- 1.
Li, X.; Zhang, Y.; Tiwari, P.; et al. EEG based emotion recognition: a tutorial and review. Acm Comput. Surv. 2022, 55, 1–57.
- 2.
Zhao, S.; Hong, X.; Yang, J. Toward label-efficient emotion and sentiment analysis. Proc. IEEE 2023, 111, 1159–1197.
- 3.
Zhao, S.; Yao, X.; Yang, J. Affective image content analysis: two decades review and new perspectives. IEEE Trans. Pattern Anal. Mach. Intell. 2021, 44, 6729–6751.
- 4.
Wang, Y.; Zhang, B.; Di, L. Research progress of EEG-based emotion recognition: A survey. Acm Comput. Surv. 2024, 56, 1–49.
- 5.
Wang, X.W.; Nie, D.; Lu, B.L. Emotional state classification from EEG data using machine learning approach. Neurocomputing 2014, 129, 94–106.
- 6.
Ding, Y.; Robinson, N.; Zhang, S.; et al. TSception: capturing temporal dynamics and spatial asymmetry from EEG for emotion recognition. IEEE Trans. Affect. Comput. 2023, 14, 2238–2250.
- 7.
Tao, W.; Li, C.; Song, R. EEG-based emotion recognition via channel-wise attention and self attention. IEEE Trans. Affect. Comput. 2023, 14, 382–393.
- 8.
Li, Y.; Wang, L.; Zheng, W. A novel bi-hemispheric discrepancy model for EEG emotion recognition. IEEE Trans. Cogn. Dev. Syst. 2021, 13, 354–367.
- 9.
Li, Y.; Zheng, W.; Wang, L. From regional to global brain: a novel hierarchical spatial-temporal neural network model for EEGemotion recognition. IEEE Trans. Affect. Comput. 2022, 13, 568–578.
- 10.
Song, T.; Zheng, W.; Song, P. EEG emotion recognition using dynamical graph convolutional neural networks. IEEE Trans. Affect. Comput. 2020, 11, 532–541.
- 11.
Zhong, P.; Wang, D.; Miao, C. EEG-based emotion recognition using regularized graph neural networks. IEEE Trans. Affect. Comput. 2022, 13, 1290–1301.
- 12.
Zhou, Y.; Li, F.; Li, Y.; et al. Progressive graph convolution network for EEG emotion recognition. Neurocomputing 2023, 544, 126262–126273.
- 13.
Jin, M.; Du, C.; He, H. PGCN: pyramidal graph convolutional network for EEG emotion recognition. IEEE Trans. Multimed. 2024, 26, 9070–9082.
- 14.
Power, J.D.; Cohen, A.L.; Nelson, S.M. Functional network organization of the human brain. Neuron 2011, 72, 665–678.
- 15.
Nolen-Hoeksema, S. Gender differences in depression. Curr. Dir. Psychol. Sci. 2001, 10, 173–176.
- 16.
Thayer, J.F.; Rossy, L.A.; Ruiz-Padial, E. Gender differences in the relationship between emotional regulation and depressive symptoms. Cogn. Ther. Res. 2003, 27, 349–364.
- 17.
Stevens, J.S.; Hamann, S. Sex differences in brain activation to emotional stimuli: a meta-analysis of neuroimaging studies. Neuropsychologia 2012, 50, 1578–1593.
- 18.
Weiss, E.; Siedentopf, C.M.; Hofer, A. Sex differences in brain activation pattern during a visuospatial cognitive task: a functional magnetic resonance imaging study in healthy volunteers. Neurosci. Lett. 2003, 344, 169–172.
- 19.
Zhu, J.Y.; Zheng, W.L.; Lu, B.L. Cross-subject and cross-gender emotion classification from EEG. In Proceedings of the World Congress on Medical Physics and Biomedical Engineering, Toronto, Canada, 7–12 June 2015.
- 20.
Yan, X.; Zheng, W.L.; Liu, W. Investigating gender differences of brain areas in emotion recognition using LSTM neural network. In Proceedings of the 24th International Conference on Neural Information Processing, Guangzhou, China, 14–18 November 2017.
- 21.
Yan, X.; Zheng, W.L.; Liu, W. Identifying gender differences in multimodal emotion recognition using bimodal deep autoencoder. In Proceedings of the 24th International Conference on Neural Information Processing, Guangzhou, China, 14–18 November 2017.
- 22.
