- 1.
Saeed, S.A.; Masters, R.M. Disparities in health care and the digital divide. Curr. Psychiatry Rep. 2021, 23, 1–6.
- 2.
Persad, G.; Wertheimer, A.; Emanuel, E.J. Principles for allocation of scarce medical interventions. Lancet 2009, 373, 423–431.
- 3.
Hamilton, P.T.; Anholt, B.R.; Nelson, B.H. Tumour immunotherapy: Lessons from predator–prey theory. Nat. Rev. Immunol. 2022, 22, 765–775.
- 4.
Galassi, C.; Chan, T.A.; Vitale, I.; et al. The hallmarks of cancer immune evasion. Cancer Cell 2024, 42, 1825–1863.
- 5.
Shoham, Y.; Leyton-Brown, K. Multiagent Systems: Algorithmic, Game-Theoretic, and Logical Foundations; Cambridge University Press: Cambridge, UK, 2008.
- 6.
Lu, J.; Zhang, H.; Zhou, P.; et al. Fedlaw: Value-aware federated learning with individual fairness and coalition stability. In Proceedings of the IEEE Transactions on Emerging Topics in Computational Intelligence, Online, 18 September 2024.
- 7.
Chang, S.L.; Piraveenan, M.; Pattison, P.; et al. Game theoretic modelling of infectious disease dynamics and intervention methods: A review. J. Biol. Dyn. 2020, 14, 57–89.
- 8.
Tzu, S. The art of war. In Strategic Studies; Routledge: Abingdon, UK, 2008; pp. 63–91.
- 9.
Verstappen, S.H. The Thirty-Six Strategies. 2017. Available online: https://www.chinastrategies.com/wp-content/uploads/2017/04/The-Thirty-Six-Strategies.pdf (ccessed on 30 July 2025).
- 10.
Wang, S.; de Vricourt, F.; Sun, P. Decentralized resource allocation to control an epidemic: A game theoretic approach. Math. Biosci. 2009, 222, 1–12.
- 11.
Mamani, H.; Chick, S.E.; Simchi-Levi, D. A game-theoretic model of international influenza vaccination coordination. Manag. Sci. 2013, 59, 1650–1670.
- 12.
Abedrabboh, K.; Al-Majid, L.; Al-Fagih, Z.; et al. Mechanism design for a fair and equitable approach to global vaccine distribution: The case of COVID-19. PLOS Global Public Health 2023, 3, e0001711.
- 13.
Smith, D.L.; Levin, S.A.; Laxminarayan, R. Strategic interactions in multi-institutional epidemics of antibiotic resistance. Proc. Natl. Acad. Sci. USA 2005, 102, 3153–3158.
- 14.
Kareva, I.; Berezovskaya, F. Cancer immunoediting: a process driven by metabolic competition as a predator–prey–shared resource type model. J. Theor. Biol. 2015, 380, 463–472.
- 15.
Kareva, I.; Luddy, K.A.; O’Farrelly, C.; et al. Predator-prey in tumor-immune interactions: A wrong model or just an incomplete one? Front. Immunol. 2021, 12, 668221.
- 16.
Hausser, J.; Alon, U. Tumour heterogeneity and the evolutionary trade-offs of cancer. Nat. Rev. Cancer 2020, 20, 247–257.
- 17.
Vitale, I.; Shema, E.; Loi, S.; et al. Intratumoral heterogeneity in cancer progression and response to immunotherapy. Nat. Med. 2021, 27, 212–224.
- 18.
Hu, L.; Wu, Y. Predict to minimize swap regret for all payoff-bounded tasks. In Proceedings of the 2024 IEEE 65th Annual Symposium on Foundations of Computer Science (FOCS), Chicago, IL, USA, 27–30 October 2024; pp. 244–263.
- 19.
Guo, Z.; Wu, Y.; Hartline, J.D.; et al. A decision theoretic framework for measuring ai reliance. In Proceedings of the 2024 ACM Conference on Fairness, Accountability, and Transparency, Rio de Janeiro, Brazil, 3–6 June 2024; pp. 221–236.
- 20.
