- 1.
Kenakin T. Biased receptor signaling in drug discovery. Pharmacol.Rev., 2019, 71(2): 267-315.
- 2.
Song Y.; Xu C.J.; Liu J.F.; et al. Heterodimerization with 5-HT2BR is indispensable for β2AR-Mediated cardioprotection. Circ.Res.,2021, 128(2): 262-277.
- 3.
Wnorowski A.;Jozwiak K.Homo- and hetero-oligomerization of β2-adrenergic receptor in receptor trafficking, signaling pathways and receptor pharmacology. Cell Signal., 2014, 26(10): 2259-2265.
- 4.
Alexander S.; Christopoulos A.; Davenport P.P.; et al. THE CONCISE GUIDE TO PHARMACOLOGY 2019/20:G protein-coupled receptors, Br. J.Pharmacol., 2019, 176(Suppl 1): S21-S141.
- 5.
Grisanti A.A.; Schumacher M.M.; Tilley G.G.; et al. Designer approaches for G Protein-Coupled receptor modulation for cardiovascular disease. JACC Basic Transl. Sci., 2018, 3(4): 550-562.
- 6.
Laschet C.; Dupuis N.; Hanson J. The G protein-coupled receptors deorphanization landscape. Biochem.Pharmacol.,2018, 153: 62-74.
- 7.
Mouat A.A.; Coleman L.J.L.J.; Smith J.J. GPCRs in context: sexual dimorphism in the cardiovascular system. Br. J. Pharmacol., 2018, 175(21): 4047-4059.
- 8.
Virani S.S.; Alonso A.; Benjamin J.J.; et al. Heart disease and stroke statistics-2020 update: a report from the american heart association. Circulation, 2020, 141(9): e139-e596.
- 9.
Li P.; Fu Y.X.; Ru J.L.; et al. Insights from systems pharmacology into cardiovascular drug discovery and therapy. BMC Syst. Biol.,2014,8: 141.
- 10.
Huang B.S.; Chen A.; Ahmad M.; et al.Mineralocorticoid and AT1 receptors in the paraventricular nucleus contribute to sympathetic hyperactivity and cardiac dysfunction in rats post myocardial infarct. J. Physiol., 2014, 592(15): 3273-3286.
- 11.
Wang J.L.; Hanada K.J.; Gareri C.; et al. Mechanoactivation of the angiotensin II type 1 receptor induces β-arrestin-biased signaling through Gαi coupling. J. Cell.Biochem., 2018, 119(4): 3586-3597.
- 12.
Woo A.Y.H.; Komuro I.; Xiao R.P. Biased agonism at the angiotensin receptor: blocker and Calcium sensitizer at the same time. Circulation, 2017, 135(11): 1071-1074.
- 13.
Ryba M.M.; Li J.L.; Cowan L.L.;et al. Long-Term biased β-Arrestin signaling improves cardiac structure and function in dilated cardiomyopathy. Circulation, 2017, 135(11): 1056-1070.
- 14.
Michel M.C.; Harding S.E.; Bond R.A. Are there functional β3-adrenoceptors in the human heart?. Br. J.Pharmacol.,2011, 162(4): 817-822.
- 15.
Zhou P.Z.; Pu T.T. Recounting cardiac cellular composition. Circ.Res., 2016, 118(3): 368-370.
- 16.
Myagmar B.E.; Flynn J.M.; Cowley P.M.; et al. Adrenergic receptors in individual ventricular myocytes: the beta-1 and alpha-1B are in all cells, the alpha-1a is in a subpopulation, and the beta-2 and beta-3 are mostly absent. Circ.Res., 2017, 120(7): 1103-1115.
- 17.
Lindenfeld J.; Cleveland J.C.Jr.; Kao D.P.;et al. Sex-related differences in age-associated downregulation of human ventricular myocardial β1-adrenergic receptors. J. Heart Lung Transplant., 2016, 35(3): 352-361.
- 18.
Pecha S.; Geelhoed B.; Kempe R.; et al. No impact of sex and age on beta-adrenoceptor-mediated inotropy in human right atrial trabeculae. Acta physiol., 2021, 231(3): e13564.
- 19.
Bers M.M. Sarcoplasmic reticulum Ca release in intact ventricular myocytes. Front. Biosci., 2002, 7: d1697-d1711.
- 20.
