2508001161
  • Open Access
  • Review

Unregulated Dust: The Impact of Excavation on Urban Air Quality and Vulnerable Communities in the Global South

  • Maryam Al Sheebani 1,   
  • Rima J. Isaifan 1, 2, *

Received: 08 Jul 2025 | Revised: 24 Jul 2025 | Accepted: 22 Aug 2025 | Published: 27 Aug 2025

Abstract

Urban excavation activities are a major yet underregulated source of particulate and gaseous emissions in rapidly developing economies. This systematic review examines excavation-related air pollutants—PM2.5, PM10, NOx, and CO—through quantitative synthesis of emission factors, regulatory standards, and mitigation measures. Following a PRISMA-guided protocol, 60 peer-reviewed studies were screened, with inclusion criteria emphasizing urban contexts in the Global South. Results indicate that excavation phases can generate PM2.5 and PM10 concentrations up to 20 times higher than WHO limits, with localized spikes persisting for hours. Comparisons across Delhi, Belgrade, and Kanpur reveal variations linked to machinery age, fuel type, and enforcement rigor. Case analyses show that strict regulatory frameworks, such as Hong Kong’s NRMM controls, achieve measurable pollutant reductions, while technically ambitious but weakly enforced policies underperform. Engineering interventions, including water mist cannons, soil binders, wheel-wash facilities, and negative-pressure enclosures, demonstrate reductions in particulate loads ranging from 50% to over 90% when properly deployed. However, coverage is inconsistent, and real-time monitoring systems remain underutilized. A significant environmental justice gap is evident, with low-income and informal communities disproportionately exposed. The study recommends targeted excavation-specific regulations, integration of continuous monitoring with automated enforcement, and energy-efficient dust suppression technologies to minimize both air quality and carbon impacts. By framing excavation emissions as both an environmental and social equity challenge, this research underscores the urgency of embedding excavation-specific measures into urban air quality management in developing economies.

References 

  • 1.
    Wieser, A.A.; Scherz, M.; Passer, A.; et al. Challenges of a Healthy Built Environment: Air Pollution in Construction Industry. Sustainability 2021, 13, 10469. https://doi.org/10.3390/su131810469.
  • 2.
    Al-Thani, H.; Koç, M.; Isaifan, R.J. A Review on the Direct Effect of Particulate Atmospheric Pollution on Materials and Its Mitigation for Sustainable Cities and Societies. Environ. Sci. Pollut. Res. 2018, 25, 27839–27857. https://doi.org/10.1007/s11356-018-2952-8.
  • 3.
    Isaifan, R.J.; Al-Thani, H.G. Action Taken to Reduce Air Pollution and Its One Health Impacts in MENA Countries. In Sustainable Strategies for Air Pollution Mitigation: Development, Economics, and Technologies; Ogwu, M.C., Izah, S.C., Eds.; Springer Nature: Cham, Switzerland, 2024; pp. 439–473. https://doi.org/10.1007/698_2024_1094.
  • 4.
    Al-Thani, H.; Koç, M.; Isaifan, R.J.; et al. A Review of the Integrated Renewable Energy Systems for Sustainable Urban Mobility. Sustainability 2022, 14, 10517. https://doi.org/10.3390/su141710517.
  • 5.
    Barati, K.; Shen, X. Emissions Modelling of Earthmoving Equipment; IAARC Publications: Waterloo, ON, Canada, 2016; Volume 33, p. 1.
  • 6.
    Desouza, C.; Marsh, D.; Beevers, S.; et al. Emissions from the Construction Sector in the United Kingdom. Emiss. Control Sci. Technol. Online 2024, 10, 70–80. https://doi.org/10.1007/s40825-023-00237-w.
  • 7.
    Ahn, C.R.; Lee, S. Importance of Operational Efficiency to Achieve Energy Efficiency and Exhaust Emission Reduction of Construction Operations. J. Constr. Eng. Manag. 2013, 139, 404–413. https://doi.org/10.1061/(ASCE)CO.1943-7862.0000609.
