- 1.
Takayanagi, H . Osteoimmunology: shared mechanisms and crosstalk between the immune and bone systems . Nat. Rev. Immunol. , 2007 , 7 ( 4 ): 292 - 304.
- 2.
Jiang, C. ;Li, Z. ;Quan, H. ; et al . Osteoimmunology in orthodontic tooth movement . Oral dis. , 2015 , 21 ( 6 ): 694 - 704 .
- 3.
Chaushu, S. ;Klein, Y. ;Mandelboim, O. ; et al . Immune Changes Induced by Orthodontic Forces: A Critical Review . J. Dent. Res. , 2022 , 101 ( 1 ): 11 - 20.
- 4.
Garlet, T.P. ;Coelho, U. ;Silva, J.S. ; et al . Cytokine expression pattern in compression and tension sides of the periodontal ligament during orthodontic tooth movement in humans . Eur. J. Oral. Sci. , 2007 , 115 ( 5 ): 355 - 362.
- 5.
Lorenzo, J . Cytokines and Bone: Osteoimmunology . Handb. Exp. Pharmacol. , 2020 , 262 : 177 - 230.
- 6.
SUN, Y. ;LI, J. ;XIE, X. ; et al . Macrophage-Osteoclast Associations: Origin, Polarization, and Subgroups . Front Immunol , 2021 , 12 : 778078.
- 7.
Li, Y. ;Zhan, Q. ;Bao, M. ; et al . Biomechanical and biological responses of periodontium in orthodontic tooth movement: up-date in a new decade . Int. J. Oral. Sci. , 2021 , 13 ( 1 ): 20.
- 8.
Alikhani, M. ;Sangsuwon, C. ;Alansari, S. ; et al . Biphasic theory: breakthrough understanding of tooth movement . J. World Fed. Orthod. , 2018 , 7 ( 3 ): 82 - 88.
- 9.
Alansari, S. ;Sangsuwon, C. ;Vongthongleur, T. ; et al . Biological principles behind accelerated tooth movement . Semin. Orthod. , 2015 , 21 ( 3 ): 151 - 161.
- 10.
Vandevska-Radunovic, V. ;Kvinnsland, I.H. ;Kvinnsland, S. ; et al . Immunocompetent cells in rat periodontal ligament and their recruitment incident to experimental orthodontic tooth movement . Eur. J. Oral Sci., 1997 , 105 ( 1 ): 36 - 44.
- 11.
He, D. ;Kou, X. ;Yang, R. ; et al . M1-like Macrophage Polarization Promotes Orthodontic Tooth Movement . J. Dent. Res. , 2015 , 94 ( 9 ): 1286 - 1294.
- 12.
Xu, H. ;Guan, J. ;Jin, Z. ; et al . Mechanical force modulates macrophage proliferation via Piezo1-AKT-Cyclin D1 axis . FASEB J. , 2022 , 36 ( 8 ): e22423.
- 13.
Locati, M. ;Curtale, G. ;Mantovani, A . Diversity, Mechanisms, and Significance of Macrophage Plasticity . Annu. Rev. Pathol. , 2020 , 15 : 123 - 47.
- 14.
Mantovani, A. ;Sica, A. ;Locati, M . Macrophage polarization comes of age . Immunity , 2005 , 23 ( 4 ): 344 - 346.
- 15.
Schröder, A. ;Käppler, P. ;Nazet, U. ; et al . Effects of Compressive and Tensile Strain on Macrophages during Simulated Orthodontic Tooth Movement . Mediators Inflamm. , 2020 , 2020 : 2814015.
- 16.
He, D. ;Kou, X. ;Luo, Q. .; et al . Enhanced M1/M2 macrophage ratio promotes orthodontic root resorption. J. Dent. Res. , 2015 , 94 ( 1 ): 129 - 139.
- 17.
Xu, H. ;Zhang, S. ;Sathe, A.A. ; et al . CCR2(+) Macrophages Promote Orthodontic Tooth Movement and Alveolar Bone Remodeling . Front Immunol , 2022 , 13 : 835986.
- 18.
Wang, N. ;Zhao, Q. ;Gong, Z. ; et al . CD301b+ Macrophages as Potential Target to Improve Orthodontic Treatment under Mild Inflammation . Cells , 2022 , 12 ( 1 ).
- 19.
Song, C. ;Yang, X. ;Lei, Y. ; et al . Evaluation of efficacy on RANKL induced osteoclast from RAW264.7 cells . J. Cell. Physiol. , 2019 , 234 ( 7 ): 11969 - 11975.
- 20.
Lam, J. ;Nelson, C.A. ;Ross, F.P. ; et al . Crystal structure of the TRANCE/RANKL cytokine reveals determinants of receptor-ligand specificity . J. Clin. Invest. , 2001 , 108 ( 7 ): 971 - 979.
- 21.
Yasuda, H. ;Shima, N. ;Nakagawa, N. ; et al . Osteoclast differentiation factor is a ligand for osteoprotegerin/osteoclastogenesis-inhibitory factor and is identical to TRANCE/RANKL . Proc. Natl. Acad. Sci . U. S. A., 1998 , 95 ( 7 ): 3597 - 3602.
- 22.
Boyle, W.J. ;Simonet, W.S. ;Lacey, D . L . Osteoclast differentiation and activation. Nature , 2003 , 423 ( 6937 ): 337 - 342 .
- 23.
Teixeira, C.C. ;Khoo, E. ;Tran, J. ; et al . Cytokine expression and accelerated tooth movement . J. Dent. Res. , 2010 , 89 ( 10 ): 1135 - 1141.
- 24.
Claes, L. ;Recknagel, S. ;Ignatius, A . Fracture healing under healthy and inflammatory conditions . Nat. Rev. Rheumatol. , 2012 , 8 ( 3 ): 133 - 143.