Li, Z.; Liu, L.; Zhu, Y. Exploring sex differences in key frequency bands and channel connections for EEG-based emotion recognition. In Proceedings of the 44th Annual International Conference of the IEEE Engineering in Medicine & Biology Society, Glasgow, UK, 11–15 July 2022.
- 23.
Peng, D.; Zheng, W.L.; Liu, L. Identifying sex differences in EEG-based emotion recognition using graph convolutional network with attention mechanism. J. Neural Eng. 2023, 20, 066010–066029.
- 24.
Wu,F.; Souza, A.; Zhang, T. Simplifying graph convolutional networks. In Proceedings of the 36th International Conference on Machine Learning, Long Beach, CA, USA, 9–15 June 2019.
- 25.
Duan, R.N.; Zhu, J.Y.; Lu, B.L. Differential entropy feature for EEG-based emotion classification. In Proceedings of the 6th International IEEE/EMBS Conference on Neural Engineering, San Diego, CA, USA, 6–8 November 2013.
- 26.
Alarcao, S.M.; Fonseca, M.J. Emotions recognition using EEG signals: A survey. IEEE Trans. Affect. Comput. 2019, 10, 374–393.
- 27.
Jin, W.; Derr, T.; Wang, Y. Node similarity preserving graph convolutional networks. In Proceedings of the 14th ACM International Conference on Web Search and Data Mining, Virtual, 8–12 March 2021.
- 28.
Gu, R.F.; Li, R.; Lu, B.L. Cross-subject decision confidence estimation from EEG signals using spectral-spatial-temporal adaptive GCN with domain adaptation. In Proceedings of International Joint Conference on Neural Networks, Gold Coast, Australia, 18–23 June 2023.
- 29.
Ju, X.; Wu, X.; Dai, S. Domain adversarial learning with multiple adversarial tasks for EEG emotion recognition. Expert Syst. Appl. 2025, 266, 126028–126048.
- 30.
Chen, M.; Jin, M.; Li, Z. MS-MDA: multisource marginal distribution adaptation for cross-subject and cross-session EEG emotion recognition. Front. Neurosci. 2021, 15, 778488–778498.
- 31.
Ganin, Y.; Ustinova, E.; Ajakan, H.; et al. Domain-adversarial training of neural networks. J. Mach. Learn. Res. 2016, 17, 1–35.
- 32.
Tzeng, E.; Hoffman, J.; Saenko, K.; et al. Adversarial discriminative domain adaptation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017.
- 33.
Li, C.; Zhang, Y.; Zheng, L.; et al.. An efficient graph learning system for emotion recognition inspired by the cognitive prior graph of EEG brain network. IEEE Trans. Neural Netw. Learn. Syst. 2025, 36, 7130–7144.
- 34.
Zheng, W.L.; Lu, B.L. Investigating critical frequency bands and channels for EEG-based emotion recognition with deep neural networks. IEEE Trans. Auton. Ment. Dev. 2015, 7, 162–175.
- 35.
Zheng, W.L.; Liu, W.; Lu, Y.; et al. EmotionMeter: a multimodal framework for recognizing human emotions. IEEE Trans. Cybern. 2019, 49, 1110–1122.
- 36.
Ye, M.; Chen, C.L.P.; Zhang, T. Hierarchical dynamic graph convolutional network with interpretability for EEG-based emotion recognition. IEEE Trans. Neural Netw. Learn. Syst. 2022. https://doi.org/10.1109/TNNLS.2022.3225855.
- 37.
Gong, G.; He, Y.; Evans, A.C. Brain connectivity: gender makes a difference. Neuroscientist 2011, 17, 575–591.
- 38.
Duan, D.; Li, Q.; Zhong, W. GSCNN: gender-sensitive EEG emotion recognition using convolutional neural network. In Proceedings of the International Conference on Mechatronics and Machine Vision in Practice, Queenstown, New Zealand, 21–24 November 2023.
- 39.
Proverbio, A.M. Sex differences in the social brain and in social cognition. J. Neurosci. Res. 2023, 101, 730–738.
- 40.
Zhang, X.; Cheng, G.; Qu, Y. Ontology summarization based on rdf sentence graph. In Proceedings of the 16th International Conference on World Wide Web, Banff, AB, Canada, 8–12 May 2007.
- 41.
Domes, G.; Schulze, L.; B¨ottger, M. The neural correlates of sex differences in emotional reactivity and emotion regulation. Hum. Brain Mapp. 2010, 31, 758–769.