2602002961
  • Open Access
  • Article

Mitigation of Airborne Disease Transmission and Particle Capture by Ceiling Fan Ventilation in Street Stores

  • Xiaofei Han 1, †,   
  • Mingyuan Qin 2, 3, †,   
  • Jiayu Li 4,   
  • Haoxiang Zhan 1, 5, *,   
  • Xiaolei Yuan 6,   
  • Norhayati Mahyuddin 1, *

Received: 26 Sep 2025 | Revised: 22 Jan 2026 | Accepted: 02 Feb 2026 | Published: 03 Feb 2026

Abstract

Street stores are high-density environments that are regarded as high-risk public spaces during epidemics and influenza outbreaks. The use of ceiling fans (CF) to improve airflow organization is considered an effective strategy for mitigating airborne virus transmission. While CFs offer advantages such as energy efficiency, cost-effectiveness, and ease of implementation, their effectiveness has not been quantitatively described. In this study, tracer gas diffusion experiments combined with computational fluid dynamics (CFD) simulations were conducted to evaluate various CF operation strategies in a representative street store in northern China. Occupant infection risk was further quantified using the Wells-Riley model. Results indicated that in enclosed environments, CFs could provide only short-term reductions in breathing-zone concentrations. When combined with natural ventilation (NV), particle removal efficiency increased by at least 60%. Comparative analysis revealed that low CF speeds were insufficient for particle removal, while excessively high speeds facilitated viral dispersion. Optimal control of overall infection risk was achieved when NV+CF operated at 196 RPM. 

References 

  • 1.

    Corbett, E.L.; Watt, C.J.; Walker, N.; et al. The Growing Burden of Tuberculosis: Global Trends and Interactions with the HIV Epidemic. Arch. Intern. Med. 2003, 163, 1009–1021. https://doi.org/10.1001/archinte.163.9.1009.

  • 2.

    Kolinski, J.M.; Schneider, T.M. Superspreading events suggest aerosol transmission of SARS-CoV-2 by accumulation in enclosed spaces. Phys. Rev. E 2021, 103, 033109. https://doi.org/10.1103/PhysRevE.103.033109.

  • 3.

    Qian, H.; Miao, T.; Liu, L.; et al. Indoor transmission of SARS-CoV-2. Indoor Air 2021, 31, 639–645.

  • 4.

    Li, Y.; Qian, H.; Hang, J.; et al. Probable airborne transmission of SARS-CoV-2 in a poorly ventilated restaurant. Build. Environ. 2021, 196, 107788. https://doi.org/10.1016/j.buildenv.2021.107788.

  • 5.

    Wang, Z.; Jia, F.; Galea, E.R.; et al. Transmission of SARS-CoV-2 via larger respiratory droplets in a restaurant environment. Saf. Sci. 2025, 191, 106938. https://doi.org/10.1016/j.ssci.2025.106938.

  • 6.

    Mihara, K.; Sekhar, C.; Takemasa, Y.; et al. Thermal comfort and energy performance of a dedicated outdoor air system with ceiling fans in hot and humid climate. Energy Build. 2019, 203, 109448.

  • 7.

    Mat, M.N.H.; Basir, M.F.M.; Yusup, E.M. Fans deactivation for minimisation of airborne pathogen transmission: During Malaysians congregational prayer gathering in mosque. Int. Commun. Heat Mass Transf. 2021, 129, 105694. https://doi.org/10.1016/j.icheatmasstransfer.2021.105694.

  • 8.

    Wei, L.; Liu, G.; Liu, W.; et al. Airborne infection risk in classrooms based on environment and occupant behavior measurement under COVID-19 epidemic. Build. Res. Inf. 2023, 51, 701–716. https://doi.org/10.1080/09613218.2023.2185584.

  • 9.

    Somsen, G.A.; van Rijn, C.; Kooij, S.; et al. Small droplet aerosols in poorly ventilated spaces and SARS-CoV-2 transmission. Lancet Respir. Med. 2020, 8, 658–659.

  • 10.

    Escombe, A.R.; Oeser, C.C.; Gilman, R.H.; et al. Natural ventilation for the prevention of airborne contagion. PLoS Med. 2007, 4, e68.

  • 11.

    Robinson, M.; Stilianakis, N.I.; Drossinos, Y. Spatial dynamics of airborne infectious diseases. J. Theor. Biol. 2012, 297, 116–126.

  • 12.

    Qian, H.; Zheng, X. Ventilation control for airborne transmission of human exhaled bio-aerosols in buildings. J. Thorac. Dis. 2018, 10, S2295.

  • 13.

    Han, X.; Mahyuddin, N.; Qin, M.; et al. Effect of Different Mechanical Fans on Virus Particle Transport: A Review. Buildings 2025, 15, 303.

  • 14.

    Schiavon, S.; Yang, B.; Donner, Y.; et al. Thermal comfort, perceived air quality, and cognitive performance when personally controlled air movement is used by tropically acclimatized persons. Indoor Air 2017, 27, 690–702. https://doi.org/10.1111/ina.12352.

  • 15.

    Li, J.; Zuraimi, S.; Schiavon, S. Should we use ceiling fans indoors to reduce the risk of transmission of infectious aerosols? Indoor Environ. 2024, 1, 100039. https://doi.org/10.1016/j.indenv.2024.100039.

  • 16.

    Sadripour, S.; Mollamahdi, M.; Sheikhzadeh, G.A.; et al. Providing thermal comfort and saving energy inside the buildings using a ceiling fan in heating systems. J. Braz. Soc. Mech. Sci. Eng. 2017, 39, 4219–4230. https://doi.org/10.1007/s40430-017-0859-9.

  • 17.

