, R. Recent advances and perspectives for solar-driven water splitting using particulate photocatalysts. Chem. Soc. Rev. 2022, 51, 3561.
- 40.
Broggi, J.; Terme, T.; Vanelle, P. Organic electron donors as powerful single-electron reducing agents in organic synthesis. Angew. Chem. Int. Ed. 2014, 53, 384–413.
- 41.
Barham, J.P.; König, B. Synthetic photoelectrochemistry. Angew. Chem. Int. Ed. 2020, 59, 11732–11747.
- 42.
Narayanam, J.M.R.; Stephenson, C.R.J.; Visible light photoredox catalysis: Applications in organic synthesis. Chem. Soc. Rev. 2011, 40, 102–113.
- 43.
Liao, L.L.; Song, L.; Yan, S.S.; Ye, J.H.; Yu, D.G. Highly reductive photocatalytic systems in organic synthesis. Trends Chem. 2022, 4, 512–527.
- 44.
Charboneau, D.J.; Hazari, N.; Huang, H.; Uehling, M.R.; Zultanski, S.L. Homogeneous organic electron donors in nickel-catalyzed reductive transformations. J. Org. Chem. 2022, 87, 12, 7589–7609.
- 45.
Das, P.; Chakraborty, G.; Roeser, J.; Vogl, S.; Rabeah, J.; Thomas, A. Integrating bifunctionality and chemical stability in covalent organic frameworks via one-pot multicomponent reactions for solar-driven H2O2 production. J. Am. Chem. Soc. 2023, 145, 2975–2984.
- 46.
Cybularczyk-Cecotka, M.; Szczepanik, J.; Giedyk, M. Photocatalytic strategies for the activation of organic chlorides. Nat. Catal. 2020, 3, 872–886.
- 47.
Chang, P.; Cheng, H.; Zhao, F. Photocatalytic reduction of aromatic nitro compounds with Ag/AgxS composites under visible light irradiation. J. Phys. Chem. C 2021, 125, 26021–26030.
- 48.
Zhong, L.; Liao, X.; Cui, H.; Luo, H.; Lv, Y.; Liu, P. Highly efficient hydrogenation of α,β-unsaturated aldehydes to unsaturated alcohols over defective MOF-808 with constructed frustrated lewis pairs. ACS Catal. 2024, 14, 857–873.
- 49.
Wang, R.; Zheng, Z.; Li, Z.; Xu, X. Photocatalytic C-C coupling and H2 production with tunable selectivity based on ZnxCd1-xS solid solutions for benzyl alcohol conversions under visible light. Chem. Eng. J. 2024, 480, 147970.
- 50.
Blakemore, D.C.; Castro, L.; Churcher, I.; Rees, D.C.; Thomas, A.W.; Wilson, D.M.; Wood, A. Organic synthesis provides opportunities to transform drug discovery. Nat. Chem. 2018, 10, 383–394.
- 51.
Chen, B.; Wu, L.Z.; Tung, C.H. Photocatalytic activation of less reactive bonds and their functionalization via hydrogen-evolution cross-couplings. Acc. Chem. Res. 2018, 51, 2512–2523.
- 52.
Li, J.; Liu, T.; Singh, N.; Huang, Z.; Ding, Y.; Huang, J.; Sudarsanam, P.; Li, H. Photocatalytic C–N bond construction toward high-value nitrogenous chemicals. Chem. Commun. 2023, 59, 14341–14352.
- 53.
Fagnoni, M.; Dondi, D.; Ravelli, D.; Albini, A. Photocatalysis for the formation of the C−C bond. Chem. Rev. 2007, 107, 2725–2756.
- 54.
Luo, M.J.; Xiao, Q.; Li, J.H. Electro-/photocatalytic alkene-derived radical cation chemistry: Recent advances in synthetic applications. Chem. Soc. Rev. 2022, 51, 7206–7237.
- 55.
Juliá, F.; Constantin, T.; Leonori, D. Applications of halogen-atom transfer (XAT) for the generation of carbon radicals in synthetic photochemistry and photocatalysis. Chem. Rev. 2022, 122, 2292–2352.
- 56.
Ha, S.; Lee, Y.; Kwak, Y.; Mishra, A.; Yu, E.; Ryou, B.; Park, C.M. Alkyne-alkene [2 + 2] cycloaddition based on visible light photocatalysis. Nat. Commun. 2020, 11, 2509.
- 57.
Yoon, T.P. Visible light photocatalysis: The development of photocatalytic radical ion cycloadditions. ACS Catal. 2013, 3, 895–902.
- 58.
Latrache, M.; Hoffmann, N. Photochemical radical cyclization reactions with imines, hydrazones, oximes and related compounds. Chem. Soc. Rev. 2021, 50, 7418–7435.
