- 1.
Abrar, M.; Ajmal, U.; Almohaimeed, Z. M.; et al. Energy efficient UAV-enabled mobile edge computing for IoT devices: A review. IEEE Access, 2021, 9: 127779−127798. doi: 10.1109/ACCESS.2021.3112104
- 2.
Yang, B.; Cao, X. L.; Yuen, C.; et al. Offloading optimization in edge computing for deep-learning-enabled target tracking by internet ofUAVs. IEEE Internet Things J., 2021, 8: 9878−9893. doi: 10.1109/JIOT.2020.3016694
- 3.
Zhang, L.; Ansari, N.. Optimizing the operation cost for UAV-aided mobile edge computing. IEEE Trans. Veh. Technol., 2021, 70: 6085−6093. doi: 10.1109/TVT.2021.3076980
- 4.
Zhang, L.; Chakareski, J.. UAV-assisted edge computing and streaming for wireless virtual reality: Analysis, algorithm design, and performance guarantees. IEEE Trans. Veh. Technol., 2022, 71: 3267−3275. doi: 10.1109/TVT.2022.3142169
- 5.
Lakhan, A.; Ahmad, M.; Bilal, M.; et al. Mobility Aware Blockchain Enabled offloading and scheduling in vehicular fog cloud computing. IEEE Trans. Intell. Transport. Syst., 2021, 22: 4212−4223. doi: 10.1109/TITS.2021.3056461
- 6.
Chen, H. W.; Deng, S. G.; Zhu, H. Z.; et al. Mobility-aware offloading and resource allocation for distributed services collaboration. IEEE Trans. Parall. Distr. Syst., 2022, 33: 2428−2443. doi: 10.1109/TPDS.2022.3142314
- 7.
Wang, Z.; Zhao, Z. W.; Min, G. Y.; et al. User mobility aware task assignment for Mobile Edge Computing. Future Gener. Comput. Syst., 2018, 85: 1−8. doi: 10.1016/j.future.2018.02.014
- 8.
Chen, X.; Liu, G. Z. Federated deep reinforcement learning-based task offloading and resource allocation for smart cities in a mobile edge network. Sensors, 2022, 22: 4738. doi: 10.3390/s22134738
- 9.
Peng, Q. L.; Xia, Y. N.; Feng, Z.; et al. Mobility-aware and migration-enabled online edge user allocation in mobile edge computing. In 2019 IEEE International Conference on Web Services (ICWS), Milan, Italy, 8–13 July 2019; IEEE: New York, 2019; pp. 91–98. doi: 10.1109/ICWS.2019.00026.
- 10.
Saleem, U.; Liu, Y.; Jangsher, S.; et al. Mobility-aware joint task scheduling and resource allocation for cooperative mobile edge computing. IEEE Trans. Wirel. Commun., 2021, 20: 360−374. doi: 10.1109/TWC.2020.3024538
- 11.
Zhan, W. H.; Luo, C. B.; Min, G. Y.; et al. Mobility-aware multi-user offloading optimization for mobile edge computing. IEEE Trans. Veh. Technol., 2020, 69: 3341−3356. doi: 10.1109/TVT.2020.2966500
- 12.
Ei, N. N.; Alsenwi, M.; Tun, Y. K.; et al. Energy-efficient resource allocation in multi-UAV-assisted two-stage edge computing for beyond 5G networks. IEEE Trans. Intell. Transp. Syst., 2022, 23: 16421−16432. doi: 10.1109/TITS.2022.3150176
- 13.
Xiong, K.; Liu, Y.; Zhang, L. T.; et al. Joint optimization of trajectory, task offloading, and CPU control in UAV-assisted wireless powered fog computing networks. IEEE Trans. Green Commun. Netw., 2022, 6: 1833−1845. doi: 10.1109/TGCN.2022.3157735
- 14.
Lu, W. D.; Ding, Y.; Gao, Y.; et al. Resource and trajectory optimization for secure communications in dual unmanned aerial vehicle mobile edge computing systems. IEEE Trans. Ind. Inf., 2022, 18: 2704−2713. doi: 10.1109/TII.2021.3087726
- 15.