Zhang Y.; Wang E.E.; Zhang X.Y.; et al. Cardiomyocyte PKA ablation enhances basal contractility while eliminates cardiac β-Adrenergic response without adverse effects on the heart. Circ. Res., 2019, 124(12): 1760-1777.
- 21.
Mi X.Y.; Ding W.G.; Toyoda F.; et al. Selective activation of adrenoceptors potentiates IKs current in pulmonary vein cardiomyocytes through the protein kinase A and C signaling pathways. J. Mol. Cell.Cardiol., 2021, 161: 86-97.
- 22.
Xing G.; Woo Y.H.Y.H.; Pan L.; et al. Recent advances in β2-Agonists for treatment of chronic respiratory diseases and heart failure. J.Med. Chem., 2020, 63(24): 15218-15242.
- 23.
Daaka Y.; Luttrell M.M.; Lefkowitz J.J. Switching of the coupling of the beta2-adrenergic receptor to different G proteins by protein kinase A. Nature, 1997, 390(6655): 88-91.
- 24.
Xiao R.P.; Ji X.; LakattaE.G. Functional coupling of the beta 2-adrenoceptor to a pertussis toxin-sensitive G protein in cardiac myocytes. Mol.Pharmacol., 1995, 47(2): 322-329.
- 25.
Arioglu-Inan E.; Kayki-Mutlu G.; Michel M.C. Cardiac β3-adrenoceptors-A role in human pathophysiology?. Br. J.Pharmacol., 2019, 176(14): 2482-2495.
- 26.
Ali D.C.; Naveed M.; Gordon A.; et al. β-Adrenergic receptor, an essential target in cardiovascular diseases. Heart Fail Rev., 2020, 25(2): 343-354.
- 27.
Xu B.; Li M.H.; Wang Y.; et al. GRK5 controls SAP97-Dependent cardiotoxic β1 adrenergic Receptor-CaMKII signaling in heart failure. Circ.Res., 2020, 127(6): 796-810.
- 28.
Huang J.; Li C.Z.; Song Y.; et al. ADRB2 polymorphism Arg16Gly modifies the natural outcome of heart failure and dictates therapeutic response to beta-blockers in patients with heart failure. Cell Discov., 2018, 4: 57.
- 29.
Shin E.; KoK.S.; Rhee B.D.; et al. Different effects of prolonged β-adrenergic stimulation on heart and cerebral artery. Integr. Med. Res., 2014, 3(4): 204-210.
- 30.
Imaeda A.; Tanaka S.; Tonegawa K.; et al. Myofibroblast β2 adrenergic signaling amplifies cardiac hypertrophy in mice. Biochem.Biophys. Res. Commun., 2019, 510(1): 149-155.
- 31.
Tanaka S.; Imaeda A.; Matsumoto K.; et al. β2-adrenergic stimulation induces interleukin-6 by increasing arid5a, a stabilizer of mRNA, through cAMP/PKA/CREB pathway in cardiac fibroblasts. Pharmacol.Rese.Perspect., 2020, 8(2): e00590.
- 32.
Bageghni S.A.; Hemmings K.E.; Zava N.; et al. Cardiac fibroblast-specific p38α MAP kinase promotes cardiac hypertrophy via a putative paracrine interleukin-6 signaling mechanism. FASEB J., 2018, 32(9): 4941-4954.
- 33.
Nuamnaichati N.; Sato V.H.; Moongkarndi P.; et al. Sustained β-AR stimulation induces synthesis and secretion of growth factors in cardiac myocytes that affect on cardiac fibroblast activation. Life Sci., 2018, 193: 257-269.
- 34.
She G.; HouM.C.; Zhang Y.; et al. Gal-3 (Galectin-3) and KCa3.1 Mediate Heterogeneous Cell Coupling and Myocardial Fibrogenesis Driven by betaAR (beta-Adrenoceptor) Activation. Hypertension, 2020, 75(2): 393-404.
- 35.
Khadeja Bi A.; Santhosh V.; Sigamani K. Levels of galectin-3 in chronic heart failure: a Case-Control study. Cureus, 2022, 14(8): e28310.
- 36.
Al-Salam S.; Hashmi S.; JagadeeshG.S.; et al. Galectin-3: a cardiomyocyte antiapoptotic mediator at 24-Hour post myocardial infarction. Cell. Physiol. Biochem., 2020, 54(2): 287-302.
- 37.