- 59.
Ravelli, D.; Protti, S.; Fagnoni, M. Carbon-carbon bond forming reactions via photogenerated intermediates. Chem. Rev. 2016, 116, 9850–9913.
- 60.
Genzink, M.J.; Kidd, J.B.; Swords, W.B.; Yoon, T.P. Chiral photocatalyst structures in asymmetric photochemical synthesis. Chem. Rev. 2022, 122, 1654–1716.
- 61.
Liu, Q.; Wu, L.Z. Recent advances in visible-light-driven organic reactions. Natl. Sci. Rev. 2017, 4, 359–380.
- 62.
Nunzi, F.; Angelis, F.D. Modeling titanium dioxide nanostructures for photocatalysis and photovoltaics. Chem. Sci. 2022, 13, 9485–9497.
- 63.
Zhong, S.; Yu, D.; Ma, Y.; Lin, Y.; Wang, X.; Yu, Z.; Huang, M.; Hou, Y.; Anpo, M.; Yu, J.C.; et al. Oxygen vacancy-enhanced selectivity in aerobic oxidation of benzene to phenol over TiO2 photocatalysts. Angew. Chem. Int. Ed. 2025, 137, e202502823.
- 64.
Zoller, J.; Fabry, D.C.; Rueping, M. Unexpected dual role of titanium dioxide in the visible light heterogeneous catalyzed C−H arylation of heteroarenes. ACS Catal. 2015, 5, 3900–3904.
- 65.
Franchi, D.; Amara, Z.; Applications of sensitized semiconductors as heterogeneous visible-light photocatalysts in organic synthesis. ACS Sustainable Chem. Eng. 2020, 8, 15405–15429.
- 66.
Zhang, N.; Li, X.; Ye, H.; Chen, S.; Ju, H.; Liu, D.; Lin, Y.; Ye, W.; Wang, C.; Xu, Q.; et al. Oxide defect engineering enables to couple solar energy into oxygen activation. J. Am. Chem. Soc. 2016, 138, 8928–8935.
- 67.
Liu, C.; Chen, Z.; Su, C.; Zhao, X.; Qiang Gao, Q.; Ning, G.H.; Zhu, H.; Tang, W.; Leng, K.; Fu, W.; et al. Controllable deuteration of halogenated compounds by photocatalytic D2O splitting. Nat. Commun. 2018, 9, 80.
- 68.
Zhu, X.; Lin, Y.; Martin, J.S.; Sun, Y.; Zhu, D.; Yan, Y. Lead halide perovskites for photocatalytic organic synthesis. Nat. Commun. 2019, 10, 2843.
- 69.
Guo, Y.; Zhou, Q.; Zhu, B.; Tang, C.Y.; Zhu, Y. Advances in organic semiconductors for photocatalytic hydrogen evolution reaction. EES. Catal. 2023, 1, 333–352.
- 70.
Jia, T.; Meng, D.; Ji, H.; Sheng, H.; Chen, C.; Song, W.; Zhao, J.; Visible-light-driven semihydrogenation of alkynes via proton reduction over carbon nitride supported nickel. Appl. Catal. B Environ. 2022, 304, 121004.
- 71.
Ghos, I.; Khamrai, J.; Savateev, A.; Shlapakov, N.; Antonietti, M.; König, B. Organic semiconductor photocatalyst can bifunctionalize arenes and heteroarenes. Science 2019, 365, 360–366.
- 72.
Wang, L.; Huang, W.; Li, R.; Gehrig, D.; Blom, P.W.M.; Landfester, K.; Zhang, K.A.I. Structural design principle of small-molecule organic semiconductors for metal-free, visible-light-promoted photocatalysis. Angew. Chem. Int. Ed. 2016, 55, 9783–9787.
- 73.
Zhang, H.; Yu, K.; Wu, Z.; Zhu, Y. Ultrathin triphenylamine–perylene diimide polymer with D–A structure for photocatalytic oxidation of N-heterocycles using ambient air. EcoMat. 2022, 4, e12215.
- 74.
Deng, X.; Li, Z.; García, H. Visible light induced organic transformations using metal-organic-frameworks (MOFs). Chem. Eur. J. 2017, 23, 11189–11209.
- 75.
Chen, Y.Z.; Wang, Z.U.; Wang, H.; Lu, J.; Yu, S.H.; Jiang, H.L. Singlet oxygen-engaged selective photo-oxidation over Pt nanocrystals/porphyrinic MOF: The roles of photothermal effect and Pt electronic state. J. Am. Chem. Soc. 2017, 139, 2035–2044.
- 76.
