- 1.
Baxter, K.; Preston, C.L. Stockley’s Drug Interactions; Pharmaceutical Press: London, UK, 2010.
- 2.
Hales, C.M.; Servais, J.; Martin, C.B.; Kohen, D. Prescription Drug Use among Adults Aged 40–79 in the United States and Canada; CDC: Atlanta, GA, USA, 2019.
- 3.
Kim, Y.; Zheng, S.; Tang, J.; Zheng, J.W.; Li, Z.; Jiang, X. Anticancer drug synergy prediction in understudied tissues using transfer learning. J. Am. Med. Inform. Assoc. 2021, 28, 42–51.
- 4.
Vilar, S.; Uriarte, E.; Santana, L.; Lorberbaum, T.; Hripcsak, G.; Friedman, C.; Tatonetti, N.P. Similarity-based modeling in large-scale prediction of drug-drug interactions. Nat. Protoc. 2014, 9, 2147–2163.
- 5.
- 6.
- 7.
Ryu, J.Y.; Kim, H.U.; Lee, S.Y. Deep learning improves prediction of drug–drug and drug–food interactions. Proc. Natl. Acad. Sci. USA 2018, 115, E4304–E4311.
- 8.
Gilmer, J.; Schoenholz, S.S.; Riley, P.F.; Vinyals, O.; Dahl, G.E. Neural message passing for quantum chemistry. In Proceedings of the International Conference on Machine Learning, Sydney, Australi, 6 August 2017.
- 9.
Feng, Y.-H.; Zhang, S.-W. Prediction of drug-drug interaction using an attention-based graph neural network on drug molecular graphs. Molecules 2022, 27, 3004.
- 10.
Bai, Y.; Gu, K.; Sun, Y.; Wang, W. Bi-level graph neural networks for drug-drug interaction prediction. arXiv 2020, arXiv:2006.14002.
- 11.
Wang, Y.; Min, Y.; Chen, X.; Wu, J. Multi-view graph contrastive representation learning for drug-drug interaction prediction. Proc. Web Conf. 2021, 2021, 2921–2933.
- 12.
Wang, H.; Kaddour, J.; Liu, S.; Tang, J.; Lasenby, J.; Liu, Q. Evaluating self-supervised learning for molecular graph embeddings. arXiv 2022, arXiv:2206.08005.
- 13.
You, Y.; Chen, T.; Wang, Z.; Shen, Y. When does self-supervision help graph convolutional networks? In Proceedings of the International Conference on Machine Learning, Online, 21 November 2020.
- 14.
Wu, L.; Lin, H.; Tan, C.; Gao, Z.; Li, S.Z. Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 2021, 35, 4216–4235.
- 15.
Liu, S.; Wang, H.; Liu, W.; Lasenby, J.; Guo, H.; Tang, J. Pre-training molecular graph representation with 3d geometry. arXiv 2021, arXiv:2110.07728.
- 16.
Hu, W.; Liu, B.; Gomes, J.; Zitnik, M.; Liang, P.; Pande, V.; Leskovec, J. Strategies for pre-training graph neural networks. arXiv 2019, arXiv:1905.12265.
- 17.
Wu, Z.; Ramsundar, B.; Feinberg, E.N.; Gomes, J.; Geniesse, C.; Pappu, A.S.; Leswing, K.; Pande, V. MoleculeNet: A benchmark for molecular machine learning. Chem. Sci. 2018, 9, 513–530.
- 18.
Zitnik, M.; Sosič, R.; Feldman, M.W.; Leskovec, J. Evolution of resilience in protein interactomes across the tree of life. Proc. Natl. Acad. Sci. USA 2019, 116, 4426–4433.
- 19.
Ramsundar, B.; Eastman, P.; Walters, P.; Pande, V. Deep Learning for the Life Sciences: Applying Deep Learning to Genomics, Microscopy, Drug Discovery, and More; O’Reilly Media, Inc.: Sebastopol, CA, USA, 2019.
- 20.
Bemis, G.W.; Murcko, M.A. The properties of known drugs. 1. Molecular frameworks. J. Med. Chem. 1996, 39, 2887–2893.
- 21.
Chen, B.; Sheridan, R.P.; Hornak, V.; Voigt, J.H. Comparison of Random Forest and Pipeline Pilot Naïve Bayes in Prospective QSAR Predictions. J. Chem. Inf. Model. 2012, 52, 792–803.
https://doi.org/10.1021/ci200615h.
