2504000135
  • Open Access
  • Review
Cardiac β-Adrenoceptor Signaling: The New Insight on An Old Target in the Therapy of Cardiovascular Disease
  • Ying Song 1,   
  • Anthony Yiu-Ho WOO 2, *,   
  • Yan Zhang 3, 4, *,   
  • Ruiping Xiao 5, 6, 7, 8

Received: 19 Oct 2022 | Accepted: 28 Nov 2022 | Published: 21 Dec 2022

Abstract

A variety of G protein-coupled receptors (GPCRs) are involved in the regulation of cardiovascular function. The β-adrenoceptors (β-ARs), with three subtypes, are the dominant receptor species in the heart, in which the β1-AR and the β2-AR are considered functional. Stimulation of the β-ARs produces myocardial inotropy via activation of the Gs-cAMP-PKA signaling cascade. Prolonged stimulation of the β1-AR is cardiac harmful because the stimulated β1-AR couples only to Gs proteins and it mediates a cardiotoxic signal. On the other hand, the β2-AR couples dually to both Gs and Gi proteins and the β2-AR-Gi pathway is antiapoptotic. The activated Gi signal also counteracts the β-AR-Gs-promoted positive inotropic effect. Other key players in cardiac β-AR signaling include Ca2+/calmodulin-dependent protein kinases (CaMKs), GPCR kinases (GRKs), β-arrestins and phosphodiesterases. During heart failure, excessive sympathetic stimulation results in the activation of the cardiotoxic β1-AR-CaMKIIδ pathway and the upregulation of GRK2 and Gi in the heart. GRK2 promotes the desensitization of β-ARs and enhances a β2-AR-mediated Gi signaling. These signal transduction processes accompanying the downregulation of the β1-AR are involved in cardiac dysfunction, maladaptive cardiac remodeling, and the progression of chronic heart failure. β-Blockers are widely used in the treatment of cardiovascular disease. They have established their position as one of the “four pillars of heart failure” thirty years ago. In the present review, we provide an overview of the recent progress in the basic research of GPCRs focusing on cardiac β-AR signal transduction.

References 

  • 1.
    Kenakin T. Biased receptor signaling in drug discovery. Pharmacol.Rev., 2019, 71(2): 267-315.
  • 2.
    Song Y.; Xu C.J.; Liu J.F.; et al. Heterodimerization with 5-HT2BR is indispensable for β2AR-Mediated cardioprotection. Circ.Res.,2021, 128(2): 262-277.
  • 3.
    Wnorowski A.;Jozwiak K.Homo- and hetero-oligomerization of β2-adrenergic receptor in receptor trafficking, signaling pathways and receptor pharmacology. Cell Signal., 2014, 26(10): 2259-2265.
  • 4.
    Alexander S.; Christopoulos A.; Davenport P.P.; et al. THE CONCISE GUIDE TO PHARMACOLOGY 2019/20:G protein-coupled receptors, Br. J.Pharmacol., 2019, 176(Suppl 1): S21-S141.
  • 5.
    Grisanti A.A.; Schumacher M.M.; Tilley G.G.; et al. Designer approaches for G Protein-Coupled receptor modulation for cardiovascular disease. JACC Basic Transl. Sci., 2018, 3(4): 550-562.
  • 6.
    Laschet C.; Dupuis N.; Hanson J. The G protein-coupled receptors deorphanization landscape. Biochem.Pharmacol.,2018, 153: 62-74.
  • 7.
    Mouat A.A.; Coleman L.J.L.J.; Smith J.J. GPCRs in context: sexual dimorphism in the cardiovascular system. Br. J. Pharmacol., 2018, 175(21): 4047-4059.
  • 8.
    Virani S.S.; Alonso A.; Benjamin J.J.; et al. Heart disease and stroke statistics-2020 update: a report from the american heart association. Circulation, 2020, 141(9): e139-e596.
  • 9.
    Li P.; Fu Y.X.; Ru J.L.; et al. Insights from systems pharmacology into cardiovascular drug discovery and therapy. BMC Syst. Biol.,2014,8: 141.
  • 10.
    Huang B.S.; Chen A.; Ahmad M.; et al.Mineralocorticoid and AT1 receptors in the paraventricular nucleus contribute to sympathetic hyperactivity and cardiac dysfunction in rats post myocardial infarct. J. Physiol., 2014, 592(15): 3273-3286.
  • 11.
    Wang J.L.; Hanada K.J.; Gareri C.; et al. Mechanoactivation of the angiotensin II type 1 receptor induces β-arrestin-biased signaling through Gαi coupling. J. Cell.Biochem., 2018, 119(4): 3586-3597.
  • 12.
    Woo A.Y.H.; Komuro I.; Xiao R.P. Biased agonism at the angiotensin receptor: blocker and Calcium sensitizer at the same time. Circulation, 2017, 135(11): 1071-1074.
