2506000717
  • Open Access
  • Article
Potential Cytotoxicity of Lipopolysaccharide Chemotypes in Ovarian Cancer Treatment
  • Deok-Soo Son 1, *,   
  • Rosa Mistica C. Ignacio 1,   
  • Margaret M. Whalen 2,   
  • Eun-Sook Lee 3,   
  • Samuel E. Adunyah 1

Received: 15 Mar 2025 | Revised: 27 Apr 2025 | Accepted: 23 May 2025 | Published: 05 Jun 2025

Abstract

Ovarian cancer is the deadliest gynecological malignancy, contributing to poor overall survival rates. Our previous study suggested that lipopolysaccharide (LPS) might reduce peritoneal dissemination of ovarian cancer by enhancing cytotoxic-associated innate immunogenicity. In this study, we explored the potential cytotoxic effects of different LPS chemotypes as a novel therapeutic approach for ovarian cancer. LPS-induced chemokines are toll-like receptor 4 (TLR4)-dependent and high TLR4 levels are correlated with improved overall survival outcomes. LPS did not directly impact ovarian cancer cell proliferation. Notably, LPS chemotypes, particularly lipid A, similarly modulated chemokine expression and induced cytotoxicity of peripheral blood mononuclear cells (PBMCs) to ovarian cancer cells, highlighting the critical role of lipid A component in LPS structure. Monophosphoryl lipid A (MPLA), a detoxified derivative of LPS commonly used as a vaccine adjuvant, exhibited similar cytotoxicity of PBMC when compared to LPS and induced CCL5 and CXCL8 in PBMCs. Treatment with MPLA significantly increased survival rates in the peritoneal dissemination model of ovarian cancer, reducing tumor burden and ascites. In conclusion, detoxified lipid A derivatives, such as MPLA, appear as a promising LPS-based immunotherapeutic candidate to enhance immune cell-mediated cytotoxicity for the treatment of ovarian cancer.

References 

  • 1.
    Siegel, R.L.; Kratzer, T.B.; Giaquinto, A.N.; Sung, H.; Jemal, A. Cancer statistics, 2025. CA A Cancer J. Clin. 2025, 75, 10–45. https://doi.org/10.3322/caac.21871.
  • 2.
    Yoshihara, M.; Iyoshi, S.; Mogi, K.; Uno, K.; Fujimoto, H.; Miyamoto, E.; Nomura, S.; Kitami, K.; Kajiyama, H. Ovarian cancer: Novel mechanisms and therapeutic targets regarding the microenvironment in the abdominal cavity. J Obs. Gynaecol. Res. 2023, 49, 2620–2628. https://doi.org/10.1111/jog.15756.
  • 3.
    Bates, M.; Mohamed, B.M.; Lewis, F.; O’Toole, S.; O’Leary, J.J. Biomarkers in high grade serous ovarian cancer. Biochim. Biophys. Acta. Rev. Cancer 2024, 1879, 189224. https://doi.org/10.1016/j.bbcan.2024.189224.
  • 4.
    Boyarskikh, U.A.; Gulyaeva, L.F.; Avdalyan, A.M.; Kechin, A.A.; Khrapov, E.A.; Lazareva, D.G.; Kushlinskii, N.E.; Melkonyan, A.; Arakelyan, A.; Filipenko, M.L. Spectrum of TP53 Mutations in BRCA1/2 Associated High-Grade Serous Ovarian Cancer. Front. Oncol. 2020, 10, 1103. https://doi.org/10.3389/fonc.2020.01103.
  • 5.
    Son, D.S.; Kabir, S.M.; Dong, Y.L.; Lee, E.; Adunyah, S.E. Inhibitory effect of tumor suppressor p53 on proinflammatory chemokine expression in ovarian cancer cells by reducing proteasomal degradation of IkappaB. PLoS ONE 2012, 7, e51116. https://doi.org/10.1371/journal.pone.0051116.
  • 6.
    Ignacio, R.M.C.; Lee, E.S.; Wilson, A.J.; Beeghly-Fadiel, A.; Whalen, M.M.; Son, D.S. Chemokine Network and Overall Survival in TP53 Wild-Type and Mutant Ovarian Cancer. Immune Netw. 2018, 18, e29. https://doi.org/10.4110/in.2018.18.e29.
