- 1.
Siegel, R.L.; Kratzer, T.B.; Giaquinto, A.N.; Sung, H.; Jemal, A. Cancer statistics, 2025. CA A Cancer J. Clin. 2025, 75, 10–45. https://doi.org/10.3322/caac.21871.
- 2.
Yoshihara, M.; Iyoshi, S.; Mogi, K.; Uno, K.; Fujimoto, H.; Miyamoto, E.; Nomura, S.; Kitami, K.; Kajiyama, H. Ovarian cancer: Novel mechanisms and therapeutic targets regarding the microenvironment in the abdominal cavity. J Obs. Gynaecol. Res. 2023, 49, 2620–2628. https://doi.org/10.1111/jog.15756.
- 3.
Bates, M.; Mohamed, B.M.; Lewis, F.; O’Toole, S.; O’Leary, J.J. Biomarkers in high grade serous ovarian cancer. Biochim. Biophys. Acta. Rev. Cancer 2024, 1879, 189224. https://doi.org/10.1016/j.bbcan.2024.189224.
- 4.
Boyarskikh, U.A.; Gulyaeva, L.F.; Avdalyan, A.M.; Kechin, A.A.; Khrapov, E.A.; Lazareva, D.G.; Kushlinskii, N.E.; Melkonyan, A.; Arakelyan, A.; Filipenko, M.L. Spectrum of TP53 Mutations in BRCA1/2 Associated High-Grade Serous Ovarian Cancer. Front. Oncol. 2020, 10, 1103. https://doi.org/10.3389/fonc.2020.01103.
- 5.
Son, D.S.; Kabir, S.M.; Dong, Y.L.; Lee, E.; Adunyah, S.E. Inhibitory effect of tumor suppressor p53 on proinflammatory chemokine expression in ovarian cancer cells by reducing proteasomal degradation of IkappaB. PLoS ONE 2012, 7, e51116. https://doi.org/10.1371/journal.pone.0051116.
- 6.
Ignacio, R.M.C.; Lee, E.S.; Wilson, A.J.; Beeghly-Fadiel, A.; Whalen, M.M.; Son, D.S. Chemokine Network and Overall Survival in TP53 Wild-Type and Mutant Ovarian Cancer. Immune Netw. 2018, 18, e29. https://doi.org/10.4110/in.2018.18.e29.
- 7.
Zielen, S.; Trischler, J.; Schubert, R. Lipopolysaccharide challenge: Immunological effects and safety in humans. Expert Rev. Clin. Immunol. 2015, 11, 409–418. https://doi.org/10.1586/1744666x.2015.1012158.
- 8.
Son, D.S.; Parl, A.K.; Rice, V.M.; Khabele, D. Keratinocyte chemoattractant (KC)/human growth-regulated oncogene (GRO) chemokines and pro-inflammatory chemokine networks in mouse and human ovarian epithelial cancer cells. Cancer Biol. Ther. 2007, 6, 1302–1312.
- 9.
Ignacio, R.M.C.; Lee, E.S.; Son, D.S. Potential Roles of Innate Immune Chemokine and Cytokine Network on Lipopolysaccharide-Based Therapeutic Approach in Ovarian Cancer. Immune Netw. 2019, 19, e22. https://doi.org/10.4110/in.2019.19.e22.
- 10.
Wernli, K.J.; Ray, R.M.; Gao, D.L.; Fitzgibbons, E.D.; Camp, J.E.; Astrakianakis, G.; Seixas, N.; Wong, E.Y.; Li, W.; De Roos, A.J.; et al. Occupational exposures and ovarian cancer in textile workers. Epidemiology 2008, 19, 244–250. https://doi.org/10.1097/EDE.0b013e31816339f9.
- 11.
Wernli, K.J.; Ray, R.M.; Gao, D.L.; Thomas, D.B.; Checkoway, H. Cancer among women textile workers in Shanghai, China: Overall incidence patterns, 1989-1998. Am. J. Ind. Med. 2003, 44, 595–599. https://doi.org/10.1002/ajim.10265.
- 12.
Wang, Y.; Lewis-Michl, E.L.; Hwang, S.A.; Fitzgerald, E.F.; Stark, A.D. Cancer incidence among a cohort of female farm residents in New York State. Arch. Environ. Health 2002, 57, 561–567. https://doi.org/10.1080/00039890209602089.
- 13.
Galluzzi, L.; Vacchelli, E.; Eggermont, A.; Fridman, W.H.; Galon, J.; Sautes-Fridman, C.; Tartour, E.; Zitvogel, L.; Kroemer, G. Trial Watch: Experimental Toll-like receptor agonists for cancer therapy. Oncoimmunology 2012, 1, 699–716. https://doi.org/10.4161/onci.20696.