  • 13.
    Ryba M.M.; Li J.L.; Cowan L.L.;et al. Long-Term biased β-Arrestin signaling improves cardiac structure and function in dilated cardiomyopathy. Circulation, 2017, 135(11): 1056-1070.
  • 14.
    Michel M.C.; Harding S.E.; Bond R.A. Are there functional β3-adrenoceptors in the human heart?. Br. J.Pharmacol.,2011, 162(4): 817-822.
  • 15.
    Zhou P.Z.; Pu T.T. Recounting cardiac cellular composition. Circ.Res., 2016, 118(3): 368-370.
  • 16.
    Myagmar B.E.; Flynn J.M.; Cowley P.M.; et al. Adrenergic receptors in individual ventricular myocytes: the beta-1 and alpha-1B are in all cells, the alpha-1a is in a subpopulation, and the beta-2 and beta-3 are mostly absent. Circ.Res., 2017, 120(7): 1103-1115.
  • 17.
    Lindenfeld J.; Cleveland J.C.Jr.; Kao D.P.;et al. Sex-related differences in age-associated downregulation of human ventricular myocardial β1-adrenergic receptors. J. Heart Lung Transplant., 2016, 35(3): 352-361.
  • 18.
    Pecha S.; Geelhoed B.; Kempe R.; et al. No impact of sex and age on beta-adrenoceptor-mediated inotropy in human right atrial trabeculae. Acta physiol., 2021, 231(3): e13564.
  • 19.
    Bers M.M. Sarcoplasmic reticulum Ca release in intact ventricular myocytes. Front. Biosci., 2002, 7: d1697-d1711.
  • 20.
    Zhang Y.; Wang E.E.; Zhang X.Y.; et al. Cardiomyocyte PKA ablation enhances basal contractility while eliminates cardiac β-Adrenergic response without adverse effects on the heart. Circ. Res., 2019, 124(12): 1760-1777.
  • 21.
    Mi X.Y.; Ding W.G.; Toyoda F.; et al. Selective activation of adrenoceptors potentiates IKs current in pulmonary vein cardiomyocytes through the protein kinase A and C signaling pathways. J. Mol. Cell.Cardiol., 2021, 161: 86-97.
  • 22.
    Xing G.; Woo Y.H.Y.H.; Pan L.; et al. Recent advances in β2-Agonists for treatment of chronic respiratory diseases and heart failure. J.Med. Chem., 2020, 63(24): 15218-15242.
  • 23.
    Daaka Y.; Luttrell M.M.; Lefkowitz J.J. Switching of the coupling of the beta2-adrenergic receptor to different G proteins by protein kinase A. Nature, 1997, 390(6655): 88-91.
  • 24.
    Xiao R.P.; Ji X.; LakattaE.G. Functional coupling of the beta 2-adrenoceptor to a pertussis toxin-sensitive G protein in cardiac myocytes. Mol.Pharmacol., 1995, 47(2): 322-329.
  • 25.
    Arioglu-Inan E.; Kayki-Mutlu G.; Michel M.C. Cardiac β3-adrenoceptors-A role in human pathophysiology?. Br. J.Pharmacol., 2019, 176(14): 2482-2495.
  • 26.
    Ali D.C.; Naveed M.; Gordon A.; et al. β-Adrenergic receptor, an essential target in cardiovascular diseases. Heart Fail Rev., 2020, 25(2): 343-354.
  • 27.
    Xu B.; Li M.H.; Wang Y.; et al. GRK5 controls SAP97-Dependent cardiotoxic β1 adrenergic Receptor-CaMKII signaling in heart failure. Circ.Res., 2020, 127(6): 796-810.
  • 28.
    Huang J.; Li C.Z.; Song Y.; et al. ADRB2 polymorphism Arg16Gly modifies the natural outcome of heart failure and dictates therapeutic response to beta-blockers in patients with heart failure. Cell Discov., 2018, 4: 57.
  • 29.
    Shin E.; KoK.S.; Rhee B.D.; et al. Different effects of prolonged β-adrenergic stimulation on heart and cerebral artery. Integr. Med. Res., 2014, 3(4): 204-210.
  • 30.
    Imaeda A.; Tanaka S.; Tonegawa K.; et al. Myofibroblast β2 adrenergic signaling amplifies cardiac hypertrophy in mice. Biochem.Biophys. Res. Commun., 2019, 510(1): 149-155.
  • 31.
    Tanaka S.; Imaeda A.; Matsumoto K.; et al. β2-adrenergic stimulation induces interleukin-6 by increasing arid5a, a stabilizer of mRNA, through cAMP/PKA/CREB pathway in cardiac fibroblasts. Pharmacol.Rese.Perspect., 2020, 8(2): e00590.
  • 32.
