2509001335
  • Open Access
  • Article

Extended Genetic Algorithm for Unmanned Aerial Vehicle Collaboration in Three-Layer Mobile Edge Computing

  • Jiale Lin 1, 2,   
  • Yao Nie 1, 2,   
  • Yue Chen 1, 2, *

Received: 17 Jan 2025 | Accepted: 11 Mar 2025 | Published: 17 Sep 2025

Abstract

In recent years, low-latency tasks such as real-time communication, virtual reality, and augmented reality have higher latency requirements. Since users have relatively weak computing power, the past practice was to offload low-latency tasks to base stations (BSs) with more powerful computing power for execution, which can reduce computing latency in real-time communication. Duetothe inflexible deployment of BSs and the uneven distribution of computing resources, users often find it difficult to meet the needs of low-latency tasks in places that lack BSs, so unmanned aerial vehicles (UAVs) are needed to alleviate this problem. UAVs can serve as communication relays between users and BSs and provide computing services directly to users. However, when there are few BSs, UAVs may experience load imbalance, that is, some UAVs are overloaded while other UAVs are idle. To solve this problem, we propose a UAV collaborative three-layer mobile edge computing (MEC) system model and describe the problem as a mixed integer nonlinear programming (MINLP) problem. Then, we propose an extended genetic algorithm for UAV collaboration in three-layer MEC task allocation and optimization (EGAC-3MEC) where the three-layer structure includes users, UAVs, and BSs. The proposed EGAC- 3MEC achieves reasonable allocation of tasks and resources through offloading and resource allocation decisions, reduces system delay and energy consumption as much as possible, and prioritizes the delay of high-priority users. Experimental results show that the algorithm in this paper converges quickly when various parameters change, achieves better performance than the baseline algorithms when the user task size is different, and moreover, the necessity of UAV collaboration is proven.

