- 1.
Chen, H. Elegant Scholar Sipping Wine, Ming Dynasty. Artwork preserved at the Shanghai Museum, Shanghai, China.
- 2.
Chenghua. The Eight Immortals Drinking (partial), Ming Dynasty. Artwork preserved at the Palace Museum, Beijing, China.
- 3.
Pourreza, R.; Bhattacharyya, A.; Panchal, S.; et al. Painter: Teaching Auto-regressive Language Models to Draw Sketches. In Proceedings of the 2023 IEEE/CVF International Conference on Computer Vision Workshops (ICCVW), Paris, France, 2–3 October 2023; pp. 305–314.
- 4.
Rombach, R.; Blattmann, A.; Lorenz, D.; et al. High-Resolution Image Synthesis with Latent Diffusion Models. In Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), New Orleans, LA, USA, 18–24 June 2022; pp. 10674–10685.
- 5.
Qu, L.; Wu, S.; Fei, H.; et al. LayoutLLM-T2I: Eliciting Layout Guidance from LLM for Text-to-Image Generation. In Proceedings of the 31st ACM International Conference on Multimedia (MM ’23), Ottawa, ON, Canada, 29 October–3 November 2023; pp. 643–654.
- 6.
Yang, Z.; Peng, D.; Kong, Y.; et al. FontDiffuser: One-Shot Font Generation via Denoising Diffusion with Multi-Scale Content Aggregation and Style Contrastive Learning. Proc. AAAI Conf. Artif. Intell. 2024, 38, 6603–6611.
- 7.
Follmer, S.; Brade, S.; Wang, B.; et al. Promptify: Text-to-Image Generation through Interactive Prompt Exploration with Large Language Models. In ACM Symposium on User Interface Software and Technology, UIST; Association for Computing Machinery: New York,NY, USA, 2023.
- 8.
Arawjo, I.; Swoopes, C.; Vaithilingam, P.; et al. ChainForge: A Visual Toolkit for Prompt Engineering and LLM Hypothesis Testing. In Proceedings of the CHI Conference on Human Factors in Computing Systems (CHI ’24), Honolulu, HI, USA, 11–16 May 2024.
- 9.
Zhang, Y.; Fang, Z.; Yang, X.; et al. Reconnecting the Broken Civilization: Patchwork Integration of Fragments from Ancient Manuscripts. In Proceedings of the 31st ACM International Conference on Multimedia (MM ’23), Ottawa, ON, Canada, 29 October–3 November 2023; pp. 1157–1166.
- 10.
Zhu, S.; Xue, H.; Nie, N.; et al. Reproducing the Past: A Dataset for Benchmarking Inscription Restoration. In Proceedings of the 32nd ACM International Conference on Multimedia (MM ’24), Melbourne, VIC, Australia, 28 October–1 November 2024; pp. 7714–7723.
- 11.
Pan, J.; Li, L.; Yamaguchi, H.; et al. Reconstructing, Understanding, and Analyzing Relief Type Cultural Heritage from a Single Old Photo. In Proceedings of the 32nd ACM International Conference on Multimedia (MM ’24), Melbourne, VIC, Australia, 28 October–1 November 2024; pp. 7724–7733.
- 12.
Bin, Y.; Shi, W.; Ding, Y.; et al. GalleryGPT: Analyzing Paintings with Large Multimodal Models. In Proceedings of the 32nd ACM International Conference on Multimedia (MM ’24), Melbourne, VIC, Australia, 28 October–1 November 2024; pp. 7734–7743.
- 13.
Silva, M. Interaction with Immersive Cultural Heritage Environments: Using XR Technologies to Represent Multiple Perspectives on Serralves Museum. In Proceedings of the 30th ACM International Conference on Multimedia (MM ’22), Lisboa, Portugal, 10–14 October 2022; pp. 6920–6924.
- 14.
Rachabatuni, P.K.; Principi, F.; Mazzanti, P.; et al. Context-aware chatbot using MLLMs for Cultural Heritage. In Proceedings of the ACM Multimedia Systems Conference (MMSys ’24), Bari, Italy, 15–18 April 2024; pp. 459–463.
- 15.
Zhou, A.L.; Zhang, K. Shanshui Journey: Using AI to Reproduce the Experience of Chinese Literati Ink Paintings. Leonardo 2024, 57, 370–378.