Zhao W.B.; Lu Q.; Nguyen N.N.; et al. Stimulation of β-adrenoceptors up-regulates cardiac expression of galectin-3 and BIM through the Hippo signalling pathway. Br. J. Pharmacol., 2019, 176(14): 2465-2481.
- 38.
Aránguiz-Urroz P.; Canales J.; Copaja M.; et al. Beta(2)-adrenergic receptor regulates cardiac fibroblast autophagy and collagen degradation. Biochim.Biophys.Acta, 2011, 1812(1): 23-31.
- 39.
Bristow M.R.; Hershberger R.E.; Port J.D.; et al. Beta 1- and beta 2-adrenergic receptor-mediated adenylate cyclase stimulation in nonfailing and failing human ventricular myocardium. Mol. Pharmacol., 1989, 35(3): 295-303.
- 40.
Bristow M.R.; Minobe W.A.; Raynolds M.V.; et al. Reduced beta 1 receptor messenger RNA abundance in the failing human heart. J. Clin. Invest., 1993, 92(6): 2737-2745.
- 41.
Lymperopoulos A.; Rengo G.; Koch W.J. Adrenergic nervous system in heart failure: pathophysiology and therapy. Circ. Res., 2013, 113(6): 739-753.
- 42.
de LuciaC.; Eguchi A.; Koch W.J. New insights in cardiac beta-Adrenergic signaling during heart failure and aging. Front. Pharmacol., 2018, 9: 904.
- 43.
Effect of metoprolol CR/XL in chronic heart failure:Metoprolol CR/XL Randomised Intervention Trial in Congestive Heart Failure (MERIT-HF). Lancet, 1999, 353(9169): 2001-2007.
- 44.
Sigmund M.; Jakob H.; Becker H.; et al. Effects of metoprolol on myocardial beta-adrenoceptors and Gi alpha-proteins in patients with congestive heart failure. Eur. J. Clin. Pharmacol., 1996, 51(2): 127-132.
- 45.
Kukin M.L.; Kalman J.; Charney R.H.; et al. Prospective, randomized comparison of effect of long-term treatment with metoprolol or carvedilol on symptoms, exercise, ejection fraction, and oxidative stress in heart failure. Circulation, 1999, 99(20): 2645-2651.
- 46.
Ungerer M.; Böhm M.; Elce J.S.; et al. Altered expression of beta-adrenergic receptor kinase and beta 1-adrenergic receptors in the failing human heart. Circulation, 1993, 87(2): 454-463.
- 47.
Nguyen N.N.; Kiriazis H.; Ruggiero D.; et al. Spontaneous ventricular tachyarrhythmias in β2-adrenoceptor transgenic mice in relation to cardiac interstitial fibrosis. Am. J. Physiol., 2015, 309(5): H946-H957.
- 48.
Dorn G.W. 2nd.;Tepe NM.; Lorenz J.N.;et al. Low- and high-level transgenic expression of beta2-adrenergic receptors differentially affect cardiac hypertrophy and function in Galphaq-overexpressing mice. Proc. Natl. Acad. Sci. U. S. A., 1999, 96(11): 6400-6405.
- 49.
Engelhardt S.; Hein L.; Wiesmann F.; et al. Progressive hypertrophy and heart failure in beta1-adrenergic receptor transgenic mice. Proc. Natl. Acad. Sci. U. S. A., 1999, 96(12): 7059-7064.
- 50.
Liang W.; Austin S.; Hoang Q.; et al. Resistance of the human beta 1-adrenergic receptor to agonist-mediated down-regulation. J. Biol. Chem., 2003, 278(41): 39773-39781.
- 51.
Shi Q.; Li M.H.; Mika D.; et al. Heterologous desensitization of cardiac β-adrenergic signal via hormone-induced βAR/arrestin/PDE4 complexes. Cardiovasc. Res., 2017, 113(6): 656-670.
- 52.
Judina A.; Gorelik J.; Wright P.T. Studying signal compartmentation in adult cardiomyocytes. Biochem. Soc. Trans., 2020, 48(1): 61-70.
- 53.
Steinberg S.F. Beta(2)-Adrenergic receptor signaling complexes in cardiomyocyte caveolae/lipid rafts. J. Mol. Cell. Cardiol., 2004, 37(2): 407-415.
- 54.
Xiang Y.K. Compartmentalization of beta-adrenergic signals in cardiomyocytes. Circ. Res., 2011, 109(2): 231-244.
- 55.
