- 1.
Safarzadeh, A.; Alizadeh, M.; Beyranvand, F.; Falavand Jozaaee, R.; Hajiasgharzadeh, K.; Baghbanzadeh, A.; Derakhshani, A.; Argentiero, A.; Baradaran, B.; Silvestris, N. Varied functions of immune checkpoints during cancer metastasis. Cancer Immunol. Immunother. 2021, 70, 569–588. https://doi.org/10.1007/s00262-020-02717-2.
- 2.
Guo, Z.; Zhang, R.; Yang, A.G.; Zheng, G. Diversity of immune checkpoints in cancer immunotherapy. Immunol. 2023, 14, 1121285. https://doi.org/10.3389/fimmu.2023.1121285.
- 3.
Saillard, M.; Cenerenti, M.; Romero, P.; Jandus, C. Impact of Immunotherapy on CD4 T Cell Phenotypes and Function in Cancer. Vaccines 2021, 9, 454.https://doi.org/10.3390/vaccines9050454.
- 4.
Jhunjhunwala, S.; Hammer, C.; Delamarre, L. Antigen presentation in cancer: insights into tumour immunogenicity and immune evasion. Rev. Cancer 2021, 21, 298–312. https://doi.org/10.1038/s41568-021-00339-z.
- 5.
Bald, T.; Krummel, M.F.; Smyth, M.J.; Barry, K.C. The NK cell-cancer cycle: advances and new challenges in NK cell-based immunotherapies. Immunol. 2020, 21, 835–847. https://doi.org/10.1038/s41590-020-0728-z.
- 6.
Raskov, H.; Orhan, A.; Salanti, A.; Gaggar, S.; Gögenur, I. Natural Killer Cells in Cancer and Cancer Immunotherapy. Cancer Lett. 2021, 520,233– https://doi.org/10.1016/j.canlet.2021.07.032.
- 7.
Zeng, Z.; Chew, H.Y.; Cruz, J.G.; Leggatt, G.R.; Wells, J.W. Investigating T Cell Immunity in Cancer: Achievements and Prospects. J. Mol. Sci. 2021, 22, 2907.https://doi.org/10.3390/ijms22062907.
- 8.
Miggelbrink, A.M.; Jackson, J.D.; Lorrey, S.J.; Srinivasan, E.S.; Waibl Polania, J.; Wilkinson, D.S.; Fecci, P.E. CD4 T-cell exhaustion: Does it exist and what are its roles in cancer? Cancer Res. 2021, 27, 5742–5752.https://doi.org/10.1158/1078-0432.Ccr-21-0206.
- 9.
Khosravi, N.; Mokhtarzadeh, A.; Baghbanzadeh, A.; Hajiasgharzadeh, K.; Shahgoli, V.K.; Hemmat, N.; Safarzadeh, E.; Baradaran, B. Immune checkpoints in tumor microenvironment and their relevance to the development of cancer stem cells. Life Sci. 2020, 256, 118005. https://doi.org/10.1016/j.lfs.2020.118005.
- 10.
Wiechmann, L.; Sampson, M.; Stempel, M.; Jacks, L.M.; Patil, S.M.; King, T.; Morrow, M. Presenting features of breast cancer differ by molecular subtype. Surg. Oncol. 2009, 16, 2705–2710. https://doi.org/10.1245/s10434-009-0606-2.
- 11.
Bao, B.; Prasad, A.S. Targeting CSC in a Most Aggressive Subtype of Breast Cancer TNBC. Exp. Med. Biol. 2019, 1152, 311–334. https://doi.org/10.1007/978-3-030-20301-6_17.
- 12.
Bertucci, F.; Finetti, P.; Cervera, N.; Esterni, B.; Hermitte, F.; Viens, P.; Birnbaum, D. How basal are triple-negative breast cancers? J. Cancer 2008, 123, 236–240. https://doi.org/10.1002/ijc.23518.