    Bageghni S.A.; Hemmings K.E.; Zava N.; et al. Cardiac fibroblast-specific p38α MAP kinase promotes cardiac hypertrophy via a putative paracrine interleukin-6 signaling mechanism. FASEB J., 2018, 32(9): 4941-4954.
  • 33.
    Nuamnaichati N.; Sato V.H.; Moongkarndi P.; et al. Sustained β-AR stimulation induces synthesis and secretion of growth factors in cardiac myocytes that affect on cardiac fibroblast activation. Life Sci., 2018, 193: 257-269.
  • 34.
    She G.; HouM.C.; Zhang Y.; et al. Gal-3 (Galectin-3) and KCa3.1 Mediate Heterogeneous Cell Coupling and Myocardial Fibrogenesis Driven by betaAR (beta-Adrenoceptor) Activation. Hypertension, 2020, 75(2): 393-404.
  • 35.
    Khadeja Bi A.; Santhosh V.; Sigamani K. Levels of galectin-3 in chronic heart failure: a Case-Control study. Cureus, 2022, 14(8): e28310.
  • 36.
    Al-Salam S.; Hashmi S.; JagadeeshG.S.; et al. Galectin-3: a cardiomyocyte antiapoptotic mediator at 24-Hour post myocardial infarction. Cell. Physiol. Biochem., 2020, 54(2): 287-302.
  • 37.
    Zhao W.B.; Lu Q.; Nguyen N.N.; et al. Stimulation of β-adrenoceptors up-regulates cardiac expression of galectin-3 and BIM through the Hippo signalling pathway. Br. J. Pharmacol., 2019, 176(14): 2465-2481.
  • 38.
    Aránguiz-Urroz P.; Canales J.; Copaja M.; et al. Beta(2)-adrenergic receptor regulates cardiac fibroblast autophagy and collagen degradation. Biochim.Biophys.Acta, 2011, 1812(1): 23-31.
  • 39.
    Bristow M.R.; Hershberger R.E.; Port J.D.; et al. Beta 1- and beta 2-adrenergic receptor-mediated adenylate cyclase stimulation in nonfailing and failing human ventricular myocardium. Mol. Pharmacol., 1989, 35(3): 295-303.
  • 40.
    Bristow M.R.; Minobe W.A.; Raynolds M.V.; et al. Reduced beta 1 receptor messenger RNA abundance in the failing human heart. J. Clin. Invest., 1993, 92(6): 2737-2745.
  • 41.
    Lymperopoulos A.; Rengo G.; Koch W.J. Adrenergic nervous system in heart failure: pathophysiology and therapy. Circ. Res., 2013, 113(6): 739-753.
  • 42.
    de LuciaC.; Eguchi A.; Koch W.J. New insights in cardiac beta-Adrenergic signaling during heart failure and aging. Front. Pharmacol., 2018, 9: 904.
  • 43.
    Effect of metoprolol CR/XL in chronic heart failure:Metoprolol CR/XL Randomised Intervention Trial in Congestive Heart Failure (MERIT-HF). Lancet, 1999, 353(9169): 2001-2007.
  • 44.
    Sigmund M.; Jakob H.; Becker H.; et al. Effects of metoprolol on myocardial beta-adrenoceptors and Gi alpha-proteins in patients with congestive heart failure. Eur. J. Clin. Pharmacol., 1996, 51(2): 127-132.
  • 45.
    Kukin M.L.; Kalman J.; Charney R.H.; et al. Prospective, randomized comparison of effect of long-term treatment with metoprolol or carvedilol on symptoms, exercise, ejection fraction, and oxidative stress in heart failure. Circulation, 1999, 99(20): 2645-2651.
  • 46.
    Ungerer M.; Böhm M.; Elce J.S.; et al. Altered expression of beta-adrenergic receptor kinase and beta 1-adrenergic receptors in the failing human heart. Circulation, 1993, 87(2): 454-463.
  • 47.
    Nguyen N.N.; Kiriazis H.; Ruggiero D.; et al. Spontaneous ventricular tachyarrhythmias in β2-adrenoceptor transgenic mice in relation to cardiac interstitial fibrosis. Am. J. Physiol., 2015, 309(5): H946-H957.
  • 48.
    Dorn G.W. 2nd.;Tepe NM.; Lorenz J.N.;et al. Low- and high-level transgenic expression of beta2-adrenergic receptors differentially affect cardiac hypertrophy and function in Galphaq-overexpressing mice. Proc. Natl. Acad. Sci. U. S. A., 1999, 96(11): 6400-6405.
  • 49.
    Engelhardt S.; Hein L.; Wiesmann F.; et al. Progressive hypertrophy and heart failure in beta1-adrenergic receptor transgenic mice. Proc. Natl. Acad. Sci. U. S. A., 1999, 96(12): 7059-7064.
  • 50.