  • 8.
    Al-Thani, H.; Koc, M.; Isaifan, R. J. Investigations on Deposited Dust Fallout in Urban Doha: Characterization, Source Apportionment and Mitigation. Environ. Ecol. Res. 2018, 6, 493–506. https://doi.org/10.13189/eer.2018.060510.
  • 9.
    Hugo, G. Patterns and Trends of Urbanization and Urban Growth in Asia. In Internal Migration, Urbanization and Poverty in Asia: Dynamics and Interrelationships; Jayanthakumaran, K., Verma, R., Wan, G., Wilson, E., Eds.; Springer: Singapore, 2019; pp. 13–45. https://doi.org/10.1007/978-981-13-1537-4_2.
  • 10.
    Kota, S.H.; Guo, H.; Myllyvirta, L.; et al. Year-Long Simulation of Gaseous and Particulate Air Pollutants in India. Atmospheric Environ. 2018, 180, 244–255. https://doi.org/10.1016/j.atmosenv.2018.03.003.
  • 11.
    Elinoff, E.; Sur, M.; Yeoh, B.S.A. Constructing Asia: An Introduction. City 2017, 21, 580–586. https://doi.org/10.1080/13604813.2017.1374777.
  • 12.
    Kaluarachchi, M.; Waidyasekara, A.; Rameezdeen, R.; et al. Mitigating Dust Pollution from Construction Activities: A Behavioural Control Perspective. Sustainability 2021, 13, 9005. https://doi.org/10.3390/su13169005.
  • 13.
    Isaifan, R.J. Air Pollution Burden of Disease over Highly Populated States in the Middle East. Front Public Health 2023, 10, 1002707. https://doi.org/10.3389/fpubh.2022.1002707.
  • 14.
    Mahmoud, N.; Al-Shahwani, D.; Al-Thani, H.; et al. Risk Assessment of the Impact of Heavy Metals in Urban Traffic Dust on Human Health. Atmosphere 2023, 14, 1049. https://doi.org/10.3390/atmos14061049.
  • 15.
    Wu, Z.; Zhang, X.; Wu, M. Mitigating Construction Dust Pollution: State of the Art and the Way Forward. J. Clean. Prod. 2016, 112, 1658–1666. https://doi.org/10.1016/j.jclepro.2015.01.015.
  • 16.
    Font, A.; Baker, T.; Mudway, I.S.; et al. Degradation in Urban Air Quality from Construction Activity and Increased Traffic Arising from a Road Widening Scheme. Sci. Total Environ. 2014, 497–498, 123–132. https://doi.org/10.1016/j.scitotenv.2014.07.060.
  • 17.
    Melhim, S.H.; Isaifan, R.J. The Energy-Economy Nexus of Advanced Air Pollution Control Technologies: Pathways to Sustainable Development. Energies 2025, 18, 2378. https://doi.org/10.3390/en18092378.
  • 18.
    Faber, P.; Drewnick, F.; Borrmann, S. Aerosol Particle and Trace Gas Emissions from Earthworks, Road Construction, and Asphalt Paving in Germany: Emission Factors and Influence on Local Air Quality. Atmos. Environ. 1994 2015, 122, 662–671. https://doi.org/10.1016/j.atmosenv.2015.10.036.
  • 19.
    Yan, H.; Li, Q.; Feng, K.; et al. The Characteristics of PM Emissions from Construction Sites during the Earthwork and Foundation Stages: An Empirical Study Evidence. Environ. Sci. Pollut. Res. 2023, 30, 62716–62732. https://doi.org/10.1007/s11356-023-26494-4.
  • 20.
    Milivojević, L.; Mrazovac Kurilić, S.; Božilović, Z.; et al. Study of Particular Air Quality and Meteorological Parameters at a Construction Site. Atmosphere 2023, 14, 1267. https://doi.org/10.3390/atmos14081267.
