- 1.
Hua, J.; Wang, H.; Ren, M.; Huang, H. Dimension reduction using collaborative representation reconstruction based projections. Neuro-Comput. 2016, 193, 1–6.
- 2.
Jadoon, W.; Zhang, H. Locality features encoding in regularized linear representation learning for face recogni- tion. In Proceedings of the 11th International Conference on Frontiers of Information Technology, Islamabad, Pakistan, 16–18 December 2013; pp. 189–194.
- 3.
Yuan, M.-D.; Feng, D.-Z.; Liu, W.-J.; Xiao, C.-B. Collaborative representation discriminant embedding for image classification. J. Vis. Commun. Image Represent. 2016, 41, 212–224.
- 4.
Zhou, Z.; Waqas, J. Intrinsic structure based feature transform for image classification. J. Vis. Commun. Image Represent. 2016, 38, 735–744.
- 5.
Waqas, J.; Yi, Z.; Zhang, L. Collaborative neighbor representation based classification using l2-minimization approach. Pattern Recognit. Lett. 2013, 34, 201–208.
- 6.
Liang, L.; Xia, Y.; Xun, L.; Yan, Q.; Zhang, D. Class-Probability Based Semi-Supervised Dimensional- ity Reduction for Hyperspectral Images. In Proceedings of the 2018 IEEE 9th International Conference on Software Engineering and Service Science (ICSESS), Beijing, China, 23–25 November 2018; pp. 460–463.
https://doi.org/10.1109/ICSESS.2018.8663892.
- 7.
Zhang, L.; Yang, M.; Feng, X.; Collaborative Representation based Classification for Face Recognition. arXiv2012, arXiv:1204.2358.
- 8.
Arunasakthi, K.; KamatchiPriya, L. A review on linear and non-linear dimensionality reduction techniques. Mach. Learn. Appl. Int. J. 2014, 1, 65–76.
- 9.
Huang, W.; Yin, H. On nonlinear dimensionality reduction for face recognition. Image Vis. Comput. 2012, 30, 355–366.
- 10.
Zhang, H.; Gabbouj, M. Feature Dimensionality Reduction with Graph Embedding and Generalized Hamming Distance. In Proceedings of the 25th IEEE International Conference on Image Processing (ICIP), Athens, Greece, 7–10 October 2018; pp. 1083–1087.
https://doi.org/10.1109/ICIP.2018.8451089.
- 11.
Yang, W.; Wang, Z.; Sun, C. A collaborative representation-based projections method for feature extraction. Pattern Recognit. 2015, 48, 20–27.
- 12.
Qiao, L.; Chen, S.; Tan, X. Sparsity preserving discriminant analysis for single training image face recognition. Pattern Recognit. Lett. 2010, 31, 422–429.
- 13.
Zhou, Y.; Ding, Y.; Luo, Y.; Ren, H. Sparse Neighborhood Preserving Embedding via L2,1-Norm Mini- mization. In Proceedings of the 2016 9th International Symposium on Computational Intelligence and Design (ISCID), Hangzhou, China, 10–11 December 2016; pp. 378–382.
https://doi.org/10.1109/ISCID.2016.2096.
- 14.
Chen, S.; Li, S.; Ji, R.; Yan, Y.; Zhu, S. Discriminative local collaborative representation for online object tracking. Knowl.- Based Syst. 2015, 100, 13–24.
- 15.
Waqas, J.; Zhang, Y.I.; Zhang, L.E.I. Graph-Based Features Extraction Via Datum Adaptive Weighted Collab- orative Representation for Face Recognition. Int. J. Pattern Recognit. Artif. Intell. 2014, 28, 2.
- 16.
Jadoon, W.; Zhang, L.; Zhang, Y. Extended collaborative neighbor representation for robust single-sample face recognition. Neural Comput. Appl. 2015, 26, 1991–2000.
- 17.
Liu, B.D.; Shen, B.; Gui, L.; Wang, Y.X.; Li, X.; Yan, F.; Wang, Y.J. Face Recognition using Class Specific Dictionary Learning for Sparse Representation and Collaborative Representation. Neurocomputing 2016, 204, 198–210.
- 18.
Yang, J.; Yu, K.; Gong, Y.; Huang, T. Linear spatial pyramid matching using sparse coding for image classi- fication. In Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Miami, FL, USA, 20–25 June 2009; pp. 1794–1801.
https://doi.org/10.1109/CVPR.2009.5206757.
- 19.
Han, P.Y.; Yin, O.S.; Ling, G.F. Semi-supervised generic descriptor in face recognition. In Proceedings of the 2015 IEEE 11th International Colloquium on Signal Processing and Its Applications (CSPA), Kuala Lumpur, Malaysia, 6–8 March 2015; pp. 21–25.
- 20.
Weinberger, K.Q.; Packer, B.D.; Saul, L.K. Nonlinear dimensionality reduction by semi-definite programming and kernel matrix factorization. Tenth International Workshop on Artificial Intelligence and Statistics (AISTAT 2005). PMLR 2005, 2005, 381–388.
- 21.
Bhele, S.G.; Mankar, V.H. A Review Paper on Face Recognition Techniques. Int. J. Adv. Res. Comput. Eng. Technol. 2012, 1, 339–346.
- 22.
Shermina, J. Application of locality preserving projections in face recognition. Int. J. Adv. Comput. Sci. Appl. (IJACSA), 2010, 1(3), 82.
http://ijacsa.thesai.org/.
- 23.