- 14.
Mastrangelo, G.; Fadda, E.; Cegolon, L. Endotoxin and cancer chemo-prevention. Cancer Epidemiol. 2013, 37, 528–533. https://doi.org/10.1016/j.canep.2013.04.008.
- 15.
Wang, Y.Q.; Bazin-Lee, H.; Evans, J.T.; Casella, C.R.; Mitchell, T.C. MPL Adjuvant Contains Competitive Antagonists of Human TLR4. Front. Immunol. 2020, 11, 577823. https://doi.org/10.3389/fimmu.2020.577823.
- 16.
Son, D.S.; Roby, K.F. Interleukin-1alpha-induced chemokines in mouse granulosa cells: Impact on keratinocyte chemoattractant chemokine, a CXC subfamily. Mol. Endocrinol. 2006, 20, 2999–3013. https://doi.org/10.1210/me.2006-0001.
- 17.
Győrffy, B. Discovery and ranking of the most robust prognostic biomarkers in serous ovarian cancer. Geroscience 2023, 45, 1889–1898. https://doi.org/10.1007/s11357-023-00742-4.
- 18.
Meyer, T.P.; Zehnter, I.; Hofmann, B.; Zaisserer, J.; Burkhart, J.; Rapp, S.; Weinauer, F.; Schmitz, J.; Illert, W.E. Filter Buffy Coats (FBC): A source of peripheral blood leukocytes recovered from leukocyte depletion filters. J. Immunol. Methods 2005, 307, 150–166. https://doi.org/10.1016/j.jim.2005.10.004.
- 19.
Lucijanić, M. Survival analysis in clinical practice: Analyze your own data using an Excel workbook. Croat. Med. J. 2016, 57, 77–79. https://doi.org/10.3325/cmj.2016.57.77.
- 20.
White, A.F.; Demchenko, A.V. Modulating LPS signal transduction at the LPS receptor complex with synthetic Lipid A analogues. Adv. Carbohydr. Chem. Biochem. 2014, 71, 339–389. https://doi.org/10.1016/b978-0-12-800128-8.00005-4.
- 21.
Kremer, V.; Ligtenberg, M.; Zendehdel, R.; Seitz, C.; Duivenvoorden, A.; Wennerberg, E.; Colon, E.; Scherman-Plogell, A.H.; Lundqvist, A. Genetic engineering of human NK cells to express CXCR2 improves migration to renal cell carcinoma. J. Immunother. Cancer 2017, 5, 73. https://doi.org/10.1186/s40425-017-0275-9.
- 22.
Integrated genomic analyses of ovarian carcinoma. Nature 2011, 474, 609–615. https://doi.org/10.1038/nature10166.
- 23.
Ignacio, R.M.C.; Dong, Y.L.; Kabir, S.M.; Choi, H.; Lee, E.S.; Wilson, A.J.; Beeghly-Fadiel, A.; Whalen, M.M.; Son, D.S. CXCR2 is a negative regulator of p21 in p53-dependent and independent manner via Akt-mediated Mdm2 in ovarian cancer. Oncotarget 2018, 9, 9751–9765. https://doi.org/10.18632/oncotarget.24231.
- 24.
Berek, J.S.; Lichtenstein, A.K.; Knox, R.M.; Jung, T.S.; Rose, T.P.; Cantrell, J.L.; Zighelboim, J. Synergistic effects of combination sequential immunotherapies in a murine ovarian cancer model. Cancer Res. 1985, 45, 4215–4218.
- 25.
Mingozzi, F.; Spreafico, R.; Gorletta, T.; Cigni, C.; Di Gioia, M.; Caccia, M.; Sironi, L.; Collini, M.; Soncini, M.; Rusconi, M.; et al. Prolonged contact with dendritic cells turns lymph node-resident NK cells into anti-tumor effectors. EMBO Mol. Med. 2016, 8, 1039–1051. https://doi.org/10.15252/emmm.201506164.
- 26.
Andreani, V.; Gatti, G.; Simonella, L.; Rivero, V.; Maccioni, M. Activation of Toll-like receptor 4 on tumor cells in vitro inhibits subsequent tumor growth in vivo. Cancer Res. 2007, 67, 10519–10527. https://doi.org/10.1158/0008-5472.can-07-0079.
- 27.
Inagawa, H.; Nishizawa, T.; Noguchi, K.; Minamimura, M.; Takagi, K.; Goto, S.; Soma, G.; Mizuno, D. Anti-tumor effect of lipopolysaccharide by intradermal administration as a novel drug delivery system. Anticancer Res. 1997, 17, 2153–2158.