  • 21.
    Yang, X.; Yu, Q.; Zhang, Y.; et al. Occupational Health Risk Assessment of Construction Workers Caused by Particulate Matter Exposure on Construction Sites. Heliyon 2023, 9, e20433. https://doi.org/10.1016/j.heliyon.2023.e20433.
  • 22.
    Bayraktar, O.M.; Mutlu, A. Analyses of Industrial Air Pollution and Long-Term Health Risk Using Different Dispersion Models and WRF Physics Parameters. Air Qual. Atmos. Health 2024, 17, 2277–2305. https://doi.org/10.1007/s11869-024-01573-8.
  • 23.
    Lee, D.I.; Park, J.; Shin, M.; et al. Characteristics of Real-World Gaseous Emissions from Construction Machinery. Energies 2022, 15, 9543. https://doi.org/10.3390/en15249543.
  • 24.
    Savickas, D.; Steponavičius, D.; Špokas, L.; et al. Impact of Combine Harvester Technological Operations on Global Warming Potential. Appl. Sci. 2021, 11, 8662.
  • 25.
    Hajji, A.M.; Lewis, M.P. How to Estimate Green House Gas (GHG) Emissions from an Excavator by Using CAT’s Performance Chart. AIP Conf. Proc. 2017, 1887, 020047. https://doi.org/10.1063/1.5003530.
  • 26.
    Andrew, R.M. Global CO2 Emissions from Cement Production, 1928–2018. Earth Syst. Sci. Data 2019, 11, 1675–1710. https://doi.org/10.5194/essd-11-1675-2019.
  • 27.
    Bildirici, M.E. Cement Production, Environmental Pollution, and Economic Growth: Evidence from China and USA. Clean Technol. Environ. Policy 2019, 21, 783–793. https://doi.org/10.1007/s10098-019-01667-3.
  • 28.
    Cheriyan, D.; Choi, J. A Review of Research on Particulate Matter Pollution in the Construction Industry. J. Clean. Prod. 2020, 254, 120077. https://doi.org/10.1016/j.jclepro.2020.120077.
  • 29.
    Fang, X.; Chang, R.; Zuo, J.; et al. How Do Environmental and Operational Factors Impact Particulate Matter Dynamics in Building Construction?—Insights from Real-Time Sensing. J. Environ. Manag. 2025, 380, 125098. https://doi.org/10.1016/j.jenvman.2025.125098.
  • 30.
    Jain, G.; Gupta, V.; Pandey, M. Case Study of Construction Pollution Impact on Environment. Int. J. Emer. Techol. Eng. Res. 2016, 4, 1–4.
  • 31.
    Robinah, N.; Safiki, A.; Thomas, O.; et al. Impact of Road Infrastructure Equipment on the Environment and Surroundings. Glob. J. Environ. Sci. Manag. 2022, 8, 251–264. https://doi.org/10.22034/gjesm.2022.02.08.
  • 32.
    Huang, Z.; Fan, H.; Shen, L.; et al. Policy Instruments for Addressing Construction Equipment Emission—A Research Review from a Global Perspective. Environ. Impact Assess. Rev. 2021, 86, 106486. https://doi.org/10.1016/j.eiar.2020.106486.
  • 33.
    Leiringer, R. Sustainable Construction through Industry Self-Regulation: The Development and Role of Building Environmental Assessment Methods in Achieving Green Building. Sustainability 2020, 12, 8853. https://doi.org/10.3390/su12218853.
  • 34.
    Bambi, P.D.R.; Batatana, M.L.D.; Appiah, M.; et al. Governance, Institutions, and Climate Change Resilience in Sub-Saharan Africa: Assessing the Threshold Effects. Front. Environ. Sci. 2024, 12. https://doi.org/10.3389/fenvs.2024.1352344.
  • 35.
