- 1.
Ventola C.L. The nanomedicine revolution: part 2: current and future clinical applications. P&T, 2012, 37(10): 582-591.
- 2.
Ventola C.L. Progress in nanomedicine: approved and investigational nanodrugs. P&T, 2017, 42(12): 742-755.
- 3.
Wang Y.W.; Grainger D.W. Regulatory considerations specific to liposome drug development as complex drug products. Front. Drug. Deliv., 2022, 2: 901281.
- 4.
Bangham A.D.; Standish M.M.; Watkins J.C. Diffusion of univalent ions across the lamellae of swollen phospholipids. J. Mol. Biol., 1965, 13(1): 238-252.
- 5.
Bulbake U.; Doppalapudi S.; Kommineni N.; et al. Liposomal formulations in clinical use: an updated review. Pharmaceutics, 2017, 9(2): 12.
- 6.
Asadi K.; Gholami A. Virosome-based nanovaccines; a promising bioinspiration and biomimetic approach for preventing viral diseases: a review. Int. J. Biol. Macromol., 2021, 182: 648-658.
- 7.
Gulati M.; Bajad S.; Singh S.; et al. Development of liposomal amphotericin B formulation. J. Microencapsulation, 1998, 15(2): 137-151.
- 8.
Liu P.; Chen G.L.; Zhang J.C. A review of liposomes as a drug delivery system: current status of approved products, regulatory environments, and future perspectives. Molecules, 2022, 27(4): 1372.
- 9.
Bozzuto G.; Molinari A. Liposomes as nanomedical devices. Int. J. Nanomed., 2015, 10: 975-999.
- 10.
Beltrán-Gracia E.; López-Camacho A.; Higuera-Ciapara I.; et al. Nanomedicine review: clinical developments in liposomal applications. Cancer Nanotechnol., 2019, 10(1): 11.
- 11.
Hou X.C.; Zaks T.; Langer R.; et al. Lipid nanoparticles for mRNA delivery. Nat. Rev. Mater., 2021, 6(12): 1078-1094.
- 12.
Kisby T.; Yilmazer A.; Kostarelos K. Reasons for success and lessons learnt from nanoscale vaccines against COVID-19. Nat. Nanotechnol., 2021, 16(8): 843-850.
- 13.
Akinc A.; Maier M.A.; Manoharan M.; et al. The Onpattro story and the clinical translation of nanomedicines containing nucleic acid-based drugs. Nat. Nanotechnol, 2019, 14(12): 1084-1087.
- 14.
He H., Yuan D.F.; Wu Y.; et al. Pharmacokinetics and Pharmacodynamics modeling and simulation systems to support the development and regulation of liposomal drugs. Pharmaceutics, 2019, 11(3): 110.
- 15.
Boafo G.F.; Thapa K.T.; Ekpo M.D.; et al. The role of cryoprotective agents in liposome stabilization and preservation. Int. J. Mol. Sci., 2022, 23(20): 12487.
- 16.
Li Z.L.; Zhang Y.L.; Wurtz W.; et al. Characterization of nebulized liposomal amikacin (Arikace) as a function of droplet size. J. Aerosol Med. Pulm. Drug Delivery, 2008, 21(3): 245-254.
- 17.
- 18.
Savjani K.T.; Gajjar A.K.; Savjani J.K. Drug solubility: importance and enhancement techniques. ISRN Pharm., 2012, 2012: 195727.
- 19.
He H.S.; Lu Y.; Qi J.P.; et al. Adapting liposomes for oral drug delivery. Acta Pharm. Sin. B, 2019, 9(1): 36-48.
- 20.
Giardiello M.; Liptrott N.J.; McDonald T.O.; et al. Accelerated oral nanomedicine discovery from miniaturized screening to clinical production exemplified by paediatric HIV nanotherapies. Nat. Commun., 2016, 7: 13184.
- 21.
Bakshi R.P.; Tatham L.M.; Savage A.C.; et al. Long-acting injectable atovaquone nanomedicines for malaria prophylaxis. Nat. Commun., 2018, 9(1): 315.