Dai, B.; Niu, J. W.; Ren, T.; et al. Towards energy efficient scheduling of UAV and base station hybrid enabled mobile edge computing. IEEE Trans. Veh. Technol., 2022, 71: 915−930. doi: 10.1109/TVT.2021.3129214
- 16.
Zhou, H.; Wang, Z. N.; Min, G. Y.; et al. UAV-aided computation offloading in mobile-edge computing networks: A Stackelberg game approach. IEEE Internet Things J., 2023, 10: 6622−6633. doi: 10.1109/JIOT.2022.3197155
- 17.
Goudarzi, S.; Soleymani, S. A.; Wang, W. W.; et al. UAV-enabled mobile edge computing for resource allocation using cooperative evolutionary computation. IEEE Trans. Aero. Elec. Syst., 2023, 59: 5134−5147. doi: 10.1109/TAES.2023.3251967
- 18.
Apostolopoulos, P. A.; Fragkos, G.; Tsiropoulou, E. E.; et al. Data offloading in UAV-assisted multi-access edge computing systems under resource uncertainty. IEEE Trans. Mobile Comput., 2023, 22: 175−190. doi: 10.1109/TMC.2021.3069911
- 19.
Wang, R.; Cao, Y.; Noor, A.; et al. Agent-enabled task offloading in UAV-aided mobile edge computing. Comput. Commun., 2020, 149: 324−331. doi: 10.1016/j.comcom.2019.10.021
- 20.
Guo, Y. H.; Zhao, R.; Lai, S. W.; et al. Distributed machine learning for multiuser mobile edge computing systems. IEEE J. Sel. Top. Signal Process., 2022, 16: 460−473. doi: 10.1109/JSTSP.2022.3140660
- 21.
Liu, W. S.; Li, B.; Xie, W. C.; et al. Energy efficient computation offloading in aerial edge networks with multi-agent cooperation. IEEE Trans. Wirel. Commun., 2023, 22: 5725−5739. doi: 10.1109/TWC.2023.3235997
- 22.
Zhao, N.; Ye, Z. Y.; Pei, Y. Y.; et al. Multi-agent deep reinforcement learning for task offloading in UAV-assisted mobile edge computing. IEEE Trans. Wirel. Commun., 2022, 21: 6949−6960. doi: 10.1109/TWC.2022.3153316
- 23.
Zhou, W. Q.; Fan, L. S.; Zhou, F. S.; et al. Priority-aware resource scheduling for UAV-mounted mobile edge computing networks. IEEE Trans. Veh. Technol., 2023, 72: 9682−9687. doi: 10.1109/TVT.2023.3247431
- 24.
Qin, Z.; Wei, Z. H.; Qu, Y. B.; et al. AoI-aware scheduling for air-ground collaborative mobile edge computing. IEEE Trans. Wirel. Commun., 2023, 22: 2989−3005. doi: 10.1109/TWC.2022.3215795
- 25.
Xu, Y.; Zhang, T. K.; Loo, J.; et al. Completion time minimization for UAV-assisted mobile-edge computing systems. IEEE Trans. Veh. Technol., 2021, 70: 12253−12259. doi: 10.1109/TVT.2021.3112853
- 26.
Hu, J. W.; Jiang, M.; Zhang, Q.; et al. Joint optimization of UAV position, time slot allocation, and computation task partition in multiuser aerial mobile-edge computing systems. IEEE Trans. Veh. Technol., 2019, 68: 7231−7235. doi: 10.1109/TVT.2019. 2915836
- 27.
Gao, N.; Jin, S.; Li, X. 3D deployment of UAV swarm for massive MIMO communications. In Proceedings ofthe ACMMobiArch 2020 The 15th Workshop on Mobility in the Evolving Internet Architecture, New York, NY, USA, 21 September 2020; Association for Computing Machinery: New York, 2020; pp. 24–29. doi: 10.1145/3411043.3412502.
- 28.
Seid, A. M.; Boateng, G. O.; Anokye, S.; et al. Collaborative computation offloading and resource allocation in multi-UAV-assisted IoT networks: A deep reinforcement learning approach. IEEE Internet Things J., 2021, 8: 12203−12218. doi: 10.1109/JIOT.2021. 3063188
- 29.