- 13.
Alluri, P.; Newman, L.A. Basal-like and triple-negative breast cancers: searching for positives among many negatives. Oncol. Clin. N. Am. 2014, 23, 567–577. https://doi.org/10.1016/j.soc.2014.03.003.
- 14.
Lehmann, B.D.; Bauer, J.A.; Chen, X.; Sanders, M.E.; Chakravarthy, A.B.; Shyr, Y.; Pietenpol, J.A. Identification of human triple-negative breast cancer subtypes and preclinical models for selection of targeted therapies. Clin. Investig. 2011, 121, 2750–2767. https://doi.org/10.1172/jci45014.
- 15.
Dastmalchi, N.; Safaralizadeh, R.; Baghbanzadeh, A.; Hajiasgharzadeh, K.; Roshani Asl, E.; Amini, M.; Baradaran, B. Molecular mechanisms of breast cancer chemoresistance by immune checkpoints. Life Sci. 2020, 263, 118604. https://doi.org/10.1016/j.lfs.2020.118604.
- 16.
Perez-Llamas, C.; Lopez-Bigas, N. Gitools: analysis and visualisation of genomic data using interactive heat-maps. PLoS ONE 2011, 6, e19541. https://doi.org/10.1371/journal.pone.0019541.
- 17.
Győrffy, B. Integrated analysis of public datasets for the discovery and validation of survival-associated genes in solid tumors. Innovation 2024, 5, 100625. https://doi.org/10.1016/j.xinn.2024.100625.
- 18.
Marin-Acevedo, J.A.; Kimbrough, E.O.; Manochakian, R.; Zhao, Y.; Lou, Y. Immunotherapies targeting stimulatory pathways and beyond. Hematol. Oncol. 2021, 14, 78. https://doi.org/10.1186/s13045-021-01085-3.
- 19.
de Kruijf, E.M.; Sajet, A.; van Nes, J.G.; Putter, H.; Smit, V.T.; Eagle, R.A.; Jafferji, I.; Trowsdale, J.; Liefers, G.J.; van de Velde, C.J.; et al. NKG2D ligand tumor expression and association with clinical outcome in early breast cancer patients: an observational study. BMC Cancer 2012, 12, 24. https://doi.org/10.1186/1471-2407-12-24.
- 20.
Feng, R.; Xu, J.; Huang, J.; Liu, J.; Wang, X.; Wang, J.; Zhang, C.; Li, H.; Wei, Y.; Ren, G. An immune-related prognostic gene ULBP2 is correlated with immunosuppressive tumor microenvironment and immunotherapy in breast cancer. Heliyon 2024, 10, e23687. https://doi.org/10.1016/j.heliyon.2023.e23687.
- 21.
Yin, J.Y.; Zhou, Y.; Ding, X.M.; Gong, R.Z.; Zhou, Y.; Hu, H.Y.; Liu, Y.; Lv, X.B.; Zhang, B. UCA1 Inhibits NKG2D-mediated Cytotoxicity of NK Cells to Breast Cancer. Cancer Drug Targets 2024, 24, 204–219. https://doi.org/10.2174/1568009623666230418134253.
- 22.
Fu, J.; Sun, H.; Xu, F.; Chen, R.; Wang, X.; Ding, Q.; Xia, T. RUNX regulated immune-associated genes predicts prognosis in breast cancer. Genet. 2022, 13, 960489. https://doi.org/10.3389/fgene.2022.960489.
- 23.
Altan, M.; Kidwell, K.M.; Pelekanou, V.; Carvajal-Hausdorf, D.E.; Schalper, K.A.; Toki, M.I.; Thomas, D.G.; Sabel, M.S.; Hayes, D.F.; Rimm, D.L. Association of B7-H4, PD-L1, and tumor infiltrating lymphocytes with outcomes in breast cancer. NPJ Breast Cancer 2018, 4, 40. https://doi.org/10.1038/s41523-018-0095-1.