    Liang W.; Austin S.; Hoang Q.; et al. Resistance of the human beta 1-adrenergic receptor to agonist-mediated down-regulation. J. Biol. Chem., 2003, 278(41): 39773-39781.
  • 51.
    Shi Q.; Li M.H.; Mika D.; et al. Heterologous desensitization of cardiac β-adrenergic signal via hormone-induced βAR/arrestin/PDE4 complexes. Cardiovasc. Res., 2017, 113(6): 656-670.
  • 52.
    Judina A.; Gorelik J.; Wright P.T. Studying signal compartmentation in adult cardiomyocytes. Biochem. Soc. Trans., 2020, 48(1): 61-70.
  • 53.
    Steinberg S.F. Beta(2)-Adrenergic receptor signaling complexes in cardiomyocyte caveolae/lipid rafts. J. Mol. Cell. Cardiol., 2004, 37(2): 407-415.
  • 54.
    Xiang Y.K. Compartmentalization of beta-adrenergic signals in cardiomyocytes. Circ. Res., 2011, 109(2): 231-244.
  • 55.
    Xiao R.P.; Cheng H.; Zhou Y.Y.; et al. Recent advances in cardiac beta(2)-adrenergic signal transduction. Circ. Res., 1999, 85(11): 1092-1100.
  • 56.
    Yang H.Q.; Wang L.P.; Gong Y.Y.; et al. β2-Adrenergic stimulation compartmentalizes β1 signaling into nanoscale local domains by targeting the C-Terminus of β1-Adrenoceptors. Circ. Res., 2019, 124(9): 1350-1359.
  • 57.
    Davare M.A.; Avdonin V.; Hall D.D.; et al. A beta2 adrenergic receptor signaling complex assembled with the Ca2+ channel Cav1.2. Science, 2001, 293(5527): 98-101.
  • 58.
    Zhou Y.Y.; Cheng H.; BogdanovK.Y.;et al. Localized cAMP-dependent signaling mediates beta 2-adrenergic modulation of cardiac excitation-contraction coupling. Am. J. Physiol., 1997, 273(3 Pt 2): H1611-H1618.
  • 59.
    Sanchez-Alonso J.L.; Bhargava A.; O’Hara T,; et al.Microdomain-specific modulation of L-Type calcium channels leads to triggered ventricular arrhythmia in heart failure. Circ. Res., 2016, 119(8): 944-955.
  • 60.
    Loucks A.D.; O’Hara T.; Trayanova N.A. Degradation of t-tubular microdomains and altered cAMP compartmentation lead to emergence of arrhythmogenic triggers in heart failure myocytes: an in silico study. Front. Physiol., 2018, 9: 1737.
  • 61.
    Hullmann J.; Traynham C.J.; Coleman R.C.; et al. The expanding GRK interactome: Implications in cardiovascular disease and potential for therapeutic development. Pharmacol. Res., 2016, 110: 52-64.
  • 62.
    Nobles K.N.; Xiao K.H.; Ahn S.;et al. Distinct phosphorylation sites on the β(2)-adrenergic receptor establish a barcode that encodes differential functions of β-arrestin. Sci. Signal., 2011, 4(185): ra51.
  • 63.
    Eckhart A.D.; Duncan S.J.; Penn D.B.; et al. Hybrid transgenic mice reveal in vivo specificity of G protein-coupled receptor kinases in the heart. Circ. Res., 2000, 86(1): 43-50.
  • 64.
    Zhu W.Z.; Petrashevskaya N.; Ren S.X.; et al. Gi-Biased β2AR Signaling Links GRK2 Upregulation to Heart Failure. Circ. Res., 2012, 110(2): 265-274.
  • 65.
    Schlegel P.; Reinkober J.; Meinhardt E.; et al. G protein-coupled receptor kinase 2 promotes cardiac hypertrophy. PloS one, 2017, 12(7): e0182110.
  • 66.
    Travers J.G.;Kamal F.A.;Valiente-Alandi I.; et al. Activated Fibroblast Targeting of Gbetagamma-GRK2 After Myocardial Ischemia Attenuates Heart Failure Progression. J. Am. Coll. Cardiol., 2017, 70(8): 958-971.
  • 67.
    Woodall M.C.; Woodall B.P.; Gao E.H.; et al. Cardiac fibroblast GRK2 deletion enhances contractility and remodeling following ischemia/reperfusion injury. Circ.Res., 2016, 119(10): 1116-1127.
  • 68.
    AbdAlla J.; Graemer M.; Fu X.B.; et al. Inhibition of G-protein-coupled Receptor Kinase 2 Prevents the Dysfunctional Cardiac Substrate Metabolism in Fatty Acid Synthase Transgenic Mice. J. Biol. Chem., 2016, 291(6): 2583-2600.
  • 69.