Liu, Y.; Xie, S. L.; Zhang, Y.. Cooperative offloading and resource management for UAV-enabled mobile edge computing in power IoT system. IEEE Trans. Veh. Technol., 2020, 69: 12229−12239. doi: 10.1109/TVT.2020.3016840
- 30.
Chai, F. R.; Zhang, Q.; Yao, H. P.; et al. Joint multi-task offloading and resource allocation for mobile edge computing systems in satellite IoT. IEEE Trans. Veh. Technol., 2023, 72: 7783−7795. doi: 10.1109/TVT.2023.3238771
- 31.
Li, J. L. Y.; Yi, C. Y.; Chen, J. Y.; et al. Joint trajectory planning, application placement, and energy renewal for UAV-assisted MEC: A triple-learner-based approach. IEEE Internet Things J., 2023, 10: 13622−13636. doi: 10.1109/JIOT.2023.3262687
- 32.
He, X. F.; Jin, R. C.; Dai, H. Y.. Multi-hop task offloading with on-the-fly computation for multi-UAV remote edge computing. IEEE Trans. Commun., 2022, 70: 1332−1344. doi: 10.1109/TCOMM.2021.3129902
- 33.
Kong, P.; Li, B.; Wang, Y. H.; et al Multi-UAV cooperative computational delay and energy consumption modeling and DDPG optimization. In 2022 IEEE 8th International Conference on Computer and Communications (ICCC), Chengdu, China, 9–12 December 2022; IEEE: New York, 2022; pp. 719–724. doi: 10.1109/ICCC56324.2022.10065948.
- 34.
Tun, Y. K.; Dang, T. N.; Kim, K.; et al. Collaboration in the sky: A distributed framework for task offloading and resource allocation in multi-access edge computing. IEEE Internet Things J., 2022, 9: 24221−24235. doi: 10.1109/JIOT.2022.3189000
- 35.
Qi, X. H.; Chong, J. Z.; Zhang, Q. Y.; et al. Collaborative computation offloading in the multi-UAV fleeted mobile edge computing network via connected dominating set. IEEE Trans. Veh. Technol., 2022, 71: 10832−10848. doi: 10.1109/TVT.2022.3188554
- 36.
Xia, J. M.; Wang, P.; Li, B.; et al. Intelligent task offloading and collaborative computation in multi-UAV-enabled mobile edge computing. China Commun., 2022, 19: 244−256. doi: 10.23919/JCC.2022.04.018
- 37.
Zhang, H. X.; Yang, Y. J.; Shang, B. D.; et al. Joint resource allocation and multi-part collaborative task offloading in MEC systems. IEEE Trans. Veh. Technol., 2022, 71: 8877−8890. doi: 10.1109/TVT.2022.3174530
- 38.
Hu, H.; Chen, Z.; Zhou, F. H.; et al. Joint resource and trajectory optimization for heterogeneous-UAVs enabled aerial-ground cooperative computing networks. IEEE Trans. Veh. Technol., 2023, 72: 8812−8826. doi: 10.1109/TVT.2023.3244812
- 39.
Meng, K. T.; He, X. F.; Wu, Q. Q.; et al. Multi-UAV collaborative sensing and communication: Joint task allocation and power optimization. IEEE Trans. Wirel. Commun., 2023, 22: 4232−4246. doi: 10.1109/TWC.2022.3224143
- 40.
Guo, H. Z.; Wang, Y. T.; Liu, J. J.; et al. Multi-UAV cooperative task offloading and resource allocation in 5G advanced and beyond. IEEE Trans. Wirel. Commun., 2024, 23: 347−359. doi: 10.1109/TWC.2023.3277801
- 41.
Boyd, S. P.; Vandenberghe, L. Convex Optimization; Cambridge University Press: Cambridge, 2004.
- 42.
Zhao, L.; Yang, K. Q.; Tan, Z. Y.; et al. Vehicular computation offloading for industrial mobile edge computing. IEEE Trans. Ind. Inf., 2021, 17: 7871−7881. doi: 10.1109/TII.2021.3059640