2506000723
  • Open Access
  • Article
Critical Immune Checkpoints Linked with NK and T Cells for Overall Survival of Breast Cancer Subtypes
  • Deok-Soo Son 1, *,   
  • Jubin Son 2,   
  • Eun-Sook Lee 3,   
  • Samuel E. Adunyah 1

Received: 27 Feb 2025 | Revised: 02 Apr 2025 | Accepted: 29 May 2025 | Published: 06 Jun 2025

Abstract

Breast cancer is the second leading cause of cancer death in women. Since cancer disrupts immune checkpoints to suppress the anti-tumor response, we assessed immune checkpoint signatures linked with NK and T cells in breast cancer including triple-negative breast cancer (TNBC) subtypes. Furthermore, critical immune checkpoints related to overall survival were identified using the in-silico and comparative analysis. Immune checkpoint signatures were breast cancer subtype-specific, showing differential signature in each subtype. High levels of immune checkpoints were related to overall survival in some breast cancer subtypes. The differential overall survival rates of breast cancer subtypes may be due to the final net balance of total immune checkpoints by exerting either inhibitory or stimulatory interaction with immune cells. Critical immune checkpoints for poor overall survival of breast cancer subtypes are as follows: UL16 binding protein 2 (ULBP2) in both basal-like breast cancers and basal-like 2 TNBC subtype; V-set domain containing T cell activation inhibitor 1 (VTCN1) in immunomodulatory TNBC subtype. In conclusion, specific immune checkpoints may differentially influence overall survival in a breast cancer subtype-specific manner.