  • 7.
    Zielen, S.; Trischler, J.; Schubert, R. Lipopolysaccharide challenge: Immunological effects and safety in humans. Expert Rev. Clin. Immunol. 2015, 11, 409–418. https://doi.org/10.1586/1744666x.2015.1012158.
  • 8.
    Son, D.S.; Parl, A.K.; Rice, V.M.; Khabele, D. Keratinocyte chemoattractant (KC)/human growth-regulated oncogene (GRO) chemokines and pro-inflammatory chemokine networks in mouse and human ovarian epithelial cancer cells. Cancer Biol. Ther. 2007, 6, 1302–1312.
  • 9.
    Ignacio, R.M.C.; Lee, E.S.; Son, D.S. Potential Roles of Innate Immune Chemokine and Cytokine Network on Lipopolysaccharide-Based Therapeutic Approach in Ovarian Cancer. Immune Netw. 2019, 19, e22. https://doi.org/10.4110/in.2019.19.e22.
  • 10.
    Wernli, K.J.; Ray, R.M.; Gao, D.L.; Fitzgibbons, E.D.; Camp, J.E.; Astrakianakis, G.; Seixas, N.; Wong, E.Y.; Li, W.; De Roos, A.J.; et al. Occupational exposures and ovarian cancer in textile workers. Epidemiology 2008, 19, 244–250. https://doi.org/10.1097/EDE.0b013e31816339f9.
  • 11.
    Wernli, K.J.; Ray, R.M.; Gao, D.L.; Thomas, D.B.; Checkoway, H. Cancer among women textile workers in Shanghai, China: Overall incidence patterns, 1989-1998. Am. J. Ind. Med. 2003, 44, 595–599. https://doi.org/10.1002/ajim.10265.
  • 12.
    Wang, Y.; Lewis-Michl, E.L.; Hwang, S.A.; Fitzgerald, E.F.; Stark, A.D. Cancer incidence among a cohort of female farm residents in New York State. Arch. Environ. Health 2002, 57, 561–567. https://doi.org/10.1080/00039890209602089.
  • 13.
    Galluzzi, L.; Vacchelli, E.; Eggermont, A.; Fridman, W.H.; Galon, J.; Sautes-Fridman, C.; Tartour, E.; Zitvogel, L.; Kroemer, G. Trial Watch: Experimental Toll-like receptor agonists for cancer therapy. Oncoimmunology 2012, 1, 699–716. https://doi.org/10.4161/onci.20696.
  • 14.
    Mastrangelo, G.; Fadda, E.; Cegolon, L. Endotoxin and cancer chemo-prevention. Cancer Epidemiol. 2013, 37, 528–533. https://doi.org/10.1016/j.canep.2013.04.008.
  • 15.
    Wang, Y.Q.; Bazin-Lee, H.; Evans, J.T.; Casella, C.R.; Mitchell, T.C. MPL Adjuvant Contains Competitive Antagonists of Human TLR4. Front. Immunol. 2020, 11, 577823. https://doi.org/10.3389/fimmu.2020.577823.
  • 16.
    Son, D.S.; Roby, K.F. Interleukin-1alpha-induced chemokines in mouse granulosa cells: Impact on keratinocyte chemoattractant chemokine, a CXC subfamily. Mol. Endocrinol. 2006, 20, 2999–3013. https://doi.org/10.1210/me.2006-0001.
  • 17.
    Győrffy, B. Discovery and ranking of the most robust prognostic biomarkers in serous ovarian cancer. Geroscience 2023, 45, 1889–1898. https://doi.org/10.1007/s11357-023-00742-4.
  • 18.
    Meyer, T.P.; Zehnter, I.; Hofmann, B.; Zaisserer, J.; Burkhart, J.; Rapp, S.; Weinauer, F.; Schmitz, J.; Illert, W.E. Filter Buffy Coats (FBC): A source of peripheral blood leukocytes recovered from leukocyte depletion filters. J. Immunol. Methods 2005, 307, 150–166. https://doi.org/10.1016/j.jim.2005.10.004.