- 22.
- 23.
Carvalho C.; Santos R.X.; Cardoso S.; et al. Doxorubicin: the good, the bad and the ugly effect. Curr. Med. Chem., 2009, 16(25): 3267-3285.
- 24.
Brown J.R.; Imam S.H. 5 recent studies on doxorubicin and its analogues. Prog. Med. Chem., 1985, 21: 169-236.
- 25.
Yingchoncharoen P.; Kalinowski D.S.; Richardson D.R. Lipid-based drug delivery systems in cancer therapy: what is available and what is yet to come. Pharmacol. Rev., 2016, 68(3): 701-787.
- 26.
Chang H.I.; Yeh M.K. Clinical development of liposome-based drugs: formulation, characterization, and therapeutic efficacy. Int. J. Nanomed., 2012, 7: 49-60.
- 27.
O’Bryan R.M.; Luce J.K.; Talley R.W.; et al. Phase II evaluation of adriamycin in human neoplasia. Cancer, 1973, 32(1): 1-8.
- 28.
Lefrak E.A.; Piťha J.; Rosenheim S.; et al. A clinicopathologic analysis of adriamycin cardiotoxicity. Cancer, 1973, 32(2): 302-314.
- 29.
Chlebowski R.T. Adriamycin (doxorubicin) cardiotoxicity: a review. West. J. Med., 1979, 131(5): 364-368.
- 30.
Cancer Chemotherapy Reports. U.S. department of health, education, and welfare, public health service, national institutes of health; 1975.
- 31.
Park K. The beginning of the end of the nanomedicine hype. J. Controlled Release, 2019, 305: 221-222.
- 32.
Hortobágyi G.N. Anthracyclines in the treatment of cancer. An overview. Drugs, 1997, 54(4): 1-7.
- 33.
Waterhouse D.N.; Tardi P.G.; Mayer L.D.; et al. A comparison of liposomal formulations of doxorubicin with drug administered in free form: changing toxicity profiles. Drug Saf., 2001, 24(12): 903-920.
- 34.
Birtle A.J. Anthracyclines and cardiotoxicity. Clin. Oncol., 2000, 12(3): 146-152.
- 35.
Rivankar S. An overview of doxorubicin formulations in cancer therapy. J. Cancer Res. Ther., 2014, 10(4): 853-858.
- 36.
- 37.
Petersen G.H.; Alzghari S.K.; Chee W.; et al. Meta-analysis of clinical and preclinical studies comparing the anticancer efficacy of liposomal versus conventional non-liposomal doxorubicin. J. Controlled Release, 2016, 232: 255-264.
- 38.
Morigi V.; Tocchio A.; Bellavite C.B.; et al. Nanotechnology in medicine: from inception to market domination. J. Drug Delivery, 2012, 2012: 389485.
- 39.
Bharali D.J.; Mousa S.A. Emerging nanomedicines for early cancer detection and improved treatment: current perspective and future promise. Pharmacol. Ther., 2010, 128(2): 324-335.
- 40.
Seigneuric R.; Markey L.; Nuyten D.S.A.; et al. From nanotechnology to nanomedicine: applications to cancer research. Curr. Mol. Med., 2010, 10(7): 640-652.
- 41.
Rafiyath S.M.; Rasul M.; Lee B.; et al. Comparison of safety and toxicity of liposomal doxorubicin vs. conventional anthracyclines: a meta-analysis. Exp. Hematol. Oncol., 2012, 1(1): 10.
- 42.
Safra T. Cardiac safety of liposomal anthracyclines. The Oncologist, 2003, 8(S2): 17-24.
- 43.
Šimůnek T.; Štěrba M.; Popelová O.; et al. Anthracycline-induced cardiotoxicity: overview of studies examining the roles of oxidative stress and free cellular iron. Pharmacol. Rep., 2009, 61(1): 154-171.
- 44.
Allen T.M.; Mumbengegwi D.R.; Charrois G.J.R. Anti-CD19-targeted liposomal doxorubicin improves the therapeutic efficacy in murine B-cell lymphoma and ameliorates the toxicity of liposomes with varying drug release rates. Clin. Cancer Res., 2005, 11(9): 3567-3573.