- 24.
Burstein, M.D.; Tsimelzon, A.; Poage, G.M.; Covington, K.R.; Contreras, A.; Fuqua, S.A.; Savage, M.I.; Osborne, C.K.; Hilsenbeck, S.G.; Chang, J.C.; et al. Comprehensive genomic analysis identifies novel subtypes and targets of triple-negative breast cancer. Cancer Res. 2015, 21, 1688–1698. https://doi.org/10.1158/1078-0432.Ccr-14-0432.
- 25.
Mugler, K.C.; Singh, M.; Tringler, B.; Torkko, K.C.; Liu, W.; Papkoff, J.; Shroyer, K.R. B7-h4 expression in a range of breast pathology: Correlation with tumor T-cell infiltration. Immunohistochem. Mol. Morphol. 2007, 15, 363–370. https://doi.org/10.1097/01.pai.0000213159.79557.71.
- 26.
Tsai, S.M.; Wu, S.H.; Hou, M.F.; Yang, H.H.; Tsai, L.Y. The Immune Regulator VTCN1 Gene Polymorphisms and Its Impact on Susceptibility to Breast Cancer. Clin. Lab. Anal. 2015, 29, 412–418. https://doi.org/10.1002/jcla.21788.
- 27.
Yu, J.; Yan, Y.; Li, S.; Xu, Y.; Parolia, A.; Rizvi, S.; Wang, W.; Zhai, Y.; Xiao, R.; Li, X.; et al. Progestogen-driven B7-H4 contributes to onco-fetal immune tolerance. Cell 2024, 187, 4713–4732.e4719,. https://doi.org/10.1016/j.cell.2024.06.012.
- 28.
Liu, Y.; John, P.; Nishitani, K.; Cui, J.; Nishimura, C.D.; Christin, J.R.; Couturier, N.; Ren, X.; Wei, Y.; Pulanco, M.C.; et al. A SOX9-B7x axis safeguards dedifferentiated tumor cells from immune surveillance to drive breast cancer progression. Cell 2023, 58, 2700–2717. https://doi.org/10.1016/j.devcel.2023.10.010.
- 29.
Wescott, E.C.; Sun, X.; Gonzalez-Ericsson, P.; Hanna, A.; Taylor, B.C.; Sanchez, V.; Bronzini, J.; Opalenik, S.R.; Sanders, M.E.; Wulfkuhle, J.; et al. Epithelial Expressed B7-H4 Drives Differential Immunotherapy Response in Murine and Human Breast Cancer. Cancer Res. Commun. 2024, 4, 1120–1134. https://doi.org/10.1158/2767-9764.Crc-23-0468.
- 30.
Toader, D.; Fessler, S.P.; Collins, S.D.; Conlon, P.R.; Bollu, R.; Catcott, K.C.; Chin, C.N.; Dirksen, A.; Du, B.; Duvall, J.R.; et al. Discovery and Preclinical Characterization of XMT-1660, an Optimized B7-H4-Targeted Antibody-Drug Conjugate for the Treatment of Cancer. Cancer Ther. 2023, 22, 999–1012. https://doi.org/10.1158/1535-7163.Mct-22-0786.
- 31.
Chen, H.C.; Long, M.; Gao, Z.W.; Liu, C.; Wu, X.N.; Yang, L.; Dong, K.; Zhang, H.Z. Silencing of B7-H4 induces intracellular oxidative stress and inhibits cell viability of breast cancer cells via downregulating PRDX3. Neoplasma 2022, 69, 940–947. https://doi.org/10.4149/neo_2022_220304N241.
- 32.
Ali, H.R.; Glont, S.E.; Blows, F.M.; Provenzano, E.; Dawson, S.J.; Liu, B.; Hiller, L.; Dunn, J.; Poole, C.J.; Bowden, S.; et al. PD-L1 protein expression in breast cancer is rare, enriched in basal-like tumours and associated with infiltrating lymphocytes. Oncol. 2015, 26, 1488–1493. https://doi.org/10.1093/annonc/mdv192.