    Cannavo A.; Marzano F.; Elia A.; et al. Aldosterone jeopardizes myocardial insulin and beta-Adrenergic receptor signaling via G Protein-Coupled receptor kinase 2. Front. Pharmacol., 2019, 10: 888.
  • 70.
    Powell J.M.; Ebin E.; Borzak S.; et al. Hypothesis: paroxetine, a G Protein-Coupled receptor kinase 2 (GRK2) inhibitor reduces morbidity and mortality in patients with heart failure. J. Cardiovasc. Pharmacol.Ther., 2017, 22(1): 51-53.
  • 71.
    Santulli G.; Campanile A.; Spinelli L.; et al.G protein-coupled receptor kinase 2 in patients with acute myocardial infarction. Am. J. Cardiol., 2011, 107(8): 1125-1130.
  • 72.
    Ma X.Y.; Hu Y.F.; Batebi H.; et al. Analysis of β2AR-Gs and β2AR-Gi complex formation by NMR spectroscopy. Proc. Natl. Acad. Sci. U. S. A., 2020, 117(37): 23096-23105.
  • 73.
    Alegre K.O.; Paknejad N.; Su M.F.; et al. Structural basis and mechanism of activation of two different families of G proteins by the same GPCR. Nat. Struct. Mol. Biol., 2021, 28(11): 936-944.
  • 74.
    Nakano T.; Onoue K.J.; Nakada Y.; et al. Alteration of β-Adrenoceptor signaling in left ventricle of acute phase takotsubo syndrome: a human study. Sci. Rep., 2018, 8(1): 12731.
  • 75.
    Woo A.Y.; Song Y.; Xiao R.P.; et al. Biased β2-adrenoceptor signalling in heart failure: pathophysiology and drug discovery. Br. J. Pharmacol., 2015, 172(23): 5444-5456.
  • 76.
    Martini J.S.; Raake P.; VingeL.E.; et al. Uncovering G protein-coupled receptor kinase-5 as a histone deacetylase kinase in the nucleus of cardiomyocytes. Proc. Natl. Acad. Sci. U. S. A., 2008, 105(34): 12457-12462.
  • 77.
    Gold J.I.; Gao E.H.; Shang X.Y.;et al. Determining the absolute requirement of G protein-coupled receptor kinase 5 for pathological cardiac hypertrophy: short communication. Circ. Res., 2012, 111(8): 1048-1053.
  • 78.
    Liggett S.B.; Cresci S.; Kelly R.J.; et al. A GRK5 polymorphism that inhibits beta-adrenergic receptor signaling is protective in heart failure. Nat. Med., 2008, 14(5): 510-517.
  • 79.
    Nakaya M.C.; Chikura S.; Watari K.J.; et al. Induction of cardiac fibrosis by β-blocker in G protein-independent and G protein-coupled receptor kinase 5/β-arrestin2-dependent Signaling pathways. J.Bio. Chem., 2012, 287(42): 35669-35677.
  • 80.
    Teoh J.P.; BayoumiA.S.; Aonuma T.; et al. β-arrestin-biased agonism of β-adrenergic receptor regulates dicer-mediated microRNA maturation to promote cardioprotective signaling. J. Mol. Cell. Cardiol.,2018, 118: 225-236.
  • 81.
    Colomer J.M.; Mao L.; Rockman H.A.; et al. Pressure overload selectively up-regulates Ca2+/calmodulin-dependent protein kinase II in vivo. Mol. Endocrinol., 2003, 17(2): 183-192.
  • 82.
    Grimm M.; Ling H.Y.; Willeford A.; et al. CaMKIIδ mediates β-adrenergic effects on RyR2 phosphorylation and SR Ca(2+) leak and the pathophysiological response to chronic β-adrenergic stimulation. J. Mol. Cell. Cardiol., 2015, 85: 282-291.
  • 83.
    Xu L.; Lai D.W.; Cheng J.; et al. Alterations of L-type Calcium current and cardiac function in CaMKII{delta} knockout mice. Circ. Res., 2010, 107(3): 398-407.
  • 84.
    Wang W.; Zhu W.Z.; Wang S.Q.; et al. Sustained beta1-adrenergic stimulation modulates cardiac contractility by Ca2+/calmodulin kinase signaling pathway. Circ. Res., 2004, 95(8): 798-806.
  • 85.
    Mika D.; Richter W.; Conti M. A CaMKII/PDE4D negative feedback regulates cAMP signaling. Proc. Natl. Acad. Sci. U. S. A., 2015, 112(7): 2023-2028.
  • 86.
    Zhu W.Z.; Wang S.Q.; Chakir K.; et al. Linkage of beta1-adrenergic stimulation to apoptotic heart cell death through protein kinase A-independent activation of Ca2+/calmodulin kinase II. J. Clin. Inves., 2003, 111(5): 617-625.
  • 87.