- 45.
Safra T.; Muggia F.; Jeffers S.; et al. Pegylated liposomal doxorubicin (doxil): reduced clinical cardiotoxicity in patients reaching or exceeding cumulative doses of 500 mg/m2. Ann. Oncol., 2000, 11(8): 1029-1033.
- 46.
Kesterson J.P.; Odunsi K.; Lele S. High cumulative doses of pegylated liposomal doxorubicin are not associated with cardiac toxicity in patients with gynecologic malignancies. Chemotherapy, 2010, 56(2): 108-111.
- 47.
Fukuda A.; Tahara K.; Hane Y.; et al. Comparison of the adverse event profiles of conventional and liposomal formulations of doxorubicin using the FDA adverse event reporting system. PLoS One, 2017, 12(9): e0185654.
- 48.
Northfelt D.W.; Dezube B.J.; Thommes J.A.; et al. Pegylated-liposomal doxorubicin versus doxorubicin, bleomycin, and vincristine in the treatment of AIDS-related Kaposi’s sarcoma: results of a randomized phase III clinical trial. J. Clin. Oncol., 1998, 16(7): 2445-2451.
- 49.
O’Brien M.E.R.; Wigler N.; Inbar M.; et al. Reduced cardiotoxicity and comparable efficacy in a phase IIItrial of pegylated liposomal doxorubicin HCl(CAELYX™/Doxil®) versus conventional doxorubicin forfirst-line treatment of metastatic breast cancer. Ann. Oncol., 2004, 15(3): 440-449.
- 50.
Swenson C.E.; Perkins W.R.; Roberts P.; et al. Liposome technology and the development of Myocet™ (liposomal doxorubicin citrate). The Breast, 2001, 10, Supplement 2: 1-7.
- 51.
Anon. FDA fast track designation for myocet for metastatic breast cancer. Oncology Times, 2010, 32(3): 24.
- 52.
Immordino M.L.; Dosio F.; Cattel L. Stealth liposomes: review of the basic science, rationale, and clinical applications, existing and potential. Int. J. Nanomed., 2006, 1(3): 297-315.
- 53.
Schnyder A.; Huwyler J. Drug transport to brain with targeted liposomes. NeuroRX, 2005, 2(1): 99-107.
- 54.
Shao K.; Hou Q.S.; Duan W.; et al. Intracellular drug delivery by sulfatide-mediated liposomes to gliomas. J. Controlled Release, 2006, 115(2): 150-157.
- 55.
Saul J.M.; Annapragada A.; Natarajan J.V.; et al. Controlled targeting of liposomal doxorubicin via the folate receptor in vitro. J. Controlled Release, 2003, 92(1/2): 49-67.
- 56.
Itokazu M.; Kumazawa S.; Wada E.; et al. Sustained release of adriamycin from implanted hydroxyapatite blocks for the treatment of experimental osteogenic sarcoma in mice. Cancer Lett., 1996, 107(1): 11-18.
- 57.
Bromberg L.; Alakhov V. Effects of polyether-modified poly(acrylic acid) microgels on doxorubicin transport in human intestinal epithelial Caco-2 cell layers. J. Controlled Release, 2003, 88(1): 11-22.
- 58.
Zocchi E.; Tonetti M.; Polvani C.; et al. Encapsulation of doxorubicin in liver-targeted erythrocytes increases the therapeutic index of the drug in a murine metastatic model. Proc. Natl. Acad. Sci. U. S. A., 1989, 86(6): 2040-2044.
- 59.
Olivier J.C. Drug transport to brain with targeted nanoparticles. NeuroRX, 2005, 2(1): 108-119.
- 60.
Petri B.; Bootz A.; Khalansky A.; et al. Chemotherapy of brain tumour using doxorubicin bound to surfactant-coated poly (butyl cyanoacrylate) nanoparticles: revisiting the role of surfactants. J. Controlled Release, 2007, 117(1): 51-58.