- 33.
Lee, D.W.; Ryu, H.S.; Jin, M.S.; Lee, K.H.; Suh, K.J.; Youk, J.; Kim, J.Y.; Min, A.; Lee, H.B.; Moon, H.G.; et al. Immune recurrence score using 7 immunoregulatory protein expressions can predict recurrence in stage I-III breast cancer patients. J. Cancer 2019, 121, 230–236. https://doi.org/10.1038/s41416-019-0511-9.
- 34.
Karsono, R.; Azhar, M.A.; Pratiwi, Y.; Saputra, F.; Nadliroh, S.; Aryandono, T. Effect of Primary Systemic Therapy on PD-1, PD-L1, and PD-L2 mRNA Expression in Advanced Breast Cancer. Asian Pac. J. Cancer Prev. 2021, 22, 2069–2077. https://doi.org/10.31557/apjcp.2021.22.7.2069.
- 35.
Baptista, M.Z.; Sarian, L.O.; Derchain, S.F.; Pinto, G.A.; Vassallo, J. Prognostic significance of PD-L1 and PD-L2 in breast cancer. Pathol. 2016, 47, 78–84. https://doi.org/10.1016/j.humpath.2015.09.006.
- 36.
Solinas, C.; Garaud, S.; De Silva, P.; Boisson, A.; Van den Eynden, G.; de Wind, A.; Risso, P.; Rodrigues Vitória, J.; Richard, F.; Migliori, E.; et al. Immune Checkpoint Molecules on Tumor-Infiltrating Lymphocytes and Their Association with Tertiary Lymphoid Structures in Human Breast Cancer. Immunol. 2017, 8, 1412. https://doi.org/10.3389/fimmu.2017.01412.
- 37.
Noblejas-López, M.D.M.; Nieto-Jiménez, C.; Morcillo García, S.; Pérez-Peña, J.; Nuncia-Cantarero, M.; Andrés-Pretel, F.; Galán-Moya, E.M.; Amir, E.; Pandiella, A.; Győrffy, B.; et al. Expression of MHC class I, HLA-A and HLA-B identifies immune-activated breast tumors with favorable outcome. Oncoimmunology 2019, 8, e1629780. https://doi.org/10.1080/2162402x.2019.1629780.
- 38.
Martínez-Canales, S.; Cifuentes, F.; López De Rodas Gregorio, M.; Serrano-Oviedo, L.; Galán-Moya, E.M.; Amir, E.; Pandiella, A.; Győrffy, B.; Ocaña, A. Transcriptomic immunologic signature associated with favorable clinical outcome in basal-like breast tumors. PLoS ONE 2017, 12, e0175128. https://doi.org/10.1371/journal.pone.0175128.
- 39.
Stefanovic, S.; Wirtz, R.; Sütterlin, M.; Karic, U.; Schneeweiss, A.; Deutsch, T.M.; Wallwiener, M. Cut-off Analysis of HLA-A and HLA-B/C Expression as a Potential Prognosticator of Favorable Survival in Patients With Metastatic Breast Cancer. Res. 2023, 43, 1449–1454. https://doi.org/10.21873/anticanres.16293.
- 40.
Sinn, B.V.; Weber, K.E.; Schmitt, W.D.; Fasching, P.A.; Symmans, W.F.; Blohmer, J.U.; Karn, T.; Taube, E.T.; Klauschen, F.; Marmé, F.; et al. Human leucocyte antigen class I in hormone receptor-positive, HER2-negative breast cancer: association with response and survival after neoadjuvant chemotherapy. Breast Cancer Res. 2019, 21, 142. https://doi.org/10.1186/s13058-019-1231-z.
- 41.