Xiao R.P.; Cheng H.; Zhou Y.Y.; et al. Recent advances in cardiac beta(2)-adrenergic signal transduction. Circ. Res., 1999, 85(11): 1092-1100.
- 56.
Yang H.Q.; Wang L.P.; Gong Y.Y.; et al. β2-Adrenergic stimulation compartmentalizes β1 signaling into nanoscale local domains by targeting the C-Terminus of β1-Adrenoceptors. Circ. Res., 2019, 124(9): 1350-1359.
- 57.
Davare M.A.; Avdonin V.; Hall D.D.; et al. A beta2 adrenergic receptor signaling complex assembled with the Ca2+ channel Cav1.2. Science, 2001, 293(5527): 98-101.
- 58.
Zhou Y.Y.; Cheng H.; BogdanovK.Y.;et al. Localized cAMP-dependent signaling mediates beta 2-adrenergic modulation of cardiac excitation-contraction coupling. Am. J. Physiol., 1997, 273(3 Pt 2): H1611-H1618.
- 59.
Sanchez-Alonso J.L.; Bhargava A.; O’Hara T,; et al.Microdomain-specific modulation of L-Type calcium channels leads to triggered ventricular arrhythmia in heart failure. Circ. Res., 2016, 119(8): 944-955.
- 60.
Loucks A.D.; O’Hara T.; Trayanova N.A. Degradation of t-tubular microdomains and altered cAMP compartmentation lead to emergence of arrhythmogenic triggers in heart failure myocytes: an in silico study. Front. Physiol., 2018, 9: 1737.
- 61.
Hullmann J.; Traynham C.J.; Coleman R.C.; et al. The expanding GRK interactome: Implications in cardiovascular disease and potential for therapeutic development. Pharmacol. Res., 2016, 110: 52-64.
- 62.
Nobles K.N.; Xiao K.H.; Ahn S.;et al. Distinct phosphorylation sites on the β(2)-adrenergic receptor establish a barcode that encodes differential functions of β-arrestin. Sci. Signal., 2011, 4(185): ra51.
- 63.
Eckhart A.D.; Duncan S.J.; Penn D.B.; et al. Hybrid transgenic mice reveal in vivo specificity of G protein-coupled receptor kinases in the heart. Circ. Res., 2000, 86(1): 43-50.
- 64.
Zhu W.Z.; Petrashevskaya N.; Ren S.X.; et al. Gi-Biased β2AR Signaling Links GRK2 Upregulation to Heart Failure. Circ. Res., 2012, 110(2): 265-274.
- 65.
Schlegel P.; Reinkober J.; Meinhardt E.; et al. G protein-coupled receptor kinase 2 promotes cardiac hypertrophy. PloS one, 2017, 12(7): e0182110.
- 66.
Travers J.G.;Kamal F.A.;Valiente-Alandi I.; et al. Activated Fibroblast Targeting of Gbetagamma-GRK2 After Myocardial Ischemia Attenuates Heart Failure Progression. J. Am. Coll. Cardiol., 2017, 70(8): 958-971.
- 67.
Woodall M.C.; Woodall B.P.; Gao E.H.; et al. Cardiac fibroblast GRK2 deletion enhances contractility and remodeling following ischemia/reperfusion injury. Circ.Res., 2016, 119(10): 1116-1127.
- 68.
AbdAlla J.; Graemer M.; Fu X.B.; et al. Inhibition of G-protein-coupled Receptor Kinase 2 Prevents the Dysfunctional Cardiac Substrate Metabolism in Fatty Acid Synthase Transgenic Mice. J. Biol. Chem., 2016, 291(6): 2583-2600.
- 69.
Cannavo A.; Marzano F.; Elia A.; et al. Aldosterone jeopardizes myocardial insulin and beta-Adrenergic receptor signaling via G Protein-Coupled receptor kinase 2. Front. Pharmacol., 2019, 10: 888.
- 70.
Powell J.M.; Ebin E.; Borzak S.; et al. Hypothesis: paroxetine, a G Protein-Coupled receptor kinase 2 (GRK2) inhibitor reduces morbidity and mortality in patients with heart failure. J. Cardiovasc. Pharmacol.Ther., 2017, 22(1): 51-53.
- 71.
Santulli G.; Campanile A.; Spinelli L.; et al.G protein-coupled receptor kinase 2 in patients with acute myocardial infarction. Am. J. Cardiol., 2011, 107(8): 1125-1130.
- 72.