- 25.
Wang, Y.H. ;Zhao, C.Z. ;Wang, R.Y. ; et al . The crosstalk between macrophages and bone marrow mesenchymal stem cells in bone healing . Stem Cell Res. Ther. , 2022 , 13 ( 1 ): 511.
- 26.
Glass, G.E. ;Chan, J.K. ;Freidin, A. ; et al . TNF-alpha promotes fracture repair by augmenting the recruitment and differentiation of muscle-derived stromal cells . Proc . Natl, Acad, Sci, U, S, A., 2011 , 108 ( 4 ): 1585 - 1590.
- 27.
Franchimont, N. ;Wertz, S. ;Malaise, M . Interleukin-6: An osteotropic factor influencing bone formation? . Bone , 2005 , 37 ( 5 ): 601 - 606.
- 28.
Li, Y. ;Bäckesjö, C.M. ;Haldosén, L.A. ; et al . IL-6 receptor expression and IL-6 effects change during osteoblast differentiation . Cytokine , 2008 , 43 ( 2 ): 165 - 173.
- 29.
Shin, R.L. ;Lee, C.W. ;Shen, O.Y. ; et al . The Crosstalk between Mesenchymal Stem Cells and Macrophages in Bone Regeneration: A Systematic Review . Stem cells Int. , 2021 , 2021 : 8835156.
- 30.
Schröder, A. ;Petring, C. ;Damanaki, A. ; et al . Effects of histamine and various histamine receptor antagonists on gene expression profiles of macrophages during compressive strain . J. Orofac. Orthop. , 2022 , 83 ( Suppl 1 ): 13 - 23.
- 31.
Nuñez, S.Y. ;Ziblat, A. ;Secchiari, F. ; et al . Human M2 Macrophages Limit NK Cell Effector Functions through Secretion of TGF-β and Engagement of CD85j . J. Immunol.. , 2018 , 200 ( 3 ): 1008 - 1015.
- 32.
Champagne, C.M. ;Takebe, J. ;Offenbacher, S. ; et al . Macrophage cell lines produce osteoinductive signals that include bone morphogenetic protein-2 . Bone , 2002 , 30 ( 1 ): 26 - 31.
- 33.
Pu, P. ;Wu, S. ;Zhang, K. ; et al . Mechanical force induces macrophage-derived exosomal UCHL3 promoting bone marrow mesenchymal stem cell osteogenesis by targeting SMAD . J. Nanobiotechnology , 2023 , 21 ( 1 ): 88.
- 34.
Muñoz, J. ;Akhavan, N.S. ;Mullins, A.P. ; et al . Macrophage Polarization and Osteoporosis: A Review . Nutrients , 2020 , 12 ( 10 ): 2999.
- 35.
Wang, Y. ;Smith, W. ;Hao, D. ; et al . M1 and M2 macrophage polarization and potentially therapeutic naturally occurring compounds . Int. Immunopharmacol. , 2019 , 70 : 459 - 466.
- 36.
Zhang, S. ;Zhang, H. ;Jin, Z. ; et al . Fucoidan inhibits tooth movement by promoting restorative macrophage polarization through the STAT3 pathway . J. Cell. Physiol. , 2020 , 235 ( 9 ): 5938 - 5950.
- 37.
Klein, Y. ;Levin-Talmor, O. ;Berkstein, J.G. ; et al . Resolvin D1 shows osseous-protection via RANK reduction on monocytes during orthodontic tooth movement . Front Immunol , 2022 , 13 : 928132.
- 38.
Xin, L. ;Zhou, F. ;Zhang, C. ; et al . Four-Octyl itaconate ameliorates periodontal destruction via Nrf2-dependent antioxidant system . Int. J. Oral Sci. , 2022 , 14 ( 1 ): 27.
- 39.
O'Neill, L . A .J.; Artyomov M . N . Itaconate: the poster child of metabolic reprogramming in macrophage function. Nat. Rev. Immunol., 2019 , 19 ( 5 ): 273 - 281.
- 40.
Mahon, O.R. ;Browe, D.C. ;Gonzalez-Fernandez, T. ; et al . Nano-particle mediated M2 macrophage polarization enhances bone formation and MSC osteogenesis in an IL-10 dependent manner . Biomaterials , 2020 , 239 : 119833.
- 41.
Niu, Y. ;Wang, Z. ;Shi, Y. ; et al . Modulating macrophage activities to promote endogenous bone regeneration: Biological mechanisms and engineering approaches . Bioact. Mater. , 2021 , 6 ( 1 ): 244 - 261.
- 42.
Alvarez, M.M. ;Liu, J.C. ;Trujillo-de Santiago, G. ; et al . Delivery strategies to control inflammatory response: Modulating M1-M2 polarization in tissue engineering applications . J. Control. Release , 2016 , 240 : 349 - 363.
- 43.
O'Brien, E.M. ;Risser, G.E. ;Spiller, K . L . Sequential drug delivery to modulate macrophage behavior and enhance implant integration. Adv. Drug Deliv. Rev. , 2019 , 149-150 : 85 - 94.
- 44.
Spiller, K.L. ;Nassiri, S. ;Witherel, C.E. ; et al . Sequential delivery of immunomodulatory cytokines to facilitate the M1-to-M2 transition of macrophages and enhance vascularization of bone scaffolds . Biomaterials , 2015 , 37 : 194 - 207.
- 45.
Lu, W. ;Li, X. ;Yang, Y ,; et al . PTH/PTHrP in controlled release hydrogel enhances orthodontic tooth movement by regulating periodontal bone remodaling. J. Periodontal Res. , 2021 , 56 ( 5 ): 885 - 896.