- 61.
- 62.
Rodrigues M.L.; Nosanchuk J.D. Fungal diseases as neglected pathogens: a wake-up call to public health officials. PLoS Neglected Trop. Dis., 2020, 14(2): e0007964.
- 63.
Raut A.; Huy N.T. Rising incidence of mucormycosis in patients with COVID-19: another challenge for India amidst the second wave? Lancet Respir. Med., 2021, 9(8): e77.
- 64.
Hoenigl M. Invasive fungal disease complicating coronavirus disease 2019: when it rains, it spores. Clin. Infect. Dis., 2021, 73(7): e1645-e1648.
- 65.
Rivnay B.; Wakim J.; Avery K.; et al. Critical process parameters in manufacturing of liposomal formulations of amphotericin B. Int. J. Pharm., 2019, 565: 447-457.
- 66.
Gallis H.A.; Drew R.H.; Pickard W.W. Amphotericin B: 30 years of clinical experience. Rev. Infect. Dis., 1990, 12(2): 308-329.
- 67.
- 68.
Min Y.Z.; Caster J.M.; Eblan M.J.; et al. Clinical translation of nanomedicine. Chem. Rev., 2015, 115(19): 11147-11190.
- 69.
Wingard J.R.; Kubilis P.; Lee L.; et al. Clinical significance of nephrotoxicity in patients treated with amphotericin B for suspected or proven aspergillosis. Clin. Infect. Dis., 1999, 29(6): 1402-1407.
- 70.
Heinemann V.; Bosse D.; Jehn U.; et al. Pharmacokinetics of liposomal amphotericin B (Ambisome) in critically ill patients. Antimicrob. Agents Chemother., 1997, 41(6): 1275-1280.
- 71.
Jarvis J.N.; Lawrence D.S.; Meya D.B.; et al. Single-dose liposomal amphotericin B treatment for cryptococcal meningitis. N. Engl. J. Med., 2022, 386(12): 1109-1120.
- 72.
Rodrigues A.V.; Valério-Bolas A.; Alexandre-Pires G.; et al. Zoonotic visceral leishmaniasis: new insights on innate immune response by blood macrophages and liver Kupffer cells to Leishmania infantum parasites. Biology, 2022, 11(1): 100.
- 73.
Boswell G.W.; Buell D.; Bekersky I. AmBisome (liposomal amphotericin B): a comparative review. J. Clin. Pharmacol., 1998, 38(7): 583-592.
- 74.
Wingard J.R.; White M.H.; Anaissie E.; et al. A randomized, double-blind comparative trial evaluating the safety of liposomal amphotericin B versus amphotericin B lipid complex in the empirical treatment of febrile neutropenia. L Amph/ABLC Collaborative Study Group. Clin. Infect. Dis., 2000, 31(5): 1155-1163.
- 75.
Lestner J.; McEntee L.; Johnson A.; et al. Experimental models of short courses of liposomal amphotericin B for induction therapy for cryptococcal meningitis. Antimicrob. Agents Chemother., 2017, 61(6): e00090-17.
- 76.
Walsh T.J.; Yeldandi V.; McEvoy M.; et al. Safety, tolerance, and pharmacokinetics of a small unilamellar liposomal formulation of amphotericin B (AmBisome) in neutropenic patients. Antimicrob. Agents Chemother., 1998, 42(9): 2391-2398.
- 77.
McLintock L.A.; Cook G.; Holyoake T.L.; et al. High loading dose AmBisome is efficacious and well tolerated in the management of invasive fungal infection in hematology patients. Haematologica, 2007, 92(4): 572-573.
- 78.
- 79.
Meyerhoff A. U.S. food and drug administration approval of AmBisome (liposomal amphotericin B) for treatment of visceral leishmaniasis. Clin. Infect. Dis., 1999, 28(1): 42-48.
- 80.
Sundar S.; Chakravarty J. Liposomal amphotericin B and leishmaniasis: dose and response. J. Global Infect. Dis., 2010, 2(2): 159-166.
- 81.