Ma X.Y.; Hu Y.F.; Batebi H.; et al. Analysis of β2AR-Gs and β2AR-Gi complex formation by NMR spectroscopy. Proc. Natl. Acad. Sci. U. S. A., 2020, 117(37): 23096-23105.
- 73.
Alegre K.O.; Paknejad N.; Su M.F.; et al. Structural basis and mechanism of activation of two different families of G proteins by the same GPCR. Nat. Struct. Mol. Biol., 2021, 28(11): 936-944.
- 74.
Nakano T.; Onoue K.J.; Nakada Y.; et al. Alteration of β-Adrenoceptor signaling in left ventricle of acute phase takotsubo syndrome: a human study. Sci. Rep., 2018, 8(1): 12731.
- 75.
Woo A.Y.; Song Y.; Xiao R.P.; et al. Biased β2-adrenoceptor signalling in heart failure: pathophysiology and drug discovery. Br. J. Pharmacol., 2015, 172(23): 5444-5456.
- 76.
Martini J.S.; Raake P.; VingeL.E.; et al. Uncovering G protein-coupled receptor kinase-5 as a histone deacetylase kinase in the nucleus of cardiomyocytes. Proc. Natl. Acad. Sci. U. S. A., 2008, 105(34): 12457-12462.
- 77.
Gold J.I.; Gao E.H.; Shang X.Y.;et al. Determining the absolute requirement of G protein-coupled receptor kinase 5 for pathological cardiac hypertrophy: short communication. Circ. Res., 2012, 111(8): 1048-1053.
- 78.
Liggett S.B.; Cresci S.; Kelly R.J.; et al. A GRK5 polymorphism that inhibits beta-adrenergic receptor signaling is protective in heart failure. Nat. Med., 2008, 14(5): 510-517.
- 79.
Nakaya M.C.; Chikura S.; Watari K.J.; et al. Induction of cardiac fibrosis by β-blocker in G protein-independent and G protein-coupled receptor kinase 5/β-arrestin2-dependent Signaling pathways. J.Bio. Chem., 2012, 287(42): 35669-35677.
- 80.
Teoh J.P.; BayoumiA.S.; Aonuma T.; et al. β-arrestin-biased agonism of β-adrenergic receptor regulates dicer-mediated microRNA maturation to promote cardioprotective signaling. J. Mol. Cell. Cardiol.,2018, 118: 225-236.
- 81.
Colomer J.M.; Mao L.; Rockman H.A.; et al. Pressure overload selectively up-regulates Ca2+/calmodulin-dependent protein kinase II in vivo. Mol. Endocrinol., 2003, 17(2): 183-192.
- 82.
Grimm M.; Ling H.Y.; Willeford A.; et al. CaMKIIδ mediates β-adrenergic effects on RyR2 phosphorylation and SR Ca(2+) leak and the pathophysiological response to chronic β-adrenergic stimulation. J. Mol. Cell. Cardiol., 2015, 85: 282-291.
- 83.
Xu L.; Lai D.W.; Cheng J.; et al. Alterations of L-type Calcium current and cardiac function in CaMKII{delta} knockout mice. Circ. Res., 2010, 107(3): 398-407.
- 84.
Wang W.; Zhu W.Z.; Wang S.Q.; et al. Sustained beta1-adrenergic stimulation modulates cardiac contractility by Ca2+/calmodulin kinase signaling pathway. Circ. Res., 2004, 95(8): 798-806.
- 85.
Mika D.; Richter W.; Conti M. A CaMKII/PDE4D negative feedback regulates cAMP signaling. Proc. Natl. Acad. Sci. U. S. A., 2015, 112(7): 2023-2028.
- 86.
Zhu W.Z.; Wang S.Q.; Chakir K.; et al. Linkage of beta1-adrenergic stimulation to apoptotic heart cell death through protein kinase A-independent activation of Ca2+/calmodulin kinase II. J. Clin. Inves., 2003, 111(5): 617-625.
- 87.
Yang Y.B.; Zhu W.Z.; Joiner M.L.; et al. Calmodulin kinase II inhibition protects against myocardial cell apoptosis in vivo. Am. J. Physiol., 2006, 291(6): H3065-H3075.
- 88.
Sucharov C.C.; Mariner P.D.; Nunley K.R.; et al. A beta1-adrenergic receptor CaM kinase II-dependent pathway mediates cardiac myocyte fetal gene induction. Am. J. Physiol., 2006, 291(3): H1299-H1308.
