2505000675
  • Open Access
  • Perspective
The Burden of Extreme Humidity on Outdoor Workers in a Warming Planet
  • Richard Gun

Received: 10 Apr 2025 | Revised: 06 May 2025 | Accepted: 12 May 2025 | Published: 22 May 2025

Abstract

Global warming is the prime existential issue facing our planet. Accordingly, there can be no greater public health concern than the need to maintain economic activity while protecting workers directly exposed to solar radiation. Since mining, agriculture, construction, and sport and recreation inevitably involve solar exposure, climate change portends a decreasing number of days and hours when workers in these industries can be both productive and free of risk of heat illness. The implications are especially profound in those parts of the globe where humidity levels are predicted to exceed the limits of human tolerance.

References 

  • 1.
    Fourier, J.B. Memoire sur les temperatures du globe terrestre et des espaces planetaires. Mem. Acad. R. Sci. Inst. Fr. 1827, 7, 569–604.
  • 2.
    Tyndall, J. On the absorption and radiation of heat by gases and vapours, and on the physical connexion of radiation, absorption, and conduction. Philos. Mag. 1861, 22, 169–194.
  • 3.
    Morice, C.P.; Kennedy, J.J.; Rayner, N.A.; et al. An updated assessment of near-surface temperature change from 1850: The HadCRUT5 data set. J. Geophys. Res. Atmos. 2021, 126, e2019JD032361. https://doiorg/10.1029/2019JD032361.
  • 4.
    Copernicus Climate Change Service. Available online: https://climate.copernicus.eu/global-climate-highlights-2024 (accessed on 21 March 2025).
  • 5.
    Allan, R.P.; Willett, K.M.; John, V.O.; et al. Global changes in water vapor 1979–2020. J. Geophys. Res. Atmos. 2022, 127, e2022JD036728. https://doi.org/10.1029/2022JD036728.
  • 6.
    Held, I.M.; Soden, B.J. Water vapor feedback and global warming. Annu. Rev. Energy Environ. 2000, 25, 441–475.
  • 7.
    Palmer, T. Chapter 6: Climate change. In The Primacy of Doubt; Basic Books: New York, NY, USA, 2022.
  • 8.
    State of the Climate 2024; CSIRO and Bureau of Meteorology, Government of Australia: Sydney, NSW, Australia.
  • 9.
    Basu, R.; Samet, J.M. Relation between elevated ambient temperature and mortality: A review of the epidemiologic evidence. Epidemiol. Rev. 2002, 24, 190–202. https://doi.org/10.1093/epirev/mxf007.
  • 10.
    Yin, P.; Chen, R.; Wang, L.; et al. The added effects of heatwaves on cause-specific mortality: A nationwide analysis in 272 Chinese cities. Environ. Int. 2018, 121 Pt 1, 898–905. https://doi.org/10.1016/j.envint.2018.10.016.
  • 11.
    Karasick, A.S.; Thomas, R.J.; Cannon, D.L.; et al. Amphetamine Use Among Workers with Severe Hyperthermia—Eight States, 2010–2019. MMWR 2020, 69, 30.
  • 12.
    Fiala, D.; Havenith, G.; Bröde, P.; et al. UTCI-Fiala multi-node model of human heat transfer and temperature regulation. Int. J. Biometeorol. 2012, 56, 429–441. https://doi.org/10.1007/s00484-011-0424-7.
  • 13.
    Brake, D.J.; Bates, G.P. Limiting metabolic rate (thermal work limit) as an index of thermal stress. Appl. Occup. Environ. Hyg. 2002, 17, 176–186. https://doi.org/10.1080/104732202753438261.
  • 14.
    Gun, R. Deaths in Australia from Work-Related Heat Stress, 2000–2015. Int. J. Environ. Res. Public Health 2019, 16, 3601. https://doi.org/10.3390/ijerph16193601.
  • 15.
    Bröde, P.; Fiala, D.; Lemke, B.; et al. Estimated work ability in warm outdoor environments depends on the chosen heat stress assessment metric. Int. J. Biometeorol. 2018, 62, 331–345. https://doi.org/10.1007/s00484-017-1346-9.
  • 16.
    Miller, V.S.; Bates, G.P. The thermal work limit is a simple reliable heat index for the protection of workers in thermally stressful environments. Ann. Occup. Hyg. 2007, 51, 553–561. https://doi.org/10.1093/annhyg/mem035.
  • 17.
    Malchaire, J.B.; Kampmann, B.; Havenith, G.; et al. Criteria for estimating acceptable exposure times in hot working environments: A review. Int. Arch. Occup. Environ. Health 2000, 73, 215–220.
  • 18.
    Sherwood, S.C.; Huber, M. An adaptability limit to climate change due to heat stress. Proc. Natl. Acad. Sci. USA 2010, 107, 9552–9555. https://doi.org/10.1073/pnas.0913352107.
  • 19.
    Raymond, C.; Matthews, T.; Horton, R.M. The emergence of heat and humidity too severe for human tolerance. Sci. Adv. 2020, 6, eaaw1838. https://doi.org/10.1126/sciadv.aaw1838.
  • 20.
    Vecellio, D.J.; Wolf, S.T.; Cottle, R.M.; et al. Evaluating the 35 °C wet-bulb temperature adaptability threshold for young, healthy subjects (PSU HEAT Project). J. Appl. Physiol. 2022, 132, 340–345. https://doi.org/10.1152/japplphysiol.00738.2021.
  • 21.
    Vecellio, D.J.; Kong, Q.; Kenney, W.L.; et al. Greatly enhanced risk to humans as a consequence of empirically determined lower moist heat stress tolerance. Proc. Natl. Acad. Sci. USA 2023, 120, e2305427120. https://doi.org/10.1073/pnas.2305427120.
Share this article:
How to Cite
Gun, R. The Burden of Extreme Humidity on Outdoor Workers in a Warming Planet. Work and Health 2025, 1 (1), 3. https://doi.org/10.53941/wah.2025.100003.
RIS
BibTex
Copyright & License
article copyright Image
Copyright (c) 2025 by the authors.