Meena, M.K.; Meena, H.K. A Literature Survey of Face Recognition Under Different Occlusion Conditions. In Proceedings of the 2022 IEEE Region 10 Symposium (TENSYMP), Mumbai, India, 1–3 July 2022; pp. 1–6.
https://doi.org/10.1109/TENSYMP54529.2022.9864502.
- 24.
Li, W.; Feng, F.; Li, H.; Du, Q. Discriminant Analysis-Based Dimension Reduction for Hyperspectral Im- age Classification: A Survey of the Most Recent Advances and an Experimental Comparison of Different Techniques. IEEE Geosci. Remote Sens. Mag. 2018, 6, 15–34.
https://doi.org/10.1109/MGRS.2018.2793873.
- 25.
Shinwari, A.R.; Balooch, A.J.; Alariki, A.A.; Abdulhak, S.A. A Comparative Study of Face Recognition Algo- rithms under Facial Expression and Illumination. In Proceedings of the 2019 21st International Conference on Advanced Communication Technology (ICACT), PyeongChang, Korea, 17–20 February 2019; pp. 390–394.
https://doi.org/10.23919/ICACT.2019.8702002.
- 26.
- 27.
Jebara, T.; Wang, J.; Chang, S.F. Graph construction and b-matching for semi-supervised learning. In Pro-ceedings of the 26th Annual International Conference on Machine Learning, Montreal, QC, Canada, 14–18 June 2009; pp. 441–448.
- 28.
Wright, J.; Ganesh, A.; Yang, A.; Ma, Y. Robust Face Recognition via Sparse Representation. TPAMI 2008,in press.
- 29.
Wu, Y. Vansteenberge Jarich, Masayuki Mukunoki, and Michihiko Minoh. Collaborative Representation for Classification, Sparse or Non-Sparse? arXiv 2014, arXiv:1403.1353.
- 30.
Wang, G.; Forsyth, D.; Hoiem, D. Improved Object Cate- gorization and Detection Using Comparative Object Similarity. IEEE Trans. Pattern Anal. Mach. Intell. 2013, 35, 2442–2453.
- 31.
Cheng, B.; Yang, J.; Yan, S.; Fu, Y.; Huang, T. Learning with l1-graph for image analysis. IEEE Trans. Image Process. 2009, 19, 858–866.
- 32.
Qiao, L.S.; Chen, S.C.; Tan, X.Y. Sparsity preserving projections with applications to face recognition. Pattern Recognit. 2010, 43, 331–341.
- 33.
Cai, D.; He, X.; Han, J. Semi-supervised Discriminant Analysis. In Proceedings of the 2007 IEEE 11th International Conference on Computer Vision, Rio de Janeiro, Brazil, 14–17 October 2007; pp. 1–7.
https://doi.org/10.1109/ICCV.2007.4408856.
- 34.
Huang, W.; Wang, X.; Zhu, Y.; Li, J. Iterative Collaborative Representation based Classification for Face Recognition. Signal Process. Res. 2015, 4, 12–19.
- 35.
Gong, G. Variational Quantum Isometric Feature Mapping. In Proceedings of the 2024 4th International Sym- posium on Computer Technology and Information Science (ISCTIS), Xi’an, China, 12–14 July 2024; pp. 558–563.
https://doi.org/10.1109/ISCTIS63324.2024.10699116.
- 36.
Hou, X.; Yao, G.; Wang, J. Semi-Supervised Classification Based on Low Rank Representation. Algorithms 2016, 9, 48.
- 37.
Maitra, S.; Hossain, T.; Hasib, K.M.; Shishir, F.S. Graph Theory for Dimensionality Reduction: A Case Study to Prognosticate Parkinson’s. In Proceedings of the 2020 11th IEEE Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON), Vancouver, BC, Canada, 4–7 November 2020; pp. 134–140.
https://doi.org/10.1109/IEMCON51383.2020.9284926.
- 38.
Hu, H.; Feng, D.; Yang, F. A Promising Nonlinear Dimensionality Reduction Method: Kernel-Based Within Class Collaborative Preserving Discriminant Projection. IEEE Signal Process. Lett. 2020, 27, 2034–2038.
https://doi.org/10.1109/LSP.2020.3037460.
- 39.
Yuan, X.T.; Yan, S.C. (2010), “Visual classification with multitask joint sparse representation. IEEE Trans. Image Process. 2012, 21, 4349-4360.
- 40.
- 41.
Qiang, T.; Liu, Z.; Huang, Q.; Zhang, Z.; Chen, Z.; Chen, H. Dimensionality reduction by reg- ularized least squares weighted discriminant projection. In Proceedings of the 2021 CIE Interna- tional Conference on Radar (Radar), Haikou, Hainan, China, 15–19 December 2021; pp. 2220–2223.
https://doi.org/10.1109/Radar53847.2021.10027971.
- 42.
Elhamifar, E.; Vidal, R. Robust Classification using Structured Sparse Representation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Colorado Springs, USA, 20–25 June 2011.
- 43.
Huang, W.; Yin, H. Linear and nonlinear dimensionality reduction for face recognition. In Proceedings of the 2009 16th IEEE International Conference on Image Processing (ICIP), Cairo, Egypt, 7–10 November 2009; pp. 3337–3340.
https://doi.org/10.1109/ICIP.2009.5413898.
- 44.
Van der Maaten, L.J.P.; Postma, E.O.; van den Herik, H.J. Dimensionality Reduction: A Comparative Review; MICC, Maastricht University: Maastricht, The Netherlands, 2009.