- 28.
Chicoine, M.R.; Won, E.K.; Zahner, M.C. Intratumoral injection of lipopolysaccharide causes regression of subcutaneously implanted mouse glioblastoma multiforme. Neurosurgery 2001, 48, 607–614; discussion 614–605.
- 29.
Kuramitsu, Y.; Nishibe, M.; Ohiro, Y.; Matsushita, K.; Yuan, L.; Obara, M.; Kobayashi, M.; Hosokawa, M. A new synthetic lipid A analog, ONO-4007, stimulates the production of tumor necrosis factor-alpha in tumor tissues, resulting in the rejection of transplanted rat hepatoma cells. Anti-Cancer Drugs 1997, 8, 500–508.
- 30.
Morita, S.; Yamamoto, M.; Kamigaki, T.; Saitoh, Y. Synthetic lipid A produces antitumor effect in a hamster pancreatic carcinoma model through production of tumor necrosis factor from activated macrophages. Kobe J. Med. Sci. 1996, 42, 219–231.
- 31.
Park, G.S.; Kim, J.H. LPS Up-Regulates ICAM-1 Expression in Breast Cancer Cells by Stimulating a MyD88-BLT2-ERK-Linked Cascade, Which Promotes Adhesion to Monocytes. Mol. Cells 2015, 38, 821–828. https://doi.org/10.14348/molcells.2015.0174.
- 32.
Salmiheimo, A.N.; Mustonen, H.K.; Vainionpaa, S.A.; Shen, Z.; Kemppainen, E.A.; Seppanen, H.E.; Puolakkainen, P.A. Increasing the Inflammatory Competence of Macrophages with IL-6 or with Combination of IL-4 and LPS Restrains the Invasiveness of Pancreatic Cancer Cells. J. Cancer 2016, 7, 42–49. https://doi.org/10.7150/jca.12923.
- 33.
Dong, Y.L.; Kabir, S.M.; Lee, E.S.; Son, D.S. CXCR2-driven ovarian cancer progression involves upregulation of proinflammatory chemokines by potentiating NF-kappaB activation via EGFR-transactivated Akt signaling. PLoS ONE 2013, 8, e83789. https://doi.org/10.1371/journal.pone.0083789.
- 34.
Heine, H.; Zamyatina, A. Therapeutic Targeting of TLR4 for Inflammation, Infection, and Cancer: A Perspective for Disaccharide Lipid A Mimetics. Pharmaceuticals 2022, 16, 23. https://doi.org/10.3390/ph16010023.
- 35.
de Bono, J.S.; Dalgleish, A.G.; Carmichael, J.; Diffley, J.; Lofts, F.J.; Fyffe, D.; Ellard, S.; Gordon, R.J.; Brindley, C.J.; Evans, T.R. Phase I study of ONO-4007, a synthetic analogue of the lipid A moiety of bacterial lipopolysaccharide. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2000, 6, 397–405.
- 36.
Goto, S.; Sakai, S.; Kera, J.; Suma, Y.; Soma, G.I.; Takeuchi, S. Intradermal administration of lipopolysaccharide in treatment of human cancer. Cancer Immunol. Immunother. CII 1996, 42, 255–261.
- 37.
Morishima, A.; Inagawa, H. Clinical Effects of Orally Administered Lipopolysaccharide Derived from Pantoea agglomerans on Malignant Tumors. Anticancer Res. 2016, 36, 3747–3751.
- 38.
Roy, A.; Chandra, S.; Mamilapally, S.; Upadhyay, P.; Bhaskar, S. Anticancer and immunostimulatory activity by conjugate of paclitaxel and non-toxic derivative of LPS for combined chemo-immunotherapy. Pharm. Res. 2012, 29, 2294–2309. https://doi.org/10.1007/s11095-012-0756-y.
- 39.
Hirota, K.; Oishi, Y.; Taniguchi, H.; Sawachi, K.; Inagawa, H.; Kohchi, C.; Soma, G.; Terada, H. Antitumor effect of inhalatory lipopolysaccharide and synergetic effect in combination with cyclophosphamide. Anticancer Res. 2010, 30, 3129–3134.
- 40.
Luan, L.; Patil, N.K.; Guo, Y.; Hernandez, A.; Bohannon, J.K.; Fensterheim, B.A.; Wang, J.; Xu, Y.; Enkhbaatar, P.; Stark, R.; et al. Comparative Transcriptome Profiles of Human Blood in Response to the Toll-like Receptor 4 Ligands Lipopolysaccharide and Monophosphoryl Lipid A. Sci. Rep. 2017, 7, 40050. https://doi.org/10.1038/srep40050.