Li, H.; Yang, Y.; He, C.; Zeng, L.; Duan, C. Mixed-ligand metal−organic framework for two-photon responsive photocatalytic C−N and C−C coupling reactions. ACS Catal. 2019, 9, 422–430.
- 77.
López-Magano, A.; Daliran, S.; Oveisi, A.R.; Mas-Ballesté, R.; Dhakshinamoorthy, A.; Alemán, J.; Garcia, H.; Luque, R. Recent advances in the use of covalent organic frameworks as heterogenous photocatalysts in organic synthesis. Adv. Mater. 2023, 35, 2209475.
- 78.
Jia, T.; Zhao, Y.; Song, W.; Zhao, J. Metallaphotocatalytic platforms based on covalent organic frameworks for cross-coupling reactions. ChemCatChem 2024, 16, e202301522.
- 79.
Zhi, Y.; Li, Z.; Feng, X.; Xia, H.; Zhang, Y.; Shi, Z.; Mu, Y.; Liu, M. Covalent organic frameworks as metal-free heterogeneous photocatalysts for organic transformations. J. Mater. Chem. A 2017, 5, 22933–22938.
- 80.
López-Magano, A.; Ortín-Rubio, B.; Imaz, I.; Maspoch, D.; Alemán, J.; Mas-Ballesté, R. Photoredox heterobimetallic dual catalysis using engineered covalent organic frameworks. ACS Catal. 2021, 11, 12344–12354.
- 81.
Zhang, M.Y.; Li, J.K.; Wang, R.; Zhao, S.N.; Zang, S.Q.; Mak, T.C.W. Construction of core–shell MOF@COF hybrids with controllable morphology adjustment of COF shell as a novel platform for photocatalytic cascade reactions. Adv. Sci. 2021, 8, 2101884.
- 82.
Nosaka, Y.; Nosaka, A.Y. Generation and detection of reactive oxygen species in photocatalysis. Chem. Rev. 2017, 117, 11302–11336.
- 83.
Huang, N.Y.; Zheng, Y.T.; Chen, D.; Chen, Z.Y.; Huang, C.Z.; Xu, Q. Reticular framework materials for photocatalytic organic reactions. Chem. Soc. Rev. 2023, 52, 7949–8004.
- 84.
Sheng, W.; Wang, X.; Wang, Y.; Chen, S.; Lang, X. Integrating TEMPO into a metal–organic framework for cooperative photocatalysis: Selective aerobic oxidation of sulfides. ACS Catal. 2022, 12, 11078–11088.
- 85.
Deng, Y.; Liu, Q.; Smith III, A.B. Oxidative [1,2]-brook rearrangements exploiting single-electron transfer: Photoredox-catalyzed alkylations and arylations. J. Am. Chem. Soc. 2017, 139, 9487–9490.
- 86.
Xiong, L.; Tang, J. Strategies and challenges on selectivity of photocatalytic oxidation of organic substances. Adv. Energy Mater. 2021, 11, 2003216.
- 87.
Li, Q.; Li, F.T. Recent advances in molecular oxygen activation via photocatalysis and its application in oxidation reactions. Chem. Eng. J. 2021, 421, 129915.
- 88.
Cheng, Q.; Yuan, Y.J.; Tang, R.; Liu, Q.Y.; Bao, L.; Wang, P.; Zhong, J.; Zhao, Z.; Yu, Z.T.; Zou, Z. Rapid hydroxyl radical generation on (001)-facet-exposed ultrathin anatase TiO2 nanosheets for enhanced photocatalytic lignocellulose-to-H2 conversion. ACS Catal. 2022, 12, 2118−2125.
- 89.
Zhang, H.; Li, S.; Qian, Z.; Yin, J.; Wei, W.; Zhao, Y.; Zhang, K.A.I. Efficient photocatalytic chloride dehalogenation by planar conjugated microporous polymers with enhanced charge separation and transport. Mater. Adv. 2024, 5, 2169–2174.
- 90.
Ghosh, I.; Ghosh, T.; Bardagi, J.I.; König, B. Reduction of aryl halides byconsecutive visible light-inducedelectron transfer processes. Science 2014, 346, 725–728.
- 91.
Luo, T.; Jeppesen, H.S.; Schoekel, A.; Bönisch, N.; Xu, F.; Zhuang, R.; Huang, Q.; Senkovska, I.; Bon, V.; Heine, T.; et al. Photocatalytic dehalogenation of aryl halides mediated by the flexible metal–organic framework MIL-53(Cr). Angew. Chem. Int. Ed. 2025, 64, e202422776.
- 92.