    John, I.B.; Adekunle, S.A.; Aigbavboa, C.O. Adoption of Circular Economy by Construction Industry SMEs: Organisational Growth Transition Study. Sustainability 2023, 15, 5929. https://doi.org/10.3390/su15075929.
  • 36.
    Amarasinghe, I.; Liu, T.; Stewart, R.A.; et al. Paving the Way for Lowering Embodied Carbon Emissions in the Building and Construction Sector. Clean Technol. Environ. Policy 2025, 27, 1825–1843. https://doi.org/10.1007/s10098-024-03023-6.
  • 37.
    Huang, Z.; Fan, H.; Shen, L. Case-Based Reasoning for Selection of the Best Practices in Low-Carbon City Development. Front. Eng. Manag. 2019, 6, 416–432. https://doi.org/10.1007/s42524-019-0036-1.
  • 38.
    Batool, Z.; Bhatti, A.A.; Rehman, A. Ensuring Environmental Inclusion in Developing Countries: The Role of Macroeconomic Policies. Environ. Sci. Pollut. Res. Int. 2023, 30, 33275–33286. https://doi.org/10.1007/s11356-022-24596-z.
  • 39.
    Loncarevic, S.; Ilincic, P.; Sagi, G.; et al. Problems and Directions in Creating a National Non-Road Mobile Machinery Emission Inventory: A Critical Review. Sustainability 2022, 14, 3471. https://doi.org/10.3390/su14063471.
  • 40.
    Isaifan, R.J.; Dole, H.; Obeid, E.; et al. Catalytic CO Oxidation over Pt Nanoparticles Prepared from the Polyol Reduction Method Supported on Yttria-Stabilized Zirconia. ECS Trans. 2011, 35, 43.
  • 41.
    Isaifan, R.J.; Couillard, M.; Baranova, E.A. Low Temperature-High Selectivity Carbon Monoxide Methanation over Yttria-Stabilized Zirconia-Supported Pt Nanoparticles. Int. J. Hydrogen Energy 2017, 42, 13754–13762. https://doi.org/10.1016/j.ijhydene.2017.01.049.
  • 42.
    Isaifan, R.J.; Baranova, E.A. Catalytic Electrooxidation of Volatile Organic Compounds by Oxygen-Ion Conducting Ceramics in Oxygen-Free Gas Environment. Electrochem. Commun. 2013, 27, 164–167. https://doi.org/10.1016/j.elecom.2012.11.021.
  • 43.
    Aïssa, B.; Nedil, M.; Kroeger, J.; et al. Graphene Nanoplatelet Doping of P3HT:PCBM Photoactive Layer of Bulk Heterojunction Organic Solar Cells for Enhancing Performance. Nanotechnology 2018, 29, 105405. https://doi.org/10.1088/1361-6528/aaa62d.
  • 44.
    Fares, E.; Aissa, B.; Isaifan, R.J. Inkjet Printing of Metal Oxide Coatings for Enhanced Photovoltaic Soiling Environmental Applications–ProQuest. Glob. J. Environ. Sci. Manag. 2022, 8, 485–502.
  • 45.
    Alsalama, T.; Koç, M.; Isaifan, R.J. Mitigation of Urban Air Pollution with Green Vegetation for Sustainable Cities: A Review. Int. J. Glob. Warm. 2021, 25, 498–515. https://doi.org/10.1504/IJGW.2021.119014.
  • 46.
    Al-Mohannadi, M.; Awwaad, R.; Furlan, R.; et al. Sustainable Status Assessment of the Transit-Oriented Development in Doha’s Education City. Sustainability 2023, 15, 1913. https://doi.org/10.3390/su15031913.
  • 47.
    Isaifan, R.J.; Baldauf, R.W. Estimating Economic and Environmental Benefits of Urban Trees in Desert Regions. Front. Ecol. Evol. 2020, 8, 16. https://doi.org/10.3389/fevo.2020.00016.
  • 48.