  • 19.
    Lucijanić, M. Survival analysis in clinical practice: Analyze your own data using an Excel workbook. Croat. Med. J. 2016, 57, 77–79. https://doi.org/10.3325/cmj.2016.57.77.
  • 20.
    White, A.F.; Demchenko, A.V. Modulating LPS signal transduction at the LPS receptor complex with synthetic Lipid A analogues. Adv. Carbohydr. Chem. Biochem. 2014, 71, 339–389. https://doi.org/10.1016/b978-0-12-800128-8.00005-4.
  • 21.
    Kremer, V.; Ligtenberg, M.; Zendehdel, R.; Seitz, C.; Duivenvoorden, A.; Wennerberg, E.; Colon, E.; Scherman-Plogell, A.H.; Lundqvist, A. Genetic engineering of human NK cells to express CXCR2 improves migration to renal cell carcinoma. J. Immunother. Cancer 2017, 5, 73. https://doi.org/10.1186/s40425-017-0275-9.
  • 22.
    Integrated genomic analyses of ovarian carcinoma. Nature 2011, 474, 609–615. https://doi.org/10.1038/nature10166.
  • 23.
    Ignacio, R.M.C.; Dong, Y.L.; Kabir, S.M.; Choi, H.; Lee, E.S.; Wilson, A.J.; Beeghly-Fadiel, A.; Whalen, M.M.; Son, D.S. CXCR2 is a negative regulator of p21 in p53-dependent and independent manner via Akt-mediated Mdm2 in ovarian cancer. Oncotarget 2018, 9, 9751–9765. https://doi.org/10.18632/oncotarget.24231.
  • 24.
    Berek, J.S.; Lichtenstein, A.K.; Knox, R.M.; Jung, T.S.; Rose, T.P.; Cantrell, J.L.; Zighelboim, J. Synergistic effects of combination sequential immunotherapies in a murine ovarian cancer model. Cancer Res. 1985, 45, 4215–4218.
  • 25.
    Mingozzi, F.; Spreafico, R.; Gorletta, T.; Cigni, C.; Di Gioia, M.; Caccia, M.; Sironi, L.; Collini, M.; Soncini, M.; Rusconi, M.; et al. Prolonged contact with dendritic cells turns lymph node-resident NK cells into anti-tumor effectors. EMBO Mol. Med. 2016, 8, 1039–1051. https://doi.org/10.15252/emmm.201506164.
  • 26.
    Andreani, V.; Gatti, G.; Simonella, L.; Rivero, V.; Maccioni, M. Activation of Toll-like receptor 4 on tumor cells in vitro inhibits subsequent tumor growth in vivo. Cancer Res. 2007, 67, 10519–10527. https://doi.org/10.1158/0008-5472.can-07-0079.
  • 27.
    Inagawa, H.; Nishizawa, T.; Noguchi, K.; Minamimura, M.; Takagi, K.; Goto, S.; Soma, G.; Mizuno, D. Anti-tumor effect of lipopolysaccharide by intradermal administration as a novel drug delivery system. Anticancer Res. 1997, 17, 2153–2158.
  • 28.
    Chicoine, M.R.; Won, E.K.; Zahner, M.C. Intratumoral injection of lipopolysaccharide causes regression of subcutaneously implanted mouse glioblastoma multiforme. Neurosurgery 2001, 48, 607–614; discussion 614–605.
  • 29.
    Kuramitsu, Y.; Nishibe, M.; Ohiro, Y.; Matsushita, K.; Yuan, L.; Obara, M.; Kobayashi, M.; Hosokawa, M. A new synthetic lipid A analog, ONO-4007, stimulates the production of tumor necrosis factor-alpha in tumor tissues, resulting in the rejection of transplanted rat hepatoma cells. Anti-Cancer Drugs 1997, 8, 500–508.
  • 30.
    Morita, S.; Yamamoto, M.; Kamigaki, T.; Saitoh, Y. Synthetic lipid A produces antitumor effect in a hamster pancreatic carcinoma model through production of tumor necrosis factor from activated macrophages. Kobe J. Med. Sci. 1996, 42, 219–231.
  • 31.
