- 1.
Chang X.; Lochner A.; Wang H.H.; et al. Coronary microvascular injury in myocardial infarction: perception and knowledge for mitochondrial quality control. Theranostics, 2021, 11(14): 6766-6785.
- 2.
de Oliveira M.G.; Nadruz W., Jr.; Mónica F.Z. Endothelial and vascular smooth muscle dysfunction in hypertension. Biochem. Pharmacol., 2022, 205: 115263.
- 3.
Ren J.; Wu N.N.; Wang S.Y.; et al. Obesity cardiomyopathy: evidence, mechanisms, and therapeutic implications. Physiol. Rev., 2021, 101(4): 1745-1807.
- 4.
Ren J.; Wei C.M. New sniper assignment for a celebrity—role of endothelin-1 in diabetic cardiomyopathy. J. Cardiothoracic-Renal Res., 2006, 1(1): 30-32.
- 5.
Kostov K. The causal relationship between endothelin-1 and hypertension: focusing on endothelial dysfunction, arterial stiffness, vascular remodeling, and blood pressure regulation. Life, 2021, 11(9): 986.
- 6.
Barton M.; Yanagisawa M. Endothelin: 30 years from discovery to therapy. Hypertension, 2019, 74(6): 1232-1265.
- 7.
Eroglu E.; Kocyigit I.; Lindholm B. The endothelin system as target for therapeutic interventions in cardiovascular and renal disease. Clin. Chim. Acta, 2020, 506: 92-106.
- 8.
Han Q.A.; Yan C.H.; Wang L.F.; et al. Urolithin A attenuates ox-LDL-induced endothelial dysfunction partly by modulating microRNA-27 and ERK/PPAR-γ pathway. Mol. Nutr. Food Res., 2016, 60(9): 1933-1943.
- 9.
Yang M.Y.; Wang Y.B.; Han B.; et al. Activation of aldehyde dehydrogenase 2 slows down the progression of atherosclerosis via attenuation of ER stress and apoptosis in smooth muscle cells. Acta Pharmacol. Sin., 2018, 39(1): 48-58.
- 10.
Engin A. Endothelial dysfunction in obesity. Adv. Exp. Med. Biol., 2017, 960: 345-379.
- 11.
Xu H.S.; Duan J.H.; Dai S.L.; et al. α-Zearalanol attenuates oxLDL-induced ET-1 gene expression, ET-1 secretion and redox-sensitive intracellular signaling activation in human umbilical vein endothelial cells. Toxicol. Lett., 2008, 179(3): 163-168.
- 12.
Xu H.S.; Duan J.H.; Dai S.L.; et al. Phytoestrogen α-zearalanol antagonizes oxidized LDL-induced inhibition of nitric oxide production and stimulation of endothelin-1 release in human umbilical vein endothelial cells. Endocrine, 2004, 25(3): 235-245.
- 13.
Zhao J.; Zhang Q.; Liu J.; et al. Effect of endomorphins on HUVECs treated by ox-LDL and its related mechanisms. J. Diabetes Res., 2016, 2016: 9741483.
- 14.
Ren J.; Pulakat L.; Whaley-Connell A.; et al. Mitochondrial biogenesis in the metabolic syndrome and cardiovascular disease. J. Mol. Med., 2010, 88(10): 993-1001.
- 15.
Hu N.; Ren J. Reactive oxygen species regulate myocardial mitochondria through post-translational modification. React. Oxygen Species, 2016, 2(4): 264-271.
- 16.
Wang S.Y.; Guo W.; Ren J. Stress signaling in paraquat-induced target organ toxicity. React. Oxygen Species, 2016, 1(2): 131-140.
- 17.
Panzhinskiy E.; Ren J.; Nair S. Protein tyrosine phosphatase 1B and insulin resistance: role of endoplasmic reticulum stress/reactive oxygen species/nuclear factor kappa B axis. PLoS One, 2013, 8(10): e77228.
- 18.
Roe N.D.; Ren J. Nitric oxide synthase uncoupling: a therapeutic target in cardiovascular diseases. Vasc. Pharmacol., 2012, 57(5/6): 168-172.
- 19.
Wold L.E.; Ceylan-Isik A.F.; Ren J. Oxidative stress and stress signaling: menace of diabetic cardiomyopathy. Acta Pharmacol. Sin., 2005, 26(8): 908-917.
- 20.
Liu Q.W.; Han L.M.; Du Q.F.; et al. The association between oxidative stress, activator protein-1, inflammatory, total antioxidant status and artery stiffness and the efficacy of olmesartan in elderly patients with mild-to-moderate essential hypertension. Clin. Exp. Hypertens., 2016, 38(4): 365-369.
- 21.
Lin S.J.; Shyue S.K.; Liu P.L.; et al. Adenovirus-mediated overexpression of catalase attenuates oxLDL-induced apoptosis in human aortic endothelial cells via AP-1 and C-Jun N-terminal kinase/extracellular signal-regulated kinase mitogen-activated protein kinase pathways. J. Mol. Cell. Cardiol., 2004, 36(1): 129-139.
- 22.
Cheng T.H.; Cheng P.Y.; Shih N.L.; et al. Involvement of reactive oxygen species in angiotensin Ⅱ-induced endothelin-1 gene expression in rat cardiac fibroblasts. J. Mol. Cell. Cardiol., 2003, 42(10): 1845-1854.