    Yang Y.B.; Zhu W.Z.; Joiner M.L.; et al. Calmodulin kinase II inhibition protects against myocardial cell apoptosis in vivo. Am. J. Physiol., 2006, 291(6): H3065-H3075.
  • 88.
    Sucharov C.C.; Mariner P.D.; Nunley K.R.; et al. A beta1-adrenergic receptor CaM kinase II-dependent pathway mediates cardiac myocyte fetal gene induction. Am. J. Physiol., 2006, 291(3): H1299-H1308.
  • 89.
    Dybkova N.; Sedej S.; Napolitano C.; et al. Overexpression of CaMKIIδc in RyR2R4496C+/- knock-in mice leads to altered intracellular Ca2+ handling and increased mortality. J. Am. Coll. Cardiol., 2011, 57(4): 469-479.
  • 90.
    Sadredini M.; Haugsten Hansen M.; Frisk M.; et al. CaMKII inhibition has dual effects on spontaneous Ca2+ release and Ca2+ alternans in ventricular cardiomyocytes from mice with a gain-of-function RyR2 mutation. Am. J. Physiol, 2021, 321(2): H446-H460.
  • 91.
    Curran J.; Hinton M.J.; Ríos E.; et al. Beta-adrenergic enhancement of sarcoplasmic reticulum Calcium leak in cardiac myocytes is mediated by Calcium/calmodulin-dependent protein kinase. Circ. Res., 2007, 100(3): 391-398.
  • 92.
    Bos J.L. Epac proteins: multi-purpose cAMP targets. Trends Biochem. Sci., 2006, 31(12): 680-686.
  • 93.
    Ponsioen B.; Gloerich M.; Ritsma L.; et al. Direct spatial control of Epac1 by cyclic AMP. Mol. Cell. Biol., 2009, 29(10): 2521-2531.
  • 94.
    Mangmool S.; Shukla A.K.; Rockman H.A. beta-Arrestin-dependent activation of Ca(2+)/calmodulin kinase II after beta(1)-adrenergic receptor stimulation. J. Cell Biol., 2010, 189(3): 573-587.
  • 95.
    Curran J.; Tang L.F..; Roof S.R.;et al. Nitric oxide-dependent activation of CaMKII increases diastolic sarcoplasmic reticulum Calcium release in cardiac myocytes in response to adrenergic stimulation. PloS one, 2014, 9(2): e87495.
  • 96.
    Pereira L.; Bare D.J.; Galice S.; et al. β-Adrenergic induced SR Ca2+ leak is mediated by an Epac-NOS pathway. J. Mol. Cell. Cardiol., 2017, 108: 8-16.
  • 97.
    Zhang X.Y.; Szeto C.; Gao E.; et al. Cardiotoxic and cardioprotective features of chronic β-adrenergic signaling. Circ. Res., 2013, 112(3): 498-509.
  • 98.
    Beauverger P.; Ozoux M.L.; Bégis G.; et al. Reversion of cardiac dysfunction by a novel orally available Calcium/calmodulin-dependent protein kinase II inhibitor, RA306, in a genetic model of dilated cardiomyopathy. Cardiovasc. Res., 2020, 116(2): 329-338.
  • 99.
    Mustroph J.; Wagemann O.; Lücht C.M.; et al. Empagliflozin reduces Ca/calmodulin-dependent kinase II activity in isolated ventricular cardiomyocytes. ESC Heart Failure, 2018, 5(4): 642-648.
  • 100.
    Chen J.J.; Xu S.N.; Zhou W.; et al. Exendin-4 reduces ventricular arrhythmia activity and Calcium Sparks-Mediated sarcoplasmic reticulum Ca leak in rats with heart failure. Int. Heart J., 2020, 61(1): 145-152.
  • 101.
    Puhl S.L.; Weeks K.L.; Güran A.; et al. Role of type 2A phosphatase regulatory subunit B56α in regulating cardiac responses to β-adrenergic stimulation in vivo. Cardiovasc. Res., 2019, 115(3): 519-529.
  • 102.
    Schmid E.; Neef S.; Berlin C.; et al. Cardiac RKIP induces a beneficial β-adrenoceptor-dependent positive inotropy. Nat. Med., 2015, 21(11): 1298-1306.
  • 103.
    Zhang W.J.; Qu X.X.; Chen B.Y.; et al. Critical roles of STAT3 in β-Adrenergic functions in the heart. Circulation, 2016, 133(1): 48-61.
  • 104.
    Zhu W.Z.; Tsang S.; Browe D.M.; et al. Interaction of β1-adrenoceptor with RAGE mediates cardiomyopathy via CaMKII signaling. JCI Insight, 2016, 1(1): e84969.
  • 105.
    Whitcomb V.; Wauson E.; Christian D.; et al. Regulation of beta adrenoceptor-mediated myocardial contraction and Calcium dynamics by the G protein-coupled estrogen receptor 1. Biochem. Pharm., 2020, 171: 113727.