References 

  • 1.
    Abrar, M.; Ajmal, U.; Almohaimeed, Z. M.; et al. Energy efficient UAV-enabled mobile edge computing for IoT devices: A review. IEEE Access, 2021, 9: 127779−127798. doi: 10.1109/ACCESS.2021.3112104
  • 2.
    Yang, B.; Cao, X. L.; Yuen, C.; et al. Offloading optimization in edge computing for deep-learning-enabled target tracking by internet ofUAVs. IEEE Internet Things J., 2021, 8: 9878−9893. doi: 10.1109/JIOT.2020.3016694
  • 3.
    Zhang, L.; Ansari, N.. Optimizing the operation cost for UAV-aided mobile edge computing. IEEE Trans. Veh. Technol., 2021, 70: 6085−6093. doi: 10.1109/TVT.2021.3076980
  • 4.
    Zhang, L.; Chakareski, J.. UAV-assisted edge computing and streaming for wireless virtual reality: Analysis, algorithm design, and performance guarantees. IEEE Trans. Veh. Technol., 2022, 71: 3267−3275. doi: 10.1109/TVT.2022.3142169
  • 5.
    Lakhan, A.; Ahmad, M.; Bilal, M.; et al. Mobility Aware Blockchain Enabled offloading and scheduling in vehicular fog cloud computing. IEEE Trans. Intell. Transport. Syst., 2021, 22: 4212−4223. doi: 10.1109/TITS.2021.3056461
  • 6.
    Chen, H. W.; Deng, S. G.; Zhu, H. Z.; et al. Mobility-aware offloading and resource allocation for distributed services collaboration. IEEE Trans. Parall. Distr. Syst., 2022, 33: 2428−2443. doi: 10.1109/TPDS.2022.3142314
  • 7.
    Wang, Z.; Zhao, Z. W.; Min, G. Y.; et al. User mobility aware task assignment for Mobile Edge Computing. Future Gener. Comput. Syst., 2018, 85: 1−8. doi: 10.1016/j.future.2018.02.014
  • 8.
    Chen, X.; Liu, G. Z. Federated deep reinforcement learning-based task offloading and resource allocation for smart cities in a mobile edge network. Sensors, 2022, 22: 4738. doi: 10.3390/s22134738
  • 9.
    Peng, Q. L.; Xia, Y. N.; Feng, Z.; et al. Mobility-aware and migration-enabled online edge user allocation in mobile edge computing. In 2019 IEEE International Conference on Web Services (ICWS), Milan, Italy, 8–13 July 2019; IEEE: New York, 2019; pp. 91–98. doi: 10.1109/ICWS.2019.00026.
  • 10.
    Saleem, U.; Liu, Y.; Jangsher, S.; et al. Mobility-aware joint task scheduling and resource allocation for cooperative mobile edge computing. IEEE Trans. Wirel. Commun., 2021, 20: 360−374. doi: 10.1109/TWC.2020.3024538
  • 11.
    Zhan, W. H.; Luo, C. B.; Min, G. Y.; et al. Mobility-aware multi-user offloading optimization for mobile edge computing. IEEE Trans. Veh. Technol., 2020, 69: 3341−3356. doi: 10.1109/TVT.2020.2966500
  • 12.
    Ei, N. N.; Alsenwi, M.; Tun, Y. K.; et al. Energy-efficient resource allocation in multi-UAV-assisted two-stage edge computing for beyond 5G networks. IEEE Trans. Intell. Transp. Syst., 2022, 23: 16421−16432. doi: 10.1109/TITS.2022.3150176
  • 13.
    Xiong, K.; Liu, Y.; Zhang, L. T.; et al. Joint optimization of trajectory, task offloading, and CPU control in UAV-assisted wireless powered fog computing networks. IEEE Trans. Green Commun. Netw., 2022, 6: 1833−1845. doi: 10.1109/TGCN.2022.3157735
  • 14.
    Lu, W. D.; Ding, Y.; Gao, Y.; et al. Resource and trajectory optimization for secure communications in dual unmanned aerial vehicle mobile edge computing systems. IEEE Trans. Ind. Inf., 2022, 18: 2704−2713. doi: 10.1109/TII.2021.3087726
  • 15.
    Dai, B.; Niu, J. W.; Ren, T.; et al. Towards energy efficient scheduling of UAV and base station hybrid enabled mobile edge computing. IEEE Trans. Veh. Technol., 2022, 71: 915−930. doi: 10.1109/TVT.2021.3129214
  • 16.
    Zhou, H.; Wang, Z. N.; Min, G. Y.; et al. UAV-aided computation offloading in mobile-edge computing networks: A Stackelberg game approach. IEEE Internet Things J., 2023, 10: 6622−6633. doi: 10.1109/JIOT.2022.3197155
  • 17.
    Goudarzi, S.; Soleymani, S. A.; Wang, W. W.; et al. UAV-enabled mobile edge computing for resource allocation using cooperative evolutionary computation. IEEE Trans. Aero. Elec. Syst., 2023, 59: 5134−5147. doi: 10.1109/TAES.2023.3251967
  • 18.
    Apostolopoulos, P. A.; Fragkos, G.; Tsiropoulou, E. E.; et al. Data offloading in UAV-assisted multi-access edge computing systems under resource uncertainty. IEEE Trans. Mobile Comput., 2023, 22: 175−190. doi: 10.1109/TMC.2021.3069911
  • 19.
    Wang, R.; Cao, Y.; Noor, A.; et al. Agent-enabled task offloading in UAV-aided mobile edge computing. Comput. Commun., 2020, 149: 324−331. doi: 10.1016/j.comcom.2019.10.021
  • 20.
    Guo, Y. H.; Zhao, R.; Lai, S. W.; et al. Distributed machine learning for multiuser mobile edge computing systems. IEEE J. Sel. Top. Signal Process., 2022, 16: 460−473. doi: 10.1109/JSTSP.2022.3140660
  • 21.
    Liu, W. S.; Li, B.; Xie, W. C.; et al. Energy efficient computation offloading in aerial edge networks with multi-agent cooperation. IEEE Trans. Wirel. Commun., 2023, 22: 5725−5739. doi: 10.1109/TWC.2023.3235997
  • 22.
    Zhao, N.; Ye, Z. Y.; Pei, Y. Y.; et al. Multi-agent deep reinforcement learning for task offloading in UAV-assisted mobile edge computing. IEEE Trans. Wirel. Commun., 2022, 21: 6949−6960. doi: 10.1109/TWC.2022.3153316
  • 23.