- 89.
Dybkova N.; Sedej S.; Napolitano C.; et al. Overexpression of CaMKIIδc in RyR2R4496C+/- knock-in mice leads to altered intracellular Ca2+ handling and increased mortality. J. Am. Coll. Cardiol., 2011, 57(4): 469-479.
- 90.
Sadredini M.; Haugsten Hansen M.; Frisk M.; et al. CaMKII inhibition has dual effects on spontaneous Ca2+ release and Ca2+ alternans in ventricular cardiomyocytes from mice with a gain-of-function RyR2 mutation. Am. J. Physiol, 2021, 321(2): H446-H460.
- 91.
Curran J.; Hinton M.J.; Ríos E.; et al. Beta-adrenergic enhancement of sarcoplasmic reticulum Calcium leak in cardiac myocytes is mediated by Calcium/calmodulin-dependent protein kinase. Circ. Res., 2007, 100(3): 391-398.
- 92.
Bos J.L. Epac proteins: multi-purpose cAMP targets. Trends Biochem. Sci., 2006, 31(12): 680-686.
- 93.
Ponsioen B.; Gloerich M.; Ritsma L.; et al. Direct spatial control of Epac1 by cyclic AMP. Mol. Cell. Biol., 2009, 29(10): 2521-2531.
- 94.
Mangmool S.; Shukla A.K.; Rockman H.A. beta-Arrestin-dependent activation of Ca(2+)/calmodulin kinase II after beta(1)-adrenergic receptor stimulation. J. Cell Biol., 2010, 189(3): 573-587.
- 95.
Curran J.; Tang L.F..; Roof S.R.;et al. Nitric oxide-dependent activation of CaMKII increases diastolic sarcoplasmic reticulum Calcium release in cardiac myocytes in response to adrenergic stimulation. PloS one, 2014, 9(2): e87495.
- 96.
Pereira L.; Bare D.J.; Galice S.; et al. β-Adrenergic induced SR Ca2+ leak is mediated by an Epac-NOS pathway. J. Mol. Cell. Cardiol., 2017, 108: 8-16.
- 97.
Zhang X.Y.; Szeto C.; Gao E.; et al. Cardiotoxic and cardioprotective features of chronic β-adrenergic signaling. Circ. Res., 2013, 112(3): 498-509.
- 98.
Beauverger P.; Ozoux M.L.; Bégis G.; et al. Reversion of cardiac dysfunction by a novel orally available Calcium/calmodulin-dependent protein kinase II inhibitor, RA306, in a genetic model of dilated cardiomyopathy. Cardiovasc. Res., 2020, 116(2): 329-338.
- 99.
Mustroph J.; Wagemann O.; Lücht C.M.; et al. Empagliflozin reduces Ca/calmodulin-dependent kinase II activity in isolated ventricular cardiomyocytes. ESC Heart Failure, 2018, 5(4): 642-648.
- 100.
Chen J.J.; Xu S.N.; Zhou W.; et al. Exendin-4 reduces ventricular arrhythmia activity and Calcium Sparks-Mediated sarcoplasmic reticulum Ca leak in rats with heart failure. Int. Heart J., 2020, 61(1): 145-152.
- 101.
Puhl S.L.; Weeks K.L.; Güran A.; et al. Role of type 2A phosphatase regulatory subunit B56α in regulating cardiac responses to β-adrenergic stimulation in vivo. Cardiovasc. Res., 2019, 115(3): 519-529.
- 102.
Schmid E.; Neef S.; Berlin C.; et al. Cardiac RKIP induces a beneficial β-adrenoceptor-dependent positive inotropy. Nat. Med., 2015, 21(11): 1298-1306.
- 103.
Zhang W.J.; Qu X.X.; Chen B.Y.; et al. Critical roles of STAT3 in β-Adrenergic functions in the heart. Circulation, 2016, 133(1): 48-61.
- 104.
Zhu W.Z.; Tsang S.; Browe D.M.; et al. Interaction of β1-adrenoceptor with RAGE mediates cardiomyopathy via CaMKII signaling. JCI Insight, 2016, 1(1): e84969.
- 105.
Whitcomb V.; Wauson E.; Christian D.; et al. Regulation of beta adrenoceptor-mediated myocardial contraction and Calcium dynamics by the G protein-coupled estrogen receptor 1. Biochem. Pharm., 2020, 171: 113727.
- 106.