Wang, M.; Qian, J.; Wang, S.; Wen, Z.; Xiao, S.; Hu, H.; Gao, Y. Benzodiazole-based covalent organic frameworks for enhanced photocatalytic dehalogenation of phenacyl bromide derivatives. Polymers 2024, 16, 2578.
- 93.
Wang, Y.; Yang, Y.; Deng, Q.; Chen, W.; Zhang, Y.; Zhou, Y.; Zou, Z. Recent progress of amorphous porous organic polymers as heterogeneous photocatalysts for organic synthesis. Adv. Funct. Mater. 2023, 33, 2307179.
- 94.
Ma, L.; Liu, Y.L.; Liu, Y.; Jiang, S.Y.; Li, P.; Hao, Y.C.; Shao, P.P.; Yin, A.X.; Feng, X.; Wang, B. Ferrocene-linkage-facilitated charge separation in conjugated microporous polymers. Angew. Chem. Int. Ed. 2019, 58, 4221–4226.
- 95.
Li, Z.; Jiao, J.; Fu, W.; Gao, K.; Peng, X.; Wang, Z.; Zhuo, H.; Yang, C.; Yang, M.; Chang, G.; et al. Integration of perylene diimide into a covalent organic framework for photocatalytic oxidation. Angew. Chem. Int. Ed. 2024, 63, e202412977.
- 96.
Huang, T.; Kou, J.; Yuan, H.; Guo, H.; Yuan, K.; Li, H.; Wang, F.; Dong, Z. Linker modulation of covalent organic frameworks at atomic level for enhanced and selective photocatalytic oxidation of thioether. Adv. Funct. Mater. 2025, 35, 2413943.
- 97.
Shi, L.; Wang, Y.; Yan, B.; Song, W.; Shao, D.; Lu, A.H. Progress in selective oxidative dehydrogenation of light alkanes to olefins promoted by boron nitride catalysts. Chem. Commun. 2018, 54, 10936–10946.
- 98.
Wang, P.; Zhang, X.; Shi, R.; Jiaqi Zhao, J.; Waterhouse, G.I.N.; Tang, J.; Zhang, T. Photocatalytic ethylene production by oxidative dehydrogenation of ethane with dioxygen on ZnO-supported PdZn intermetallic nanoparticles. Nat. Commun. 2024, 15, 789.
- 99.
Hsueh, C.H.; He, C.; Zhang, J.; Tan, X.; Zhu, H.; Cheong, W.C.M.; Li, A.Z.; Chen, X.; Duan, H.; Zhao, Y.; et al. Three-dimensional mesoporous covalent organic framework for photocatalytic oxidative dehydrogenation to quinoline. J. Am. Chem. Soc. 2024, 146, 33857–33864.
- 100.
Chakraborty, A.; Roy, M.; Alam, A.; Adhikari, D.; Pachfule, P. Covalent organic frameworks as heterogeneous photocatalysts for cross-coupling reactions. Green Chem. 2024, 26, 9619–9651.
- 101.
Ghasimi, S.; Bretschneider, S.A.; Huang, W.; Landfester, K.; Zhang, K.A.I. A conjugated microporous polymer for palladium-free, visible light-promoted photocatalytic stille-type coupling reactions. Adv. Sci. 2017, 4, 1700101.
- 102.
Talekar, S.S.; Dutta, S.; Mane, M.V.; Maity, B. Visible light-induced photoredox and copper-catalyzed C−N cross-coupling: A mechanistic perspective. Eur. J. Org. Chem. 2024, 27, e202301312.
- 103.
Xing, C.; Yu, G.; Chen, T.; Liu, S.; Sun, Q.; Liu, Q.; Hu, Y.; Liu, H.; Li, X. Perylenetetracarboxylic diimide covalently bonded with mesoporous g-C3N4 to construct direct Z-scheme heterojunctions for efficient photocatalytic oxidative coupling of amines. Appl. Catal. B Environ. 2021, 298, 120534.
- 104.
Li, S.; Li, L.; Li, Y.; Dai, L.; Liu, C.; Liu, Y.; Li, J.; Lv, J.; Li, P.; Wang, B. Fully conjugated donor-acceptor covalent organic frameworks for photocatalytic oxidative amine coupling and thioamide cyclization. ACS Catal. 2020, 10, 8717–8726.
- 105.
Yang, M.; Lian, R.; Zhang, X.; Wang, C.; Cheng, J.; Wang, X. Photocatalytic cyclization of nitrogencentered radicals with carbon nitride through promoting substrate/catalyst interaction. Nat. Commun. 2022, 13, 4900.
- 106.
Subudhi, S.; Rath, D.; Parida, K.M. A mechanistic approach towards the photocatalytic organic transformations over functionalised metal organic frameworks: A review. Catal. Sci. Technol. 2018, 8, 679–696.