    Park, G.S.; Kim, J.H. LPS Up-Regulates ICAM-1 Expression in Breast Cancer Cells by Stimulating a MyD88-BLT2-ERK-Linked Cascade, Which Promotes Adhesion to Monocytes. Mol. Cells 2015, 38, 821–828. https://doi.org/10.14348/molcells.2015.0174.
  • 32.
    Salmiheimo, A.N.; Mustonen, H.K.; Vainionpaa, S.A.; Shen, Z.; Kemppainen, E.A.; Seppanen, H.E.; Puolakkainen, P.A. Increasing the Inflammatory Competence of Macrophages with IL-6 or with Combination of IL-4 and LPS Restrains the Invasiveness of Pancreatic Cancer Cells. J. Cancer 2016, 7, 42–49. https://doi.org/10.7150/jca.12923.
  • 33.
    Dong, Y.L.; Kabir, S.M.; Lee, E.S.; Son, D.S. CXCR2-driven ovarian cancer progression involves upregulation of proinflammatory chemokines by potentiating NF-kappaB activation via EGFR-transactivated Akt signaling. PLoS ONE 2013, 8, e83789. https://doi.org/10.1371/journal.pone.0083789.
  • 34.
    Heine, H.; Zamyatina, A. Therapeutic Targeting of TLR4 for Inflammation, Infection, and Cancer: A Perspective for Disaccharide Lipid A Mimetics. Pharmaceuticals 2022, 16, 23. https://doi.org/10.3390/ph16010023.
  • 35.
    de Bono, J.S.; Dalgleish, A.G.; Carmichael, J.; Diffley, J.; Lofts, F.J.; Fyffe, D.; Ellard, S.; Gordon, R.J.; Brindley, C.J.; Evans, T.R. Phase I study of ONO-4007, a synthetic analogue of the lipid A moiety of bacterial lipopolysaccharide. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2000, 6, 397–405.
  • 36.
    Goto, S.; Sakai, S.; Kera, J.; Suma, Y.; Soma, G.I.; Takeuchi, S. Intradermal administration of lipopolysaccharide in treatment of human cancer. Cancer Immunol. Immunother. CII 1996, 42, 255–261.
  • 37.
    Morishima, A.; Inagawa, H. Clinical Effects of Orally Administered Lipopolysaccharide Derived from Pantoea agglomerans on Malignant Tumors. Anticancer Res. 2016, 36, 3747–3751.
  • 38.
    Roy, A.; Chandra, S.; Mamilapally, S.; Upadhyay, P.; Bhaskar, S. Anticancer and immunostimulatory activity by conjugate of paclitaxel and non-toxic derivative of LPS for combined chemo-immunotherapy. Pharm. Res. 2012, 29, 2294–2309. https://doi.org/10.1007/s11095-012-0756-y.
  • 39.
    Hirota, K.; Oishi, Y.; Taniguchi, H.; Sawachi, K.; Inagawa, H.; Kohchi, C.; Soma, G.; Terada, H. Antitumor effect of inhalatory lipopolysaccharide and synergetic effect in combination with cyclophosphamide. Anticancer Res. 2010, 30, 3129–3134.
  • 40.
    Luan, L.; Patil, N.K.; Guo, Y.; Hernandez, A.; Bohannon, J.K.; Fensterheim, B.A.; Wang, J.; Xu, Y.; Enkhbaatar, P.; Stark, R.; et al. Comparative Transcriptome Profiles of Human Blood in Response to the Toll-like Receptor 4 Ligands Lipopolysaccharide and Monophosphoryl Lipid A. Sci. Rep. 2017, 7, 40050. https://doi.org/10.1038/srep40050.
Share this article:
How to Cite
Son, D.-S.; Ignacio, R. M. C.; Whalen, M. M.; Lee, E.-S.; Adunyah, S. E. Potential Cytotoxicity of Lipopolysaccharide Chemotypes in Ovarian Cancer Treatment. Journal of Inflammatory and Infectious Medicine 2025, 1 (2), 1. https://doi.org/10.53941/jiim.2025.100007.
RIS
BibTex
Copyright & License
article copyright Image
Copyright (c) 2025 by the authors.