References 

  • 1.
    Safarzadeh, A.; Alizadeh, M.; Beyranvand, F.; Falavand Jozaaee, R.; Hajiasgharzadeh, K.; Baghbanzadeh, A.; Derakhshani, A.; Argentiero, A.; Baradaran, B.; Silvestris, N. Varied functions of immune checkpoints during cancer metastasis. Cancer Immunol. Immunother. 2021, 70, 569–588. https://doi.org/10.1007/s00262-020-02717-2.
  • 2.
    Guo, Z.; Zhang, R.; Yang, A.G.; Zheng, G. Diversity of immune checkpoints in cancer immunotherapy. Immunol. 2023, 14, 1121285. https://doi.org/10.3389/fimmu.2023.1121285.
  • 3.
    Saillard, M.; Cenerenti, M.; Romero, P.; Jandus, C. Impact of Immunotherapy on CD4 T Cell Phenotypes and Function in Cancer. Vaccines 2021, 9, 454.https://doi.org/10.3390/vaccines9050454.
  • 4.
    Jhunjhunwala, S.; Hammer, C.; Delamarre, L. Antigen presentation in cancer: insights into tumour immunogenicity and immune evasion. Rev. Cancer 2021, 21, 298–312. https://doi.org/10.1038/s41568-021-00339-z.
  • 5.
    Bald, T.; Krummel, M.F.; Smyth, M.J.; Barry, K.C. The NK cell-cancer cycle: advances and new challenges in NK cell-based immunotherapies. Immunol. 2020, 21, 835–847. https://doi.org/10.1038/s41590-020-0728-z.
  • 6.
    Raskov, H.; Orhan, A.; Salanti, A.; Gaggar, S.; Gögenur, I. Natural Killer Cells in Cancer and Cancer Immunotherapy. Cancer Lett. 2021, 520,233– https://doi.org/10.1016/j.canlet.2021.07.032.
  • 7.
    Zeng, Z.; Chew, H.Y.; Cruz, J.G.; Leggatt, G.R.; Wells, J.W. Investigating T Cell Immunity in Cancer: Achievements and Prospects. J. Mol. Sci. 2021, 22, 2907.https://doi.org/10.3390/ijms22062907.
  • 8.
    Miggelbrink, A.M.; Jackson, J.D.; Lorrey, S.J.; Srinivasan, E.S.; Waibl Polania, J.; Wilkinson, D.S.; Fecci, P.E. CD4 T-cell exhaustion: Does it exist and what are its roles in cancer? Cancer Res. 2021, 27, 5742–5752.https://doi.org/10.1158/1078-0432.Ccr-21-0206.
  • 9.
    Khosravi, N.; Mokhtarzadeh, A.; Baghbanzadeh, A.; Hajiasgharzadeh, K.; Shahgoli, V.K.; Hemmat, N.; Safarzadeh, E.; Baradaran, B. Immune checkpoints in tumor microenvironment and their relevance to the development of cancer stem cells. Life Sci. 2020, 256, 118005. https://doi.org/10.1016/j.lfs.2020.118005.
  • 10.
    Wiechmann, L.; Sampson, M.; Stempel, M.; Jacks, L.M.; Patil, S.M.; King, T.; Morrow, M. Presenting features of breast cancer differ by molecular subtype. Surg. Oncol. 2009, 16, 2705–2710. https://doi.org/10.1245/s10434-009-0606-2.
  • 11.
    Bao, B.; Prasad, A.S. Targeting CSC in a Most Aggressive Subtype of Breast Cancer TNBC. Exp. Med. Biol. 2019, 1152, 311–334. https://doi.org/10.1007/978-3-030-20301-6_17.
  • 12.
    Bertucci, F.; Finetti, P.; Cervera, N.; Esterni, B.; Hermitte, F.; Viens, P.; Birnbaum, D. How basal are triple-negative breast cancers? J. Cancer 2008, 123, 236–240. https://doi.org/10.1002/ijc.23518.
  • 13.
    Alluri, P.; Newman, L.A. Basal-like and triple-negative breast cancers: searching for positives among many negatives. Oncol. Clin. N. Am. 2014, 23, 567–577. https://doi.org/10.1016/j.soc.2014.03.003.
  • 14.
    Lehmann, B.D.; Bauer, J.A.; Chen, X.; Sanders, M.E.; Chakravarthy, A.B.; Shyr, Y.; Pietenpol, J.A. Identification of human triple-negative breast cancer subtypes and preclinical models for selection of targeted therapies. Clin. Investig. 2011, 121, 2750–2767. https://doi.org/10.1172/jci45014.
  • 15.
    Dastmalchi, N.; Safaralizadeh, R.; Baghbanzadeh, A.; Hajiasgharzadeh, K.; Roshani Asl, E.; Amini, M.; Baradaran, B. Molecular mechanisms of breast cancer chemoresistance by immune checkpoints. Life Sci. 2020, 263, 118604. https://doi.org/10.1016/j.lfs.2020.118604.
  • 16.
    Perez-Llamas, C.; Lopez-Bigas, N. Gitools: analysis and visualisation of genomic data using interactive heat-maps. PLoS ONE 2011, 6, e19541. https://doi.org/10.1371/journal.pone.0019541.
  • 17.
    Győrffy, B. Integrated analysis of public datasets for the discovery and validation of survival-associated genes in solid tumors. Innovation 2024, 5, 100625. https://doi.org/10.1016/j.xinn.2024.100625.
  • 18.
    Marin-Acevedo, J.A.; Kimbrough, E.O.; Manochakian, R.; Zhao, Y.; Lou, Y. Immunotherapies targeting stimulatory pathways and beyond. Hematol. Oncol. 2021, 14, 78. https://doi.org/10.1186/s13045-021-01085-3.
  • 19.
    de Kruijf, E.M.; Sajet, A.; van Nes, J.G.; Putter, H.; Smit, V.T.; Eagle, R.A.; Jafferji, I.; Trowsdale, J.; Liefers, G.J.; van de Velde, C.J.; et al. NKG2D ligand tumor expression and association with clinical outcome in early breast cancer patients: an observational study. BMC Cancer 2012, 12, 24. https://doi.org/10.1186/1471-2407-12-24.