- 16.
Isola, P.; Zhu, J.Y.; Zhou, T.; et al. Image-to-Image Translation with Conditional Adversarial Networks. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 5967–5976.
- 17.
Zhu, J.Y.; Park, T.; Isola, P.; et al. Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks. In Proceedings of the 2017 IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017; pp. 2242–2251.
- 18.
Kim, J.; Kim, M.; Kang, H.; et al. U-GAT-IT: Unsupervised Generative Attentional Networks with Adaptive Layer-Instance Normalization for Image-to-Image Translation. In Proceedings of the International Conference on Learning Representations (ICLR), Addis Ababa, Ethiopia, 26–30 April 2020.
- 19.
Cai, Y.T. zi2zi: Master Chinese Calligraphy with Conditional Adversarial Networks. 2017. Available online: https://github.com/kaonashi-tyc/zi2zi (accessed on 14 January 2024).
- 20.
Chang, B.; Zhang, Q.; Pan, S.; et al. Generating Handwritten Chinese Characters Using CycleGAN. In Proceedings of the 2018 IEEE Winter Conference on Applications of Computer Vision (WACV), Lake Tahoe, NV, USA, 12–15 March 2018; pp. 199–207.
- 21.
Liu, R.; Yuan, S.; Chen, M.; et al. MaLiang: An Emotion-driven Chinese Calligraphy Artwork Composition System. In Proceedings of the 28th ACM International Conference on Multimedia (MM ’20), New York, NY, USA, 12–16 October; pp. 4394–4396.
- 22.
Zhou, P.; Zhao, Z.; Zhang, K.; et al. An End-to-End Model for Chinese Calligraphy Generation. Multimed. Tools Appl. 2021, 80, 6737–6754.
- 23.
Tuo, Y.; Xiang, W.; He, J.Y.; et al. AnyText: Multilingual Visual Text Generation and Editing. arXiv 2023, arXiv:2311.03054.
- 24.
Chen, Y.S.; Chao, M.T. Skeletonization application: Chinese calligraphy character representation and reconstruction. J. Electron. Imaging 2018, 27, 051202.
- 25.
Chao, M.T.; Chen, Y.S. A compact representation of character skeleton using skeletal line based shape descriptor. In Applications of Digital Image Processing XLII; Tescher, A.G., Ebrahimi, T., Eds.; SPIE: San Diego, CA, USA, 2019; p. 99.
- 26.
Wang, T.Q.; Liu, C.L. Fully Convolutional Network Based Skeletonization for Handwritten Chinese Characters. Proc. AAAI Conf. Artif. Intell. 2018, 32, 11868.
- 27.
Wang, T.Q.; Jiang, X.; Liu, C.L. Query Pixel Guided Stroke Extraction with Model-Based Matching for Offline Handwritten Chinese Characters. Pattern Recognit. 2022, 123, 108416.
- 28.
Jiang, Y.; Lian, Z.; Tang, Y.; et al. SCFont: Structure-Guided Chinese Font Generation via Deep Stacked Networks. Proc. AAAI Conf. Artif. Intell. 2019, 33, 4015–4022.
- 29.
Lian, Z.; Zhao, B.; Xiao, J. Automatic generation of large-scale handwriting fonts via style learning. In SIGGRAPH Asia 2016 Technical Briefs; ACM: Macau, China, 2016; pp. 1–4.
- 30.
Yuan, S.; Dai, A.; Yan, Z.; et al. Learning to Generate Poetic Chinese Landscape Painting with Calligraphy. arXiv 2023, arXiv:2305.04719.
- 31.
Cai, R.; She, J. Pop Calligraphy Artwork: AI Meets Guangzhong Wu on Social Media. In Proceedings of the 17th International Symposium on Visual Information Communication and Interaction, New York, NY, USA, 11–13 December 2024.
- 32.
ELsharif, W.; Agus, M.; Alzubaidi, M.; et al. Cultural Relevance Index: Measuring Cultural Relevance in AI-Generated Images. In Proceedings of the IEEE 7th International Conference on Multimedia Information Processing and Retrieval (MIPR), San Jose, CA, USA, 7–9 August 2024; pp. 410–416.