    Li, W.; Chong, A.; Hasama, T.; et al. Effects of ceiling fans on airborne transmission in an air-conditioned space. Build. Environ. 2021, 198, 107887. https://doi.org/10.1016/j.buildenv.2021.107887.

  • 18.

    Pandey, B.; Saha, S.K.; Banerjee, R. Effect of ceiling fan in mitigating exposure to airborne pathogens and COVID-19. Indoor Built Environ. 2023, 32, 1973–1999. https://doi.org/10.1177/1420326X231154011.

  • 19.

    Yang, S.; Wang, L.; Raftery, P.; et al. Comparing airborne infectious aerosol exposures in sparsely occupied large spaces utilizing large-diameter ceiling fans. Build. Environ. 2023, 231, 110022. https://doi.org/10.1016/j.buildenv.2023.110022.

  • 20.

    Wang, H.; Luo, M.; Wang, G.; et al. Airflow pattern induced by ceiling fan under different rotation speeds and blowing directions. Indoor Built Environ. 2019, 29, 1425–1440. https://doi.org/10.1177/1420326X19890054.

  • 21.

    Pichurov, G.; Srebric, J.; Zhu, S.; et al. A validated numerical investigation of the ceiling fan’s role in the upper-room UVGI efficacy. Build. Environ. 2015, 86, 109–119. https://doi.org/10.1016/j.buildenv.2014.12.021.

  • 22.

    Zhu, S.; Srebric, J.; Rudnick, S.N.; et al. Numerical Modeling of Indoor Environment with a Ceiling Fan and an Upper-Room Ultraviolet Germicidal Irradiation System. Build. Environ. 2014, 72, 116–124. https://doi.org/10.1016/j.buildenv.2013.10.019.

  • 23.

    Cui, S.; Cohen, M.; Stabat, P.; et al. CO2 tracer gas concentration decay method for measuring air change rate. Build. Environ. 2015, 84, 162–169. https://doi.org/10.1016/j.buildenv.2014.11.007.

  • 24.

    Stadnytskyi, V.; Bax, C.E.; Bax, A.; et al. The airborne lifetime of small speech droplets and their potential importance in SARS-CoV-2 transmission. Proc. Natl. Acad. Sci. USA 2020, 117, 11875–11877. https://doi.org/10.1073/pnas.2006874117.

  • 25.

    Qin, M.; Chew, B.T.; Yau, Y.H.; et al. A novel evaluation indicator and optimal heating strategy for using an intermittent-operation catalytic combustion heater in open cold environments. Build. Environ. 2024, 252, 111271. https://doi.org/10.1016/j.buildenv.2024.111271.

  • 26.

    Qin, M.; Chew, B.T.; Yau, Y.H.; et al. Thermal comfort characteristics of a catalytic combustion heater under wind-chilled exposure. J. Clean. Prod. 2024, 436, 140701. https://doi.org/10.1016/j.jclepro.2024.140701.

  • 27.

    Yang, L.; Ye, M. CFD simulation research on residential indoor air quality. Sci. Total Environ. 2014, 472, 1137–1144. https://doi.org/10.1016/j.scitotenv.2013.11.118.

  • 28.

    Bahramian, A.; Mohammadi, M.; Ahmadi, G. Effect of indoor temperature on the velocity fields and airborne transmission of sneeze droplets: An experimental study and transient CFD modeling. Sci. Total Environ. 2023, 858, 159444. https://doi.org/10.1016/j.scitotenv.2022.159444.

  • 29.

    He, Q.; Niu, J.; Gao, N.; et al. CFD study of exhaled droplet transmission between occupants under different ventilation strategies in a typical office room. Build. Environ. 2011, 46, 397–408. https://doi.org/10.1016/j.buildenv.2010.08.003.

  • 30.

    Arjmandi, H.; Amini, R.; Fallahpour, M. Minimizing the respiratory pathogen transmission: Numerical study and multi-objective optimization of ventilation systems in a classroom. Therm. Sci. Eng. Prog. 2022, 28, 101052. https://doi.org/10.1016/j.tsep.2021.101052.

  • 31.

    Huang, J.; Hao, T.; Liu, X.; et al. Airborne transmission of the Delta variant of SARS-CoV-2 in an auditorium. Build. Environ. 2022, 219, 109212.

  • 32.

    Versteeg, H.K. An Introduction to Computational Fluid Dynamics the Finite Volume Method, 2nd ed.; Pearson Education: New Delhi, India, 2007.

  • 33.

    Gao, N.; Niu, J.; Perino, M.; et al. The airborne transmission of infection between flats in high-rise residential buildings: Tracer gas simulation. Build. Environ. 2008, 43, 1805–1817. https://doi.org/10.1016/j.buildenv.2007.10.023.

  • 34.

    Omrani, S.; Matour, S.; Bamdad, K.; et al. Ceiling fans as ventilation assisting devices in buildings: A critical review. Build. Environ. 2021, 201, 108010. https://doi.org/10.1016/j.buildenv.2021.108010.

  • 35.

    Li, W.; Hasama, T.; Chong, A.; et al. Transient transmission of droplets and aerosols in a ventilation system with ceiling fans. Build. Environ. 2023, 230, 109988. https://doi.org/10.1016/j.buildenv.2023.109988.

Share this article:
How to Cite
Han, X.; Qin, M.; Li, J.; Zhan, H.; Yuan, X.; Mahyuddin, N. Mitigation of Airborne Disease Transmission and Particle Capture by Ceiling Fan Ventilation in Street Stores. Urban and Building Science 2026, 2 (2), 1. https://doi.org/10.53941/ubs.2026.100007.
RIS
BibTex
Copyright & License
article copyright Image
Copyright (c) 2026 by the authors.