Yu, J.; Zhang, Y.; Sun, C. Multi-agent evolutionary reinforcement learning based on cooperative games. In Proceedings of the IEEE Transactions on Emerging Topics in Computational Intelligence, Virtual, 5 September 2024.
- 21.
Salvioli, M.; Garjani, H.; Satouri, M.; et al. Stackelberg evolutionary games of cancer treatment: What treatment strategy to choose if cancer can be stabilized? Dyn. Games Appl. 2024,2024, 1–20.
- 22.
Lu, Y.; Chu, Q.; Li, Z.; et al. Deep reinforcement learning identifies personalized intermittent androgen deprivation therapy for prostate cancer. Briefings Bioinform. 2024, 25, bbae071.
- 23.
Sun, C.; Li, Y.; Marini, S.; et al. Phylogenetic-informed graph deep learning to classify dynamic transmission clusters in infectious disease epidemics. Bioinform. Adv. 2024, 4, vbae158.
- 24.
Zhang, Z.; Huang, M.; Jiang, Z.; et al. Patient-specific deep learning model to enhance 4d-cbct image for radiomics analysis. Phys. Med. Biol. 2022, 67, 085003.
- 25.
Handawi, K.A.; Kokkolaras, M. Optimization of infectious disease prevention and control policies using artificial life. IEEE Trans. Emerg. Top. Comput. Intell. 2021, 6, 26–40.
- 26.
Ouyang, H.; Liu, D.; Li, S.; et al. Two-stage deep feature selection method using voting differential evolution algorithm for pneumonia detection from chest x-ray images. In Proceedings of the IEEE Transactions on Emerging Topics in Computational Intelligence, Virtual, 26 July 2024.
- 27.
Zhao, L.; Zhang, Y.; Luo, X.; et al. Selecting heterogeneous features based on unified density-guided neighborhood relation for complex biomedical data analysis. In Proceedings of the 2023 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), Istanbul, Turkiye, 5–8 December 2023; pp. 771–778.
- 28.
Chen, Q.; Xie, W.; Zhou, P.; et al. Multi-crop convolutional neural networks for fast lung nodule segmentation. IEEE Trans. Emerg. Top. Comput. Intell. 2021, 6, 1190–1200.
- 29.
Yau, T.; Galle, P.R.; Decaens, T.; et al. Nivolumab plus ipilimumab versus lenvatinib or sorafenib as first-line treatment for unresectable hepatocellular carcinoma (checkmate 9dw): An open-label, randomised, phase 3 trial. Lancet 2025, 405, 1851–1864.
- 30.
Guo, S.; Guan, J.; Zhou, S. Diffusing on two levels and optimizing for multiple properties: A novel approach to generating molecules with desirable properties. In Proceedings of the IEEE/ACM Transactions on Computational Biology and Bioinformatics, Virtual, 26 July 2024.
- 31.
Jin, C.; Guo, S.; Zhou, S.; et al. Effective and explainable molecular property prediction by chain-of-thought enabled large language models and multi-modal molecular information fusion. J. Chem. Inf. Model. 2025, 65, 5438–5455.
- 32.
Li, Y.; Zhou, D.; Zheng, G.; et al. Dyscore: A boosting scoring method with dynamic properties for identifying true binders and nonbinders in structure-based drug discovery. J. Chem. Inf. Model. 2022, 62, 5550–5567.
- 33.
Zhu, J.; Wei, Y.; Kang, Y.; et al. Adaptive deep reinforcement learning for non-stationary environments. Sci. China Inf. Sci. 2022, 65, i202204.
- 34.
Liu, Z.; Lu, J.; Zhang, G.; et al. A behavior-aware approach for deep reinforcement learning in non-stationary environments without known change points. arXiv 2024, arXiv:2405.14214.
- 35.
Brown, N.; Bakhtin, A.; Lerer, A.; et al. Combining deep reinforcement learning and search for imperfect-information games. Adv. Neural Inf. Process. Syst. 2020, 33, 17057–17069.
- 36.
Meta Fundamental AI Research Diplomacy Team (FAIR); Bakhtin, A.; Brown, N.; et al. Human-level play in the game of diplomacy by combining language models with strategic reasoning. Science 2022, 378, 1067–1074.