- 22.
Sheridan, R.P. Time-Split Cross-Validation as a Method for Estimating the Goodness of Prospective Prediction. J. Chem. Inf. Model. 2013, 53, 783–790.
https://doi.org/10.1021/ci400084k.
- 23.
Zellinger, W.; Grubinger, T.; Lughofer, E.; Natschläger, T.; Saminger-Platz, S. Central Moment Discrepancy (CMD) for Domain-Invariant Representation Learning. arXiv 2017, arXiv:1702.08811.
- 24.
Landrum, G. Rdkit: A software suite for cheminformatics, computational chemistry, and predictive modeling. Greg Landrum 2013, 8, 5281.
- 25.
Xu, Y.; Ma, J.; Liaw, A.; Sheridan, R.P.; Svetnik, V. Demystifying Multitask Deep Neural Networks for Quantitative Structure–Activity Relationships. J. Chem. Inf. Model. 2017, 57, 2490–2504.
https://doi.org/10.1021/acs.jcim.7b00087.
- 26.
Ching, T.; Himmelstein, D.S.; Beaulieu-Jones, B.K.; Kalinin, A.A.; Brian, T.D.; Gregory, P.W.; Ferrero, E.; Agapow, P.-M.; Zietz, M.; Hoffman, M.M.; et al. Opportunities and Obstacles for Deep Learning in Biology and Medicine. J. R. Soc. Interface 2018, 15, 20170387.
https://doi.org/10.1098/rsif.2017.0387.
- 27.
Wang, J.; Agarwal, D.; Huang, M.; Hu, G.; Zhou, Z.; Ye, C.; Zhang, N.R. Data denoising with transfer learning in single-cell transcriptomics. Nat. Methods 2019, 16, 875–878.
https://doi.org/10.1038/s41592-019-0537-1.
- 28.
- 29.
Mikolov, T.; Sutskever, I.; Chen, K.; Corrado, G.S.; Dean, J. Distributed Representations of Words and Phrases and Their Compositionality; Curran Associates, Inc.: San Francisco, CA, USA, 2013.
- 30.
Hamilton, W.; Ying, Z.; Leskovec, J. Inductive Representation Learning on Large Graphs; Curran Associates, Inc.: San Francisco, CA, USA, 2017.
- 31.
Devlin, J.; Chang, M.-W.; Lee, K.; Toutanova, K. BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. arXiv 2018, arXiv:1810.04805.
- 32.
Zhang, W.; Chen, Y.; Liu, F.; Luo, F.; Tian, G.; Li, X. Predicting potential drug-drug interactions by integrating chemical, biological, phenotypic and network data. BMC Bioinform. 2017, 18, 18.
https://doi.org/10.1186/s12859-016-1415-9.
- 33.
Zitnik, R.S.M.; Maheshwari, S.; Leskovec, J. BioSNAP Datasets: Stanford Biomedical Network Dataset Collection. Available online:
http://snap.stanford.edu/biodata (accessed on 1 August 2018).
- 34.
Weininger, D. SMILES, a chemical language and information system. 1. Introduction to methodology and encoding rules. J. Chem. Inf. Comput. Sci. 1988, 28, 31–36.
- 35.
Kipf, T.N.; Welling, M. Semi-Supervised Classification with Graph Convolutional Networks. arXiv 2016, arXiv:1609.02907.
- 36.
Xu, K.; Hu, W.; Leskovec, J.; Jegelka, S. How Powerful are Graph Neural Networks? arXiv 2018, arXiv:1810.00826.
- 37.
Hamilton, W.; Ying, Z.; Leskovec, J. Inductive Representation Learning on Large Graphs; Curran Associates, Inc.: San Francisco, CA, USA, 2017.
- 38.
Li, J.; Rong, Y.; Cheng, H.; Meng, H.; Huang, W.; Huang, J. Semi-Supervised Graph Classification: A Hierarchical Graph Perspective. In Proceedings of the World Wide Web Conference, San Francisco, CA, USA, 13–17 May 2019.
- 39.
Ross, J.; Belgodere, B.; Chenthamarakshan, V.; Padhi, I.; Mroueh, Y.; Das, P. Large-scale chemical language representations capture molecular structure and properties. Nat. Mach. Intell. 2022, 4, 1256–1264.
https://doi.org/10.1038/s42256-022-00580-7.