  • 20.
    Feng, R.; Xu, J.; Huang, J.; Liu, J.; Wang, X.; Wang, J.; Zhang, C.; Li, H.; Wei, Y.; Ren, G. An immune-related prognostic gene ULBP2 is correlated with immunosuppressive tumor microenvironment and immunotherapy in breast cancer. Heliyon 2024, 10, e23687. https://doi.org/10.1016/j.heliyon.2023.e23687.
  • 21.
    Yin, J.Y.; Zhou, Y.; Ding, X.M.; Gong, R.Z.; Zhou, Y.; Hu, H.Y.; Liu, Y.; Lv, X.B.; Zhang, B. UCA1 Inhibits NKG2D-mediated Cytotoxicity of NK Cells to Breast Cancer. Cancer Drug Targets 2024, 24, 204–219. https://doi.org/10.2174/1568009623666230418134253.
  • 22.
    Fu, J.; Sun, H.; Xu, F.; Chen, R.; Wang, X.; Ding, Q.; Xia, T. RUNX regulated immune-associated genes predicts prognosis in breast cancer. Genet. 2022, 13, 960489. https://doi.org/10.3389/fgene.2022.960489.
  • 23.
    Altan, M.; Kidwell, K.M.; Pelekanou, V.; Carvajal-Hausdorf, D.E.; Schalper, K.A.; Toki, M.I.; Thomas, D.G.; Sabel, M.S.; Hayes, D.F.; Rimm, D.L. Association of B7-H4, PD-L1, and tumor infiltrating lymphocytes with outcomes in breast cancer. NPJ Breast Cancer 2018, 4, 40. https://doi.org/10.1038/s41523-018-0095-1.
  • 24.
    Burstein, M.D.; Tsimelzon, A.; Poage, G.M.; Covington, K.R.; Contreras, A.; Fuqua, S.A.; Savage, M.I.; Osborne, C.K.; Hilsenbeck, S.G.; Chang, J.C.; et al. Comprehensive genomic analysis identifies novel subtypes and targets of triple-negative breast cancer. Cancer Res. 2015, 21, 1688–1698. https://doi.org/10.1158/1078-0432.Ccr-14-0432.
  • 25.
    Mugler, K.C.; Singh, M.; Tringler, B.; Torkko, K.C.; Liu, W.; Papkoff, J.; Shroyer, K.R. B7-h4 expression in a range of breast pathology: Correlation with tumor T-cell infiltration. Immunohistochem. Mol. Morphol. 2007, 15, 363–370. https://doi.org/10.1097/01.pai.0000213159.79557.71.
  • 26.
    Tsai, S.M.; Wu, S.H.; Hou, M.F.; Yang, H.H.; Tsai, L.Y. The Immune Regulator VTCN1 Gene Polymorphisms and Its Impact on Susceptibility to Breast Cancer. Clin. Lab. Anal. 2015, 29, 412–418. https://doi.org/10.1002/jcla.21788.
  • 27.
    Yu, J.; Yan, Y.; Li, S.; Xu, Y.; Parolia, A.; Rizvi, S.; Wang, W.; Zhai, Y.; Xiao, R.; Li, X.; et al. Progestogen-driven B7-H4 contributes to onco-fetal immune tolerance. Cell 2024, 187, 4713–4732.e4719,. https://doi.org/10.1016/j.cell.2024.06.012.
  • 28.
    Liu, Y.; John, P.; Nishitani, K.; Cui, J.; Nishimura, C.D.; Christin, J.R.; Couturier, N.; Ren, X.; Wei, Y.; Pulanco, M.C.; et al. A SOX9-B7x axis safeguards dedifferentiated tumor cells from immune surveillance to drive breast cancer progression. Cell 2023, 58, 2700–2717. https://doi.org/10.1016/j.devcel.2023.10.010.
  • 29.
    Wescott, E.C.; Sun, X.; Gonzalez-Ericsson, P.; Hanna, A.; Taylor, B.C.; Sanchez, V.; Bronzini, J.; Opalenik, S.R.; Sanders, M.E.; Wulfkuhle, J.; et al. Epithelial Expressed B7-H4 Drives Differential Immunotherapy Response in Murine and Human Breast Cancer. Cancer Res. Commun. 2024, 4, 1120–1134. https://doi.org/10.1158/2767-9764.Crc-23-0468.
  • 30.
    Toader, D.; Fessler, S.P.; Collins, S.D.; Conlon, P.R.; Bollu, R.; Catcott, K.C.; Chin, C.N.; Dirksen, A.; Du, B.; Duvall, J.R.; et al. Discovery and Preclinical Characterization of XMT-1660, an Optimized B7-H4-Targeted Antibody-Drug Conjugate for the Treatment of Cancer. Cancer Ther. 2023, 22, 999–1012. https://doi.org/10.1158/1535-7163.Mct-22-0786.
  • 31.
    Chen, H.C.; Long, M.; Gao, Z.W.; Liu, C.; Wu, X.N.; Yang, L.; Dong, K.; Zhang, H.Z. Silencing of B7-H4 induces intracellular oxidative stress and inhibits cell viability of breast cancer cells via downregulating PRDX3. Neoplasma 2022, 69, 940–947. https://doi.org/10.4149/neo_2022_220304N241.
  • 32.
    Ali, H.R.; Glont, S.E.; Blows, F.M.; Provenzano, E.; Dawson, S.J.; Liu, B.; Hiller, L.; Dunn, J.; Poole, C.J.; Bowden, S.; et al. PD-L1 protein expression in breast cancer is rare, enriched in basal-like tumours and associated with infiltrating lymphocytes. Oncol. 2015, 26, 1488–1493. https://doi.org/10.1093/annonc/mdv192.
  • 33.
    Lee, D.W.; Ryu, H.S.; Jin, M.S.; Lee, K.H.; Suh, K.J.; Youk, J.; Kim, J.Y.; Min, A.; Lee, H.B.; Moon, H.G.; et al. Immune recurrence score using 7 immunoregulatory protein expressions can predict recurrence in stage I-III breast cancer patients. J. Cancer 2019, 121, