- 1.
Adil, A.M.; Ko, Y. Socio-technical evolution of Decentralized Energy Systems: A critical review and implications for urban planning and policy. Renew. Sustain. Energy Rev. 2016, 57, 1025–1037.
- 2.
Zhang, S.; Xue, J.; Liu, J.; et al. Differential Privacy-Aware Generative Adversarial Network-Assisted Resource Scheduling for Green Multi-Mode Power IoT. IEEE Trans. Green Commun. Netw. 2024, 8, 956–967.
- 3.
Nadeem, T.B.; Siddiqui, M.; Khalid, M.; et al. Distributed energy systems: A review of classification, technologies, applications, and policies. Energy Strategy Rev. 2023, 48, 101096.
- 4.
Liao, H.; Zhou, Z.; Jia, Z.; et al. Ultra-Low AoI Digital Twin-Assisted Resource Allocation for Multi-Mode Power IoT in Distribution Grid Energy Management. IEEE J. Sel. Areas Commun. 2023, 41, 3122–3132.
- 5.
Hong, B.; Li, Q.; Chen, W.; et al. Supply modes for renewable-based distributed energy systems and their applications: Case studies in China. Glob. Energy Interconnect. 2020, 3, 259–271.
- 6.
Wang, Z.; Zhou, Z.; Zhang, H.; et al. AI-Based Cloud-Edge-Device Collaboration in 6G Space-Air-Ground Integrated Power IoT. IEEE Wirel. Commun. 2022, 29, 16–23.
- 7.
Zhang, Y.; Pan, Z.; Wang, H.; et al. Achieving wind power and photovoltaic power prediction: An intelligent prediction system based on a deep learning approach. Energy 2023, 283, 129005.
- 8.
Li, J.; Zhou, Z.; Wu, J.; et al. Decentralized On-Demand Energy Supply for Blockchain in Internet of Things: A Microgrids Approach. IEEE Trans. Comput. Soc. Syst. 2019, 6, 1395–1406.
- 9.
Luo, X.; Zhang, D.; Zhu, X. Deep learning based forecasting of photovoltaic power generation by incorporating domain knowledge. Energy 2021, 225, 120240.
- 10.
Li, J.; Wang, K.; Hou, X.; et al. A Dual-Scale Transformer-Based Remaining Useful Life Prediction Model in Industrial Internet of Things. IEEE Internet Things J. 2024, 11, 26656–26667.
- 11.
Liu, X.; Zhou, J. Short-term wind power forecasting based on multivariate/multi-step LSTM with temporal feature attention mechanism. Appl. Soft Comput. 2024, 150, 111050.
- 12.
Samanta, A.; Nguyen, T.G.; Ha, T.; et al. Distributed Resource Distribution and Offloading for Resource-Agnostic Microservices in Industrial IoT. IEEE Trans. Veh. Technol. 2023, 72, 1184–1195.
- 13.
Gao, X.; Guo, W.; Mei, C.; et al. Short-term wind power forecasting based on SSA-VMD-LSTM. Energy Rep. 2023, 9, 335–344.
- 14.
Li, Y.L.; Zhu, Z.A.; Chang, Y.K.; et al. Short-Term Wind Power Forecasting by Advanced Machine Learning Models. In Proceedings of the 2020 International Symposium on Computer, Consumer and Control (IS3C), Taichung City, Taiwan, 13–16 November 2020; pp. 412–415.
- 15.
Agga, A.; Abbou, A.; Labbadi, M.; et al. CNN-LSTM: An efficient hybrid deep learning architecture for predicting short-term photovoltaic power production. Electr. Power Syst. Res. 2022, 208, 107908.
- 16.
Krishnan, N.; Kumar, K.R. Solar radiation forecasting using gradient boosting based ensemble learning model for various climatic zones. Sustain. Energy Grids Netw. 2024, 38, 101312.
- 17.
Samadianfard, S.; Hashemi, S.; Kargar, K.; et al. Wind speed prediction using a hybrid model of the multi-layer perceptron and whale optimization algorithm. Energy Rep. 2020, 6, 1147–1159.
- 18.
Al-Ja’afreh, M.A.A.; Mokryani, G.; Amjad, B. An enhanced CNN-LSTM based multi-stage framework for PV and load short-term forecasting: DSO scenarios. Energy Rep. 2023, 10, 1387–1408.
- 19.
Muzaffar, S.; Afshari, A. Short-Term Load Forecasts Using LSTM Networks. Energy Procedia 2019, 158, 2922–2927.
- 20.
Agga, A.; Abbou, A.; Labbadi, M.; et al. Short-Term Load Forecasting: Based on Hybrid CNN-LSTM Neural Network. In Proceedings of the 2021 6th International Conference on Power and Renewable Energy (ICPRE), Shanghai, China, 17–20 September 2021; pp. 886–891.
- 21.
Phan, Q.T.; Wu, Y.K.; Phan, Q.D. Short-term Solar Power Forecasting Using XGBoost with Numerical Weather Prediction. In Proceedings of the 2021 IEEE International Future Energy Electronics Conference (IFEEC), Taipei, Taiwan, 16–19 November 2021; pp. 1–6.
- 22.
Baul, A.S.; Sikder, G.C.; Mozumder, P.; et al. Data-Driven Short-Term Load Forecasting for Multiple Locations: An Integrated Approach. BDCC 2024, 8, 12.
- 23.
Wang, N.; Li, Z. A stacking-based short-term wind power forecasting method by CBLSTM and ensemble learning. J. Renew. Sustain. Energy 2022, 14, 046101.
- 24.
Trivedi, R.; Patra, S.; Khadem, S. A Data-Driven Short-Term PV Generation and Load Forecasting Approach for Microgrid Applications. IEEE J. Emerg. Sel. Top. Ind. Electron. 2022, 3, 911–919.
- 25.
Moreno, S.R.; da Silva, R.G.; Mariani, V.C.; et al. Multi-step wind speed forecasting based on hybrid multi-stage decomposition model and long short-term memory neural network. Energy Convers. Manag. 2020, 213, 112869.
- 26.
Cao, W.; Wang, G.; Liang, X.; et al. A STAM-LSTM model for wind power prediction with feature selection. Energy 2024, 296, 131030.
- 27.
Kumari, P.; Toshniwal, D. Extreme gradient boosting and deep neural network based ensemble learning approach to forecast hourly solar irradiance. J. Clean. Prod. 2021, 279, 123285.
- 28.
Mbey, C.F.; Kakeu, V.J.F.; Boum, A.T.; et al. Solar photovoltaic generation and electrical demand forecasting using multi-objective deep learning model for smart grid systems. Cogent Eng. 2024, 11, 2340302.
- 29.
Lim, S.-C.; Huh, J.-H.; Hong, S.-H.; et al. Solar Power Forecasting Using CNN-LSTM Hybrid Model. Energies 2022, 15, 8233.
- 30.
Abbasimehr, H.; Shabani, M.; Yousefi, M. An optimized model using LSTM network for demand forecasting. Comput. Ind. Eng. 2020, 143, 106435.
- 31.
Raju, H.; Das, S. CNN-Based Deep Learning Model for Solar Wind Forecasting. Sol. Phys. 2021, 296, 134.
- 32.
Babalhavaeji, A.; Radmanesh, M.; Jalili, M.; et al. Photovoltaic generation forecasting using convolutional and recurrent neural networks. Energy Rep. 2023, 9, 119–123.
- 33.
Zhao, Q.; Wen, X.; Boyan, H.; et al. Optimised extreme gradient boosting model for short term electric load demand forecasting of regional grid system. Sci. Rep. 2022, 12, 19282.
- 34.
Xiong, X.; Guo, X.; Zeng, P.; et al. A Short-Term Wind Power Forecast Method via XGBoost Hyper-Parameters Optimization. Front. Energy Res. 2022, 10, 905155.
- 35.
Hewamalage, H.; Bergmeir, C.; Bandara, K. Recurrent Neural Networks for Time Series Forecasting: Current status and future directions. Int. J. Forecast. 2021, 37, 388–427.
- 36.
Wu, H.; Levinson, D. The ensemble approach to forecasting: A review and synthesis. Transp. Res. Part C Emerg. Technol. 2021, 132, 103357.
- 37.
Oprea, S.-V.; Bâra, A. A stacked ensemble forecast for photovoltaic power plants combining deterministic and stochastic methods. Appl. Soft Comput. 2023, 147, 110781.