    Zhou, W. Q.; Fan, L. S.; Zhou, F. S.; et al. Priority-aware resource scheduling for UAV-mounted mobile edge computing networks. IEEE Trans. Veh. Technol., 2023, 72: 9682−9687. doi: 10.1109/TVT.2023.3247431
  • 24.
    Qin, Z.; Wei, Z. H.; Qu, Y. B.; et al. AoI-aware scheduling for air-ground collaborative mobile edge computing. IEEE Trans. Wirel. Commun., 2023, 22: 2989−3005. doi: 10.1109/TWC.2022.3215795
  • 25.
    Xu, Y.; Zhang, T. K.; Loo, J.; et al. Completion time minimization for UAV-assisted mobile-edge computing systems. IEEE Trans. Veh. Technol., 2021, 70: 12253−12259. doi: 10.1109/TVT.2021.3112853
  • 26.
    Hu, J. W.; Jiang, M.; Zhang, Q.; et al. Joint optimization of UAV position, time slot allocation, and computation task partition in multiuser aerial mobile-edge computing systems. IEEE Trans. Veh. Technol., 2019, 68: 7231−7235. doi: 10.1109/TVT.2019. 2915836
  • 27.
    Gao, N.; Jin, S.; Li, X. 3D deployment of UAV swarm for massive MIMO communications. In Proceedings ofthe ACMMobiArch 2020 The 15th Workshop on Mobility in the Evolving Internet Architecture, New York, NY, USA, 21 September 2020; Association for Computing Machinery: New York, 2020; pp. 24–29. doi: 10.1145/3411043.3412502.
  • 28.
    Seid, A. M.; Boateng, G. O.; Anokye, S.; et al. Collaborative computation offloading and resource allocation in multi-UAV-assisted IoT networks: A deep reinforcement learning approach. IEEE Internet Things J., 2021, 8: 12203−12218. doi: 10.1109/JIOT.2021. 3063188
  • 29.
    Liu, Y.; Xie, S. L.; Zhang, Y.. Cooperative offloading and resource management for UAV-enabled mobile edge computing in power IoT system. IEEE Trans. Veh. Technol., 2020, 69: 12229−12239. doi: 10.1109/TVT.2020.3016840
  • 30.
    Chai, F. R.; Zhang, Q.; Yao, H. P.; et al. Joint multi-task offloading and resource allocation for mobile edge computing systems in satellite IoT. IEEE Trans. Veh. Technol., 2023, 72: 7783−7795. doi: 10.1109/TVT.2023.3238771
  • 31.
    Li, J. L. Y.; Yi, C. Y.; Chen, J. Y.; et al. Joint trajectory planning, application placement, and energy renewal for UAV-assisted MEC: A triple-learner-based approach. IEEE Internet Things J., 2023, 10: 13622−13636. doi: 10.1109/JIOT.2023.3262687
  • 32.
    He, X. F.; Jin, R. C.; Dai, H. Y.. Multi-hop task offloading with on-the-fly computation for multi-UAV remote edge computing. IEEE Trans. Commun., 2022, 70: 1332−1344. doi: 10.1109/TCOMM.2021.3129902
  • 33.
    Kong, P.; Li, B.; Wang, Y. H.; et al Multi-UAV cooperative computational delay and energy consumption modeling and DDPG optimization. In 2022 IEEE 8th International Conference on Computer and Communications (ICCC), Chengdu, China, 9–12 December 2022; IEEE: New York, 2022; pp. 719–724. doi: 10.1109/ICCC56324.2022.10065948.
  • 34.
    Tun, Y. K.; Dang, T. N.; Kim, K.; et al. Collaboration in the sky: A distributed framework for task offloading and resource allocation in multi-access edge computing. IEEE Internet Things J., 2022, 9: 24221−24235. doi: 10.1109/JIOT.2022.3189000
  • 35.
    Qi, X. H.; Chong, J. Z.; Zhang, Q. Y.; et al. Collaborative computation offloading in the multi-UAV fleeted mobile edge computing network via connected dominating set. IEEE Trans. Veh. Technol., 2022, 71: 10832−10848. doi: 10.1109/TVT.2022.3188554
  • 36.
    Xia, J. M.; Wang, P.; Li, B.; et al. Intelligent task offloading and collaborative computation in multi-UAV-enabled mobile edge computing. China Commun., 2022, 19: 244−256. doi: 10.23919/JCC.2022.04.018
  • 37.
    Zhang, H. X.; Yang, Y. J.; Shang, B. D.; et al. Joint resource allocation and multi-part collaborative task offloading in MEC systems. IEEE Trans. Veh. Technol., 2022, 71: 8877−8890. doi: 10.1109/TVT.2022.3174530
  • 38.
    Hu, H.; Chen, Z.; Zhou, F. H.; et al. Joint resource and trajectory optimization for heterogeneous-UAVs enabled aerial-ground cooperative computing networks. IEEE Trans. Veh. Technol., 2023, 72: 8812−8826. doi: 10.1109/TVT.2023.3244812
  • 39.
    Meng, K. T.; He, X. F.; Wu, Q. Q.; et al. Multi-UAV collaborative sensing and communication: Joint task allocation and power optimization. IEEE Trans. Wirel. Commun., 2023, 22: 4232−4246. doi: 10.1109/TWC.2022.3224143
  • 40.
    Guo, H. Z.; Wang, Y. T.; Liu, J. J.; et al. Multi-UAV cooperative task offloading and resource allocation in 5G advanced and beyond. IEEE Trans. Wirel. Commun., 2024, 23: 347−359. doi: 10.1109/TWC.2023.3277801
  • 41.
    Boyd, S. P.; Vandenberghe, L. Convex Optimization; Cambridge University Press: Cambridge, 2004.
  • 42.
    Zhao, L.; Yang, K. Q.; Tan, Z. Y.; et al. Vehicular computation offloading for industrial mobile edge computing. IEEE Trans. Ind. Inf., 2021, 17: 7871−7881. doi: 10.1109/TII.2021.3059640
Share this article:
How to Cite
Lin, J.; Nie, Y.; Chen, Y. Extended Genetic Algorithm for Unmanned Aerial Vehicle Collaboration in Three-Layer Mobile Edge Computing. International Journal of Network Dynamics and Intelligence 2025, 4 (3), 100015. https://doi.org/10.53941/ijndi.2025.100015.
RIS
BibTex
Copyright & License
article copyright Image
Copyright (c) 2025 by the authors.