  • 106.
    Castaldi A.; Zaglia T.; Di Mauro V.; et al. MicroRNA-133 modulates the β1-adrenergic receptor transduction cascade. Circ. Res., 2014, 115(2): 273-283.
  • 107.
    Liu Z.B.; Tao B.; Fan S.Z.; et al. Over-expression of microRNA-145 drives alterations in β-adrenergic signaling and attenuates cardiac remodeling in heart failure post myocardial infarction. Aging, 2020, 12(12): 11603-11622.
  • 108.
    Deng Y.F.; Wang J.; Xie G.J.; et al. Circ-HIPK3 strengthens the effects of adrenaline in heart failure by MiR-17-3p - ADCY6 axis. Int. J. Biol. Sci., 2019, 15(11): 2484-2496.
  • 109.
    Johnson J.A.; Liggett S.B. Cardiovascular pharmacogenomics of adrenergic receptor signaling: clinical implications and future directions. Clin. Pharmacol. Thera., 2011, 89(3): 366-378.
  • 110.
    DiNicolantonio J.J.; Fares H.; Niazi A.K.; et al. β-Blockers in hypertension, diabetes, heart failure and acute myocardial infarction: a review of the literature. Open Heart, 2015, 2(1): e000230.
  • 111.
    Poirier L.; Tobe S.W. Contemporary use of β-blockers: clinical relevance of subclassification. Canadi. J. Cardio., 2014, 30(5 Suppl): S9-S15.
  • 112.
    Moens A.L.; Leyton-Mange J.S.; Niu X.L.; et al. Adverse ventricular remodeling and exacerbated NOS uncoupling from pressure-overload in mice lacking the beta3-adrenoreceptor. J. Mol. Cell. Cardiol., 2009, 47(5): 576-585.
  • 113.
    Liu H.H.; Zhang C.H.; Ammanamanchi N.; et al. Control of cytokinesis by β-adrenergic receptors indicates an approach for regulating cardiomyocyte endowment. Sci. Transl. Med., 2019, 11(513): eaaw6419.
  • 114.
    Frishman W.H. Fifty years of beta-adrenergic blockade: a golden era in clinical medicine and molecular pharmacology. Am. J. Med., 2008, 121(11): 933-934.
  • 115.
    do Vale G.T.; Ceron C.S.; Gonzaga N.A.; et al. Three generations of β-blockers: history, class differences and clinical applicability. Curr. Hypertens. Rev., 2019, 15(1): 22-31.
  • 116.
    García-Prieto J.; Villena-Gutiérrez R.; Gómez M.; et al. Neutrophil stunning by metoprolol reduces infarct size. Nat. Commun., 2017, 8: 14780.
  • 117.
    Cannavo A.; Rengo G.; Liccardo D.; et al. β1-Blockade prevents Post-Ischemic myocardial decompensation via β3AR-Dependent protective sphingosine-1 phosphate signaling. J. Am. Coll. Cardiol., 2017, 70(2): 182-192.
  • 118.
    Dewenter M.; Neef S.; Vettel C.; et al. Calcium/calmodulin-dependent protein kinase II activity persists during chronic β-adrenoceptor blockade in experimental and human heart failure. Circ.: Heart Failure, 2017, 10(5): e003840.
  • 119.
    Broeders M.A.; Doevendans P.A.; Bekkers B.C.; et al. Nebivolol: a third-generation beta-blocker that augments vascular nitric oxide release: endothelial beta(2)-adrenergic receptor-mediated nitric oxide production. Circulation, 2000, 102(6): 677-684.
  • 120.
    Fonseca V.A. Effects of beta-blockers on glucose and lipid metabolism. Curr. Med. Res. Opin., 2010, 26(3): 615-629.
  • 121.
    Park M.; Steinberg S.F. Carvedilol prevents redox inactivation of cardiomyocyte β1-adrenergic receptors. JACC. Basic Transl. Sci., 2018, 3(4): 521-532.
  • 122.
    Wang J.L.; Hanada K.J.; Staus D.P.; et al. Gαi is required for carvedilol-induced β1 adrenergic receptor β-arrestin biased signaling. Nat. Commun., 2017, 8(1): 1706.
  • 123.
    Güven B.; Kara Z.; Onay-Beşikci A. Metabolic effects of carvedilol through β-arrestin proteins: investigations in a streptozotocin-induced diabetes rat model and in C2C12 myoblasts. Br. J. Pharmacol., 2020, 177(24): 5580-5594.
  • 124.
    Nash C.A.; Wei W.H.; Irannejad R.; et al. Golgi localized β1-adrenergic receptors stimulate Golgi PI4P hydrolysis by PLCε to regulate cardiac hypertrophy. Elife, 2019, 8: e48167.
