- 1.
Fourier, J.B. Memoire sur les temperatures du globe terrestre et des espaces planetaires. Mem. Acad. R. Sci. Inst. Fr. 1827, 7, 569–604.
- 2.
Tyndall, J. On the absorption and radiation of heat by gases and vapours, and on the physical connexion of radiation, absorption, and conduction. Philos. Mag. 1861, 22, 169–194.
- 3.
Morice, C.P.; Kennedy, J.J.; Rayner, N.A.; et al. An updated assessment of near-surface temperature change from 1850: The HadCRUT5 data set. J. Geophys. Res. Atmos. 2021, 126, e2019JD032361. https://doiorg/10.1029/2019JD032361.
- 4.
Copernicus Climate Change Service. Available online: https://climate.copernicus.eu/global-climate-highlights-2024 (accessed on 21 March 2025).
- 5.
Allan, R.P.; Willett, K.M.; John, V.O.; et al. Global changes in water vapor 1979–2020. J. Geophys. Res. Atmos. 2022, 127, e2022JD036728. https://doi.org/10.1029/2022JD036728.
- 6.
Held, I.M.; Soden, B.J. Water vapor feedback and global warming. Annu. Rev. Energy Environ. 2000, 25, 441–475.
- 7.
Palmer, T. Chapter 6: Climate change. In The Primacy of Doubt; Basic Books: New York, NY, USA, 2022.
- 8.
State of the Climate 2024; CSIRO and Bureau of Meteorology, Government of Australia: Sydney, NSW, Australia.
- 9.
Basu, R.; Samet, J.M. Relation between elevated ambient temperature and mortality: A review of the epidemiologic evidence. Epidemiol. Rev. 2002, 24, 190–202. https://doi.org/10.1093/epirev/mxf007.
- 10.
Yin, P.; Chen, R.; Wang, L.; et al. The added effects of heatwaves on cause-specific mortality: A nationwide analysis in 272 Chinese cities. Environ. Int. 2018, 121 Pt 1, 898–905. https://doi.org/10.1016/j.envint.2018.10.016.
- 11.
Karasick, A.S.; Thomas, R.J.; Cannon, D.L.; et al. Amphetamine Use Among Workers with Severe Hyperthermia—Eight States, 2010–2019. MMWR 2020, 69, 30.
- 12.
Fiala, D.; Havenith, G.; Bröde, P.; et al. UTCI-Fiala multi-node model of human heat transfer and temperature regulation. Int. J. Biometeorol. 2012, 56, 429–441. https://doi.org/10.1007/s00484-011-0424-7.
- 13.
Brake, D.J.; Bates, G.P. Limiting metabolic rate (thermal work limit) as an index of thermal stress. Appl. Occup. Environ. Hyg. 2002, 17, 176–186. https://doi.org/10.1080/104732202753438261.
- 14.
Gun, R. Deaths in Australia from Work-Related Heat Stress, 2000–2015. Int. J. Environ. Res. Public Health 2019, 16, 3601. https://doi.org/10.3390/ijerph16193601.
- 15.
Bröde, P.; Fiala, D.; Lemke, B.; et al. Estimated work ability in warm outdoor environments depends on the chosen heat stress assessment metric. Int. J. Biometeorol. 2018, 62, 331–345. https://doi.org/10.1007/s00484-017-1346-9.
- 16.
Miller, V.S.; Bates, G.P. The thermal work limit is a simple reliable heat index for the protection of workers in thermally stressful environments. Ann. Occup. Hyg. 2007, 51, 553–561. https://doi.org/10.1093/annhyg/mem035.
- 17.
Malchaire, J.B.; Kampmann, B.; Havenith, G.; et al. Criteria for estimating acceptable exposure times in hot working environments: A review. Int. Arch. Occup. Environ. Health 2000, 73, 215–220.
- 18.
Sherwood, S.C.; Huber, M. An adaptability limit to climate change due to heat stress. Proc. Natl. Acad. Sci. USA 2010, 107, 9552–9555. https://doi.org/10.1073/pnas.0913352107.
- 19.
Raymond, C.; Matthews, T.; Horton, R.M. The emergence of heat and humidity too severe for human tolerance. Sci. Adv. 2020, 6, eaaw1838. https://doi.org/10.1126/sciadv.aaw1838.
- 20.
Vecellio, D.J.; Wolf, S.T.; Cottle, R.M.; et al. Evaluating the 35 °C wet-bulb temperature adaptability threshold for young, healthy subjects (PSU HEAT Project). J. Appl. Physiol. 2022, 132, 340–345. https://doi.org/10.1152/japplphysiol.00738.2021.
- 21.
Vecellio, D.J.; Kong, Q.; Kenney, W.L.; et al. Greatly enhanced risk to humans as a consequence of empirically determined lower moist heat stress tolerance. Proc. Natl. Acad. Sci. USA 2023, 120, e2305427120. https://doi.org/10.1073/pnas.2305427120.