    Kim, D.; Lee, S.J. Effect of Water Microdroplet Size on the Removal of Indoor Particulate Matter. Build. Environ. 2020, 181, 107097. https://doi.org/10.1016/j.buildenv.2020.107097.
  • 49.
    Parvej, S.; Naik, D.L.; Sajid, H.U.; et al. Fugitive Dust Suppression in Unpaved Roads: State of the Art Research Review. Sustainability 2021, 13, 2399. https://doi.org/10.3390/su13042399.
  • 50.
    Lowther, S.D.; Deng, W.; Fang, Z.; et al. How Efficiently Can HEPA Purifiers Remove Priority Fine and Ultrafine Particles from Indoor Air? Environ. Int. 2020, 144, 106001. https://doi.org/10.1016/j.envint.2020.106001.
  • 51.
    Morawska, L.; Asbach, C.; Patel, H. Application of PM2.5 Low-Cost Sensors for Indoor Air Quality Compliance Monitoring. Aerosol Sci. Technol. 2025, 1–11. https://doi.org/10.1080/02786826.2025.2457326.
  • 52.
    Huanxing, C.; Gang, L.; Ying, Y.; et al. Review and Outlook of China Non-Road Diesel Mobile Machinery Emission Standards: Stricter Emissions Standards for Better Air Quality in China. Johns. Matthey Technol. Rev. 2020, 64, 76–83. https://doi.org/10.1595/205651320X15730367457486.
  • 53.
    Fan, H. A Critical Review and Analysis of Construction Equipment Emission Factors. Procedia Eng. 2017, 196, 351–358. https://doi.org/10.1016/j.proeng.2017.07.210.
  • 54.
    Hajat, A.; Hsia, C.; O’Neill, M.S. Socioeconomic Disparities and Air Pollution Exposure: A Global Review. Curr. Environ. Health Rep. 2015, 2, 440–450. https://doi.org/10.1007/s40572-015-0069-5.
  • 55.
    Shen, J.; Wang, S.; Wang, Y. Environmental Inequality in Peri-Urban Areas: A Case Study of Huangpu District, Guangzhou City. Land Basel 2024, 13, 703. https://doi.org/10.3390/land13050703.
  • 56.
    Sekhavati, E.; Yengejeh, R.J. Particulate Matter Exposure in Construction Sites Is Associated with Health Effects in Workers. Front. Public Health 2023, 11, 1130620. https://doi.org/10.3389/fpubh.2023.1130620.
  • 57.
    Wang, M.; Yao, G.; Sun, Y.; et al. Exposure to Construction Dust and Health Impacts–A Review. Chemosphere Oxf. 2023, 311, 136990–136990. https://doi.org/10.1016/j.chemosphere.2022.136990.
  • 58.
    Khan, M.; Khan, N.; Skibniewski, M.J.; et al. Environmental Particulate Matter (PM) Exposure Assessment of Construction Activities Using Low-Cost PM Sensor and Latin Hypercubic Technique. Sustainability 2021, 13, 7797. https://doi.org/10.3390/su13147797.
  • 59.
    Yang, J.; Tae, S.; Kim, H. Technology for Predicting Particulate Matter Emissions at Construction Sites in South Korea. Sustainability 2021, 13, 13792. https://doi.org/10.3390/su132413792.
  • 60.
    Rathi, A.K.; Parmar, D.; Ganguly, R.; et al. Exposure Assessment of Particulate Matter during Various Construction Activities in Kanpur City, India. Int. J. Environ. Sci. Technol. 2024, 21, 5219–5230. https://doi.org/10.1007/s13762-023-05335-4.
Share this article:
How to Cite
Sheebani, M. A.; Isaifan, R. J. Unregulated Dust: The Impact of Excavation on Urban Air Quality and Vulnerable Communities in the Global South. Urban and Building Science 2025, 1 (1), 5. https://doi.org/10.53941/ubs.2025.100005.
RIS
BibTex
Copyright & License
article copyright Image
Copyright (c) 2025 by the authors.