- 23.
Prieto D.; Contreras C.; Sánchez A. Endothelial dysfunction, obesity and insulin resistance. Curr. Vasc. Pharmacol., 2014, 12(3): 412-426.
- 24.
Dong F.; Zhang X.C.; Wold L.E.; et al. Endothelin-1 enhances oxidative stress, cell proliferation and reduces apoptosis in human umbilical vein endothelial cells: role of ETB receptor, NADPH oxidase and caveolin-1. Br. J. Pharmacol., 2005, 145(3): 323-333.
- 25.
Ritchie M.E.; Phipson B.; WuD.; et al. Limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res., 2015, 43(7): e47.
- 26.
Yu G.C.; Wang L.G.; Han Y.Y.; et al. clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS, 2012, 16(5): 284-287.
- 27.
Kanehisa M.; Goto S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res., 2000, 28(1): 27-30.
- 28.
Walter W.; Sánchez-Cabo F.; Ricote M. GOplot: an R package for visually combining expression data with functional analysis. Bioinformatics, 2015, 31(17): 2912-2914.
- 29.
Subramanian A.; Tamayo P.; Mootha V.K.; et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. U. S. A., 2005, 102(43): 15545-15550.
- 30.
Xu H.S.; Duan J.H.; Wang W.; et al. Reactive oxygen species mediate oxidized low-density lipoprotein-induced endothelin-1 gene expression via extracellular signal-regulated kinase in vascular endothelial cells. J. Hypertens., 2008, 26(5): 956-963.
- 31.
Min J.; Wu L.; Liu Y.D.; et al. Empagliflozin attenuates trastuzumab-induced cardiotoxicity through suppression of DNA damage and ferroptosis. Life Sci., 2023, 312: 121207.
- 32.
Ceylan-Isik A.F.; Dong M.L.; Zhang Y.M.; et al. Cardiomyocyte-specific deletion of endothelin receptor A rescues aging-associated cardiac hypertrophy and contractile dysfunction: role of autophagy. Basic Res. Cardiol., 2013, 108(2): 335.
- 33.
Duan J.H.; Dai S.L.; Fang C.X.; et al. Phytoestrogen α-zearalanol antagonizes homocysteine-induced imbalance of nitric oxide/endothelin-1 and apoptosis in human umbilical vein endothelial cells. Cell Biochem. Biophys., 2006, 45(2): 137-145.
- 34.
Cho S.; Hazama M.; Urata Y.; et al. Protective role of glutathione synthesis in response to oxidized low density lipoprotein in human vascular endothelial cells. Free Radical Biol. Med., 1999, 26(5/6): 589-602.
- 35.
Delerive P.; Martin-Nizard F.; Chinetti G.; et al. Peroxisome proliferator-activated receptor activators inhibit thrombin-induced endothelin-1 production in human vascular endothelial cells by inhibiting the activator protein-1 signaling pathway. Circ. Res., 1999, 85(5): 394-402.
- 36.
Yamashita K.; Discher D.J.; Hu J.; et al. Molecular regulation of the endothelin-1 gene by hypoxia. Contributions of hypoxia-inducible factor-1, activator protein-1, GATA-2, AND p300/CBP. J. Biol. Chem., 2001, 276(16): 12645-12653.
- 37.
Hsu Y.H.; Chen J.J.; Chang N.C.; et al. Role of reactive oxygen species-sensitive extracellular signal-regulated kinase pathway in angiotensin Ⅱ-induced endothelin-1 gene expression in vascular endothelial cells. J. Vasc. Res., 2004, 41(1): 64-74.
- 38.
Fang C.; Yang Z.C.; Shi L.; et al. Circulating sestrin levels are increased in hypertension patients. Dis. Markers, 2020, 2020: 3787295.
- 39.
Tian H.G.; Li S.Z.; Yu K.H. DJ‑1 alleviates high glucose‑induced endothelial cells injury via PI3K/Akt‑eNOS signaling pathway. Mol. Med. Rep., 2018, 17(1): 1205-1211.
- 40.
Arif A.; Alameri A.A.; Tariq U.B.; et al. The functions and molecular mechanisms of Tribbles homolog 3 (TRIB3) implicated in the pathophysiology of cancer. Int. Immunopharmacol., 2023, 114: 109581.
- 41.
Yoshitomi Y.; Ikeda T.; Saito-Takatsuji H.; et al. Emerging role of AP-1 transcription factor JunB in angiogenesis and vascular development. Int. J. Mol. Sci., 2021, 22(6): 2804.
- 42.
Estruch M.; Sanchez-Quesada J.L.; Ordoñez-Llanos J.; et al. Inflammatory intracellular pathways activated by electronegative LDL in monocytes. Biochim. Biophys. Acta, 2016, 1861(9 Pt A): 963-969.
- 43.
Feng R.T.; Bowman L.L.; Lu Y.J.; et al. Blackberry extracts inhibit activating protein 1 activation and cell transformation by perturbing the mitogenic signaling pathway. Nutr. Cancer, 2004, 50(1): 80-89.
- 44.
Maggi-Capeyron M.F.; Ceballos P.; Cristol J.P.; et al. Wine phenolic antioxidants inhibit AP-1 transcriptional activity. J. Agric. Food Chem., 2001, 49(11): 5646-5652.