  • 125.
    Koracevic G.; Micic S.; Stojanovic M.; et al. Compelling indications should be listed for individual beta-blockers(due to diversity),not for the whole class. Curr. Vasc. Pharmacol., 2021, 19(4): 343-346.
  • 126.
    Germano N.; Summerfield D.; Johnson B. A mini review of inhaled beta 2 agonists in acute decompensated heart failure requiring respiratory support. Pulm. Crit. Care. Med., 2019, 4(3): 10.15761/pccm.1000161.
  • 127.
    Reddy Y.N.V.; Obokata M.; Koepp K.E.; et al. The β-Adrenergic agonist albuterol improves pulmonary vascular reserve in heart failure with preserved ejection fraction. Circ. Res., 2019, 124(2): 306-314.
  • 128.
    Ge X.A.; Woo A.Y.H.; Xing G.; et al. Synthesis and biological evaluation of β2-adrenoceptor agonists bearing the 2-amino-2-phenylethanol scaffold. Eur. J. Med. Chem., 2018, 152: 424-435.
  • 129.
    Ge X.Y.; Mo Y.M.; Xing G.; et al. Synthesis, biological evaluation and molecular modeling of 2-amino-2-phenylethanol derivatives as novel β2-adrenoceptor agonists. Bioorg. Chem., 2018, 79: 155-162.
  • 130.
    Ahn S.; Kahsai A.W.; Pani B.; et al. Allosteric “beta-blocker” isolated from a DNA-encoded small molecule library. Proc. Natl. Acad. Sci. U. S. A., 2017, 114(7): 1708-1713.
  • 131.
    Liu X.Y.; Ahn S.; Kahsai A.W.; et al. Mechanism of intracellular allosteric β2AR antagonist revealed by X-ray crystal structure. Nature, 2017, 548(7668): 480-484.
  • 132.
    Meng K.C.; Shim P.; Wang Q.; et al. Design, synthesis, and functional assessment of Cmpd-15 derivatives as negative allosteric modulators for the β2-adrenergic receptor. Bioorg. Med. Chem., 2018, 26(9): 2320-2330.
  • 133.
    Ahn S.; Pani B.; Kahsai A.W.; et al. Small-Molecule positive allosteric modulators of the β2-Adrenoceptor isolated from DNA-Encoded libraries. Mol. Pharmacol., 2018, 94(2): 850-861.
  • 134.
    Liu X.Y.; Masoudi A.; Kahsai A.W.; et al. Mechanism of β2AR regulation by an intracellular positive allosteric modulator. Science, 2019, 364(6447): 1283-1287.
  • 135.
    Liu X.Y.; Kaindl J.; Korczynska M.; et al. An allosteric modulator binds to a conformational hub in the β2 adrenergic receptor. Nat. Chem. Biol., 2020, 16(7): 749-755.
  • 136.
    Woo A.Y.H.; Ge X.Y.; PanL.; et al. Discovery of β-arrestin-biased β2-adrenoceptor agonists from 2-amino-2-phenylethanol derivatives. Acta Pharmacol. Sin., 2019, 40(8): 1095-1105.
  • 137.
    Carr R. 3rd.; Schilling J.; Song J.L.;et al. β-arrestin-biased signaling through the β2-adrenergic receptor promotes cardiomyocyte contraction. Proc. Natl. Acad. Sci. U. S. A., 2016, 113(28): E4107-E4116.
  • 138.
    Li C.X.; Cheng W.K.; Guo J.; et al. Relationship of inhaled long-acting bronchodilators with cardiovascular outcomes among patients with stable COPD: a meta-analysis and systematic review of 43 randomized trials. Int. J. Chronic Obstruct. Pulm. Dis., 2019, 14: 799-808.
  • 139.
    Qiao Y.H.; Zhu B.L.; Tian A.J.; et al. PEG-coated Gold nanoparticles attenuate β-adrenergic receptor-mediated cardiac hypertrophy. Int. J. Nanomed., 2017, 12: 4709-4719.
  • 140.
    Duran-Corbera A.; Faria M.; Ma Y.Y.; et al. A photoswitchable ligand targeting the β1-Adrenoceptor enables Light-Control of the cardiac rhythm**. Angew. Chem., Int. Ed., 2022, 61(30): e202203449.
Share this article:
How to Cite
Song, Y.; WOO, A. Y.-H.; Zhang, Y.; Xiao, R. Cardiac β-Adrenoceptor Signaling: The New Insight on An Old Target in the Therapy of Cardiovascular Disease. International Journal of Drug Discovery and Pharmacology 2022, 1 (1), 3. https://doi.org/10.53941/ijddp.v1i1.177.
RIS
BibTex
Copyright & License
article copyright Image
Ying Song, Anthony Yiu-Ho WOO, Yan ZHANG, Rui-Ping Xiao