Jeong, S.; Park, S.; Park, B.W.; Park, Y.; Kwon, O.J.; Kim, H.S. Human leukocyte antigen-G (HLA-G) polymorphism and expression in breast cancer patients. PLoS ONE 2014, 9, e98284. https://doi.org/10.1371/journal.pone.0098284.
- 42.
Dong, D.D.; Yie, S.M.; Li, K.; Li, F.; Xu, Y.; Xu, G.; Song, L.; Yang, H. Importance of HLA-G expression and tumor infiltrating lymphocytes in molecular subtypes of breast cancer. Immunol. 2012, 73, 998–1004. https://doi.org/10.1016/j.humimm.2012.07.321.
- 43.
van de Water, R.B.; Krijgsman, D.; Houvast, R.D.; Vahrmeijer, A.L.; Kuppen, P.J.K. A Critical Assessment of the Association between HLA-G Expression by Carcinomas and Clinical Outcome. J. Mol. Sci. 2021, 22, 8265.https://doi.org/10.3390/ijms22158265.
- 44.
Ramos, C.S.; Gonçalves, A.S.; Marinho, L.C.; Gomes Avelino, M.A.; Saddi, V.A.; Lopes, A.C.; Simões, R.T.; Wastowski, I.J. Analysis of HLA-G gene polymorphism and protein expression in invasive breast ductal carcinoma. Immunol. 2014, 75, 667–672. https://doi.org/10.1016/j.humimm.2014.04.005.
- 45.
Rebmann, V.; Schwich, E.; Michita, R.T.; Grüntkemeier, L.; Bittner, A.K.; Rohn, H.; Horn, P.A.; Hoffmann, O.; Kimmig, R.; Kasimir-Bauer, S. Systematic Evaluation of HLA-G 3’Untranslated Region Variants in Locally Advanced, Non-Metastatic Breast Cancer Patients: UTR-1, 2 or UTR-4 are Predictors for Therapy and Disease Outcome. Immunol. 2021, 12, 817132. https://doi.org/10.3389/fimmu.2021.817132.
- 46.
de Kruijf, E.M.; Sajet, A.; van Nes, J.G.; Natanov, R.; Putter, H.; Smit, V.T.; Liefers, G.J.; van den Elsen, P.J.; van de Velde, C.J.; Kuppen, P.J. HLA-E and HLA-G expression in classical HLA class I-negative tumors is of prognostic value for clinical outcome of early breast cancer patients. Immunol. 2010, 185, 7452–7459. https://doi.org/10.4049/jimmunol.1002629.
- 47.
Fang, J.; Chen, F.; Liu, D.; Gu, F.; Chen, Z.; Wang, Y. Prognostic value of immune checkpoint molecules in breast cancer. Rep. 2020, 40, BSR20201054.https://doi.org/10.1042/bsr20201054.
- 48.
Wu, G.; Xiao, G.; Yan, Y.; Guo, C.; Hu, N.; Shen, S. Bioinformatics analysis of the clinical significance of HLA class II in breast cancer. Medicine 2022, 101, e31071. https://doi.org/10.1097/md.0000000000031071.
- 49.
Moradpoor, R.; Gharebaghian, A.; Shahi, F.; Mousavi, A.; Salari, S.; Akbari, M.E.; Ajdari, S.; Salimi, M. Identification and Validation of Stage-Associated PBMC Biomarkers in Breast Cancer Using MS-Based Proteomics. Oncol. 2020, 10, 1101. https://doi.org/10.3389/fonc.2020.01101.
- 50.
Rojas, L.K.; Trilla-Fuertes, L.; Gámez-Pozo, A.; Chiva, C.; Sepúlveda, J.; Manso, L.; Prado-Vázquez, G.; Zapater-Moros, A.; López-Vacas, R.; Ferrer-Gómez, M.; et al. Proteomics characterisation of central nervous system metastasis biomarkers in triple negative breast cancer. Ecancermedicalscience 2019, 13, 891. https://doi.org/10.3332/ecancer.2019.891.