Castaldi A.; Zaglia T.; Di Mauro V.; et al. MicroRNA-133 modulates the β1-adrenergic receptor transduction cascade. Circ. Res., 2014, 115(2): 273-283.
- 107.
Liu Z.B.; Tao B.; Fan S.Z.; et al. Over-expression of microRNA-145 drives alterations in β-adrenergic signaling and attenuates cardiac remodeling in heart failure post myocardial infarction. Aging, 2020, 12(12): 11603-11622.
- 108.
Deng Y.F.; Wang J.; Xie G.J.; et al. Circ-HIPK3 strengthens the effects of adrenaline in heart failure by MiR-17-3p - ADCY6 axis. Int. J. Biol. Sci., 2019, 15(11): 2484-2496.
- 109.
Johnson J.A.; Liggett S.B. Cardiovascular pharmacogenomics of adrenergic receptor signaling: clinical implications and future directions. Clin. Pharmacol. Thera., 2011, 89(3): 366-378.
- 110.
DiNicolantonio J.J.; Fares H.; Niazi A.K.; et al. β-Blockers in hypertension, diabetes, heart failure and acute myocardial infarction: a review of the literature. Open Heart, 2015, 2(1): e000230.
- 111.
Poirier L.; Tobe S.W. Contemporary use of β-blockers: clinical relevance of subclassification. Canadi. J. Cardio., 2014, 30(5 Suppl): S9-S15.
- 112.
Moens A.L.; Leyton-Mange J.S.; Niu X.L.; et al. Adverse ventricular remodeling and exacerbated NOS uncoupling from pressure-overload in mice lacking the beta3-adrenoreceptor. J. Mol. Cell. Cardiol., 2009, 47(5): 576-585.
- 113.
Liu H.H.; Zhang C.H.; Ammanamanchi N.; et al. Control of cytokinesis by β-adrenergic receptors indicates an approach for regulating cardiomyocyte endowment. Sci. Transl. Med., 2019, 11(513): eaaw6419.
- 114.
Frishman W.H. Fifty years of beta-adrenergic blockade: a golden era in clinical medicine and molecular pharmacology. Am. J. Med., 2008, 121(11): 933-934.
- 115.
do Vale G.T.; Ceron C.S.; Gonzaga N.A.; et al. Three generations of β-blockers: history, class differences and clinical applicability. Curr. Hypertens. Rev., 2019, 15(1): 22-31.
- 116.
García-Prieto J.; Villena-Gutiérrez R.; Gómez M.; et al. Neutrophil stunning by metoprolol reduces infarct size. Nat. Commun., 2017, 8: 14780.
- 117.
Cannavo A.; Rengo G.; Liccardo D.; et al. β1-Blockade prevents Post-Ischemic myocardial decompensation via β3AR-Dependent protective sphingosine-1 phosphate signaling. J. Am. Coll. Cardiol., 2017, 70(2): 182-192.
- 118.
Dewenter M.; Neef S.; Vettel C.; et al. Calcium/calmodulin-dependent protein kinase II activity persists during chronic β-adrenoceptor blockade in experimental and human heart failure. Circ.: Heart Failure, 2017, 10(5): e003840.
- 119.
Broeders M.A.; Doevendans P.A.; Bekkers B.C.; et al. Nebivolol: a third-generation beta-blocker that augments vascular nitric oxide release: endothelial beta(2)-adrenergic receptor-mediated nitric oxide production. Circulation, 2000, 102(6): 677-684.
- 120.
Fonseca V.A. Effects of beta-blockers on glucose and lipid metabolism. Curr. Med. Res. Opin., 2010, 26(3): 615-629.
- 121.
Park M.; Steinberg S.F. Carvedilol prevents redox inactivation of cardiomyocyte β1-adrenergic receptors. JACC. Basic Transl. Sci., 2018, 3(4): 521-532.
- 122.
Wang J.L.; Hanada K.J.; Staus D.P.; et al. Gαi is required for carvedilol-induced β1 adrenergic receptor β-arrestin biased signaling. Nat. Commun., 2017, 8(1): 1706.
- 123.
Güven B.; Kara Z.; Onay-Beşikci A. Metabolic effects of carvedilol through β-arrestin proteins: investigations in a streptozotocin-induced diabetes rat model and in C2C12 myoblasts. Br. J. Pharmacol., 2020, 177(24): 5580-5594.
- 124.