- 37.
Li, Z.; Duan, Z.; Chen, G.; et al. Consensus of multiagent systems and synchronization of complex networks: A unified viewpoint. Trans. Circuits Syst. IRegul. Pap. 2009, 57, 213–224.
- 38.
Hao, Q.; Xu, F.; Chen, L.; et al. Hierarchical multi-agent model for reinforced medical resource allocation with imperfect information. ACM Trans. Intell. Syst. Technol. 2022, 14, 1–27.
- 39.
Chen, X.; Yi, H.; You, M.; et al. Enhancing diagnostic capability with multi-agents conversational large language models. NPJ Digit. Med. 2025, 8, 159.
- 40.
Vyklyuk, Y.; Manylich, M.; koda, M.; et al. Modeling and analysis of different scenarios for the spread of covid-19 by using the modified multi-agent systems–evidence from the selected countries. Results Phys. 2021, 20, 103662.
- 41.
Zhang, Y.; Zhou, Y.; Jiang, C.; et al. Plug-in electric vehicle charging with multiple charging options: A systematic analysis of service providers’ pricing strategies. IEEE Trans. Smart Grid 2020, 12, 524–537.
- 42.
Jin, W.; Du, H.; Zhao, B.; et al. A comprehensive survey on multi-agent cooperative decision-making: Scenarios, approaches, challenges and perspectives. arXiv 2025, arXiv:2503.13415.
- 43.
Hou, Y.; Sun, M.; Zhu, W.; et al. Behavior reasoning for opponent agents in multi-agent learning systems. IEEE Trans. Emerg. Top. Comput. Intell. 2022, 6, 1125–1136.
- 44.
Nashed, S.; Zilberstein, S. A survey of opponent modeling in adversarial domains. J. Artif. Intell. Res. 2022, 73, 277–327.
- 45.
Wu, J.; Li, J.; Wang, Y.; et al. Optimal defense strategy against evasion attacks. In Proceedings of the 2020 16th International Conference on Mobility, Sensing and Networking (MSN), Tokyo, Japan, 17–19 December 2020; pp. 323–329.
- 46.
Jing, Y.; Liu, B.; Li, K.; et al. Opponent modeling with in-context search. Adv. Neural Inf. Process. Syst. 2024, 37, 61549–61591.
- 47.
Yu, X.; Jiang, J.; Lu, Z. Opponent modeling based on subgoal inference. Adv. Neural Inf. Process. Syst. 2024, 37, 60531–60555.
- 48.
Hartman, A.L. The role of military strategies in medical thinking. Perspect. Biol. Med. 1993, 36, 177–183.
- 49.
Tomic, D.; Shaw, J.E.; Magliano, D.J. The burden and risks of emerging complications of diabetes mellitus. Nat. Rev. Endocrinol. 2022, 18, 525–539.
- 50.
VanderWeele, T.J.; Ding, P. Sensitivity analysis in observational research: introducing the e-value. Ann. Intern. Med. 2017, 167, 268–274.
- 51.
Rosenbaum, P.R.; Rosenbaum, P.R. Overt Bias in Observational Studies; Springer: Berlin, Germany, 2002.
- 52.
Lipsitch, M.; Tchetgen, E.T.; Cohen, T. Negative controls: A tool for detecting confounding and bias in observational studies. Epidemiology 2010, 21, 383–388.
- 53.
Wu, W.; Guo, F.; Wang, C.; et al. Biomimetic “trojan horse” nanoparticles with biotactic behavior toward tumor-associated bacteria for targeted therapy of colorectal cancer. Cell Biomater. 2025, 1, 100092.
- 54.
Yoshimura, M.; Kurumadani, H.; Hirata, J.; et al. Case report: Virtual reality training for phantom limb pain after amputation. Front. Hum. Neurosci. 2023, 17, 1246865.
- 55.
Simsek, C.; Esin, E.; Yalcin, S. Metronomic chemotherapy: a systematic review of the literature and clinical experience. J. Oncol. 2019, 2019, 5483791.