- 51.
Pectasides, D.; Papaxoinis, G.; Kotoula, V.; Fountzilas, H.; Korantzis, I.; Koutras, A.; Dimopoulos, A.M.; Papakostas, P.; Aravantinos, G.; Varthalitis, I.; et al. Expression of angiogenic markers in the peripheral blood of docetaxel-treated advanced breast cancer patients: a Hellenic Cooperative Oncology Group (HeCOG) study. Rep. 2012, 27, 216–224. https://doi.org/10.3892/or.2011.1504.
- 52.
Wang, T.; Srivastava, S.; Hartman, M.; Buhari, S.A.; Chan, C.W.; Iau, P.; Khin, L.W.; Wong, A.; Tan, S.H.; Goh, B.C.; et al. High expression of intratumoral stromal proteins is associated with chemotherapy resistance in breast cancer. Oncotarget 2016, 7, 55155–55168. https://doi.org/10.18632/oncotarget.10894.
- 53.
Li, Y.; Qin, J.; Chen, G.; Wu, W.; Sun, X. Plasma THBS1 as a predictive biomarker for poor prognosis and brain metastasis in patients with HER2-enriched breast cancer. J. Clin. Oncol. 2024, 29, 427–441. https://doi.org/10.1007/s10147-024-02472-9.
- 54.
Wang, X.; Gao, C.; Feng, F.; Zhuang, J.; Liu, L.; Li, H.; Liu, C.; Wu, J.; Zheng, X.; Ding, X.; et al. Construction and Analysis of Competing Endogenous RNA Networks for Breast Cancer Based on TCGA Dataset. Res. Int. 2020, 2020, 4078596. https://doi.org/10.1155/2020/4078596.
- 55.
Xu, M.; Liu, C.; Pu, L.; Lai, J.; Li, J.; Ning, Q.; Liu, X.; Deng, S. Systemic analysis of the expression levels and prognosis of breast cancer-related cadherins. Biol. Med. 2021, 246, 1706–1720. https://doi.org/10.1177/15353702211010417.
- 56.
Shi, H.; Yang, Y. Identification of inhibitory immune checkpoints and relevant regulatory pathways in breast cancer stem cells. Cancer Med. 2021, 10, 3794–3807. https://doi.org/10.1002/cam4.3902.
- 57.
Stamm, H.; Oliveira-Ferrer, L.; Grossjohann, E.M.; Muschhammer, J.; Thaden, V.; Brauneck, F.; Kischel, R.; Müller, V.; Bokemeyer, C.; Fiedler, W.; et al. Targeting the TIGIT-PVR immune checkpoint axis as novel therapeutic option in breast cancer. Oncoimmunology 2019, 8, e1674605. https://doi.org/10.1080/2162402x.2019.1674605.
- 58.
Boissière-Michot, F.; Chateau, M.C.; Thézenas, S.; Guiu, S.; Bobrie, A.; Jacot, W. Correlation of the TIGIT-PVR immune checkpoint axis with clinicopathological features in triple-negative breast cancer. Immunol. 2022, 13, 1058424. https://doi.org/10.3389/fimmu.2022.1058424.
- 59.
Corso, G.; Figueiredo, J.; De Angelis, S.P.; Corso, F.; Girardi, A.; Pereira, J.; Seruca, R.; Bonanni, B.; Carneiro, P.; Pravettoni, G.; et al. E-cadherin deregulation in breast cancer. Cell Mol. Med. 2020, 24, 5930–5936. https://doi.org/10.1111/jcmm.15140.
- 60.
Djerroudi, L.; Bendali, A.; Fuhrmann, L.; Benoist, C.; Pierron, G.; Masliah-Planchon, J.; Kieffer, Y.; Carton, M.; Tille, J.C.; Cyrta, J.; et al. E-Cadherin Mutational Landscape and Outcomes in Breast Invasive Lobular Carcinoma. Pathol. 2024, 37, 100570. https://doi.org/10.1016/j.modpat.2024.100570.