Nash C.A.; Wei W.H.; Irannejad R.; et al. Golgi localized β1-adrenergic receptors stimulate Golgi PI4P hydrolysis by PLCε to regulate cardiac hypertrophy. Elife, 2019, 8: e48167.
- 125.
Koracevic G.; Micic S.; Stojanovic M.; et al. Compelling indications should be listed for individual beta-blockers(due to diversity),not for the whole class. Curr. Vasc. Pharmacol., 2021, 19(4): 343-346.
- 126.
Germano N.; Summerfield D.; Johnson B. A mini review of inhaled beta 2 agonists in acute decompensated heart failure requiring respiratory support. Pulm. Crit. Care. Med., 2019, 4(3): 10.15761/pccm.1000161.
- 127.
Reddy Y.N.V.; Obokata M.; Koepp K.E.; et al. The β-Adrenergic agonist albuterol improves pulmonary vascular reserve in heart failure with preserved ejection fraction. Circ. Res., 2019, 124(2): 306-314.
- 128.
Ge X.A.; Woo A.Y.H.; Xing G.; et al. Synthesis and biological evaluation of β2-adrenoceptor agonists bearing the 2-amino-2-phenylethanol scaffold. Eur. J. Med. Chem., 2018, 152: 424-435.
- 129.
Ge X.Y.; Mo Y.M.; Xing G.; et al. Synthesis, biological evaluation and molecular modeling of 2-amino-2-phenylethanol derivatives as novel β2-adrenoceptor agonists. Bioorg. Chem., 2018, 79: 155-162.
- 130.
Ahn S.; Kahsai A.W.; Pani B.; et al. Allosteric “beta-blocker” isolated from a DNA-encoded small molecule library. Proc. Natl. Acad. Sci. U. S. A., 2017, 114(7): 1708-1713.
- 131.
Liu X.Y.; Ahn S.; Kahsai A.W.; et al. Mechanism of intracellular allosteric β2AR antagonist revealed by X-ray crystal structure. Nature, 2017, 548(7668): 480-484.
- 132.
Meng K.C.; Shim P.; Wang Q.; et al. Design, synthesis, and functional assessment of Cmpd-15 derivatives as negative allosteric modulators for the β2-adrenergic receptor. Bioorg. Med. Chem., 2018, 26(9): 2320-2330.
- 133.
Ahn S.; Pani B.; Kahsai A.W.; et al. Small-Molecule positive allosteric modulators of the β2-Adrenoceptor isolated from DNA-Encoded libraries. Mol. Pharmacol., 2018, 94(2): 850-861.
- 134.
Liu X.Y.; Masoudi A.; Kahsai A.W.; et al. Mechanism of β2AR regulation by an intracellular positive allosteric modulator. Science, 2019, 364(6447): 1283-1287.
- 135.
Liu X.Y.; Kaindl J.; Korczynska M.; et al. An allosteric modulator binds to a conformational hub in the β2 adrenergic receptor. Nat. Chem. Biol., 2020, 16(7): 749-755.
- 136.
Woo A.Y.H.; Ge X.Y.; PanL.; et al. Discovery of β-arrestin-biased β2-adrenoceptor agonists from 2-amino-2-phenylethanol derivatives. Acta Pharmacol. Sin., 2019, 40(8): 1095-1105.
- 137.
Carr R. 3rd.; Schilling J.; Song J.L.;et al. β-arrestin-biased signaling through the β2-adrenergic receptor promotes cardiomyocyte contraction. Proc. Natl. Acad. Sci. U. S. A., 2016, 113(28): E4107-E4116.
- 138.
Li C.X.; Cheng W.K.; Guo J.; et al. Relationship of inhaled long-acting bronchodilators with cardiovascular outcomes among patients with stable COPD: a meta-analysis and systematic review of 43 randomized trials. Int. J. Chronic Obstruct. Pulm. Dis., 2019, 14: 799-808.
- 139.
Qiao Y.H.; Zhu B.L.; Tian A.J.; et al. PEG-coated Gold nanoparticles attenuate β-adrenergic receptor-mediated cardiac hypertrophy. Int. J. Nanomed., 2017, 12: 4709-4719.
- 140.
Duran-Corbera A.; Faria M.; Ma Y.Y.; et al. A photoswitchable ligand targeting the β1-Adrenoceptor enables Light-Control of the cardiac rhythm**. Angew. Chem., Int. Ed., 2022, 61(30): e202203449.