- 61.
Liu, Z.; Liang, G.; Tan, L.; Su, A.N.; Jiang, W.; Gong, C. High-efficient Screening Method for Identification of Key Genes in Breast Cancer Through Microarray and Bioinformatics. Res. 2017, 37, 4329–4335. https://doi.org/10.21873/anticanres.11826.
- 62.
Liu, J.; Sun, X.; Qin, S.; Wang, H.; Du, N.; Li, Y.; Pang, Y.; Wang, C.; Xu, C.; Ren, H. CDH1 promoter methylation correlates with decreased gene expression and poor prognosis in patients with breast cancer. Lett. 2016, 11, 2635–2643. https://doi.org/10.3892/ol.2016.4274.
- 63.
Ősz, Á.; Lánczky, A.; Győrffy, B. Survival analysis in breast cancer using proteomic data from four independent datasets. Rep. 2021, 11, 16787. https://doi.org/10.1038/s41598-021-96340-5.
- 64.
Zhang, X.; Dai, S.; Li, L.; Wang, P.; Dong, M. UL16-binding protein 1 is a significant prognostic and diagnostic marker for breast cancer. Lett. 2025, 29, 15. https://doi.org/10.3892/ol.2024.14761.
- 65.
Ghaderi, F.; Ahmadvand, S.; Ramezani, A.; Montazer, M.; Ghaderi, A. Production and characterization of monoclonal antibody against a triple negative breast cancer cell line. Biophys. Res. Commun. 2018, 505, 181–186. https://doi.org/10.1016/j.bbrc.2018.09.087.
- 66.
Jia, R.; Li, Z.; Liang, W.; Ji, Y.; Weng, Y.; Liang, Y.; Ning, P. Identification of key genes unique to the luminal a and basal-like breast cancer subtypes via bioinformatic analysis. World J. Surg. Oncol. 2020, 18, 268. https://doi.org/10.1186/s12957-020-02042-z.
- 67.
Nagahara, M.; Mimori, K.; Kataoka, A.; Ishii, H.; Tanaka, F.; Nakagawa, T.; Sato, T.; Ono, S.; Sugihara, K.; Mori, M. Correlated expression of CD47 and SIRPA in bone marrow and in peripheral blood predicts recurrence in breast cancer patients. Cancer Res. 2010, 16, 4625–4635. https://doi.org/10.1158/1078-0432.Ccr-10-0349.
- 68.
Paredes, J.; Figueiredo, J.; Albergaria, A.; Oliveira, P.; Carvalho, J.; Ribeiro, A.S.; Caldeira, J.; Costa, A.M.; Simões-Correia, J.; Oliveira, M.J.; et al. Epithelial E- and P-cadherins: role and clinical significance in cancer. Biophys. Acta 2012, 1826, 297–311. https://doi.org/10.1016/j.bbcan.2012.05.002.
- 69.
Vieira, A.F.; Ricardo, S.; Ablett, M.P.; Dionísio, M.R.; Mendes, N.; Albergaria, A.; Farnie, G.; Gerhard, R.; Cameselle-Teijeiro, J.F.; Seruca, R.; et al. P-cadherin is coexpressed with CD44 and CD49f and mediates stem cell properties in basal-like breast cancer. Stem Cells 2012, 30, 854–864. https://doi.org/10.1002/stem.1075.
- 70.
Nam, S.; Chang, H.R.; Jung, H.R.; Gim, Y.; Kim, N.Y.; Grailhe, R.; Seo, H.R.; Park, H.S.; Balch, C.; Lee, J.; et al. A pathway-based approach for identifying biomarkers of tumor progression to trastuzumab-resistant breast cancer. Cancer Lett. 2015, 356, 880–890. https://doi.org/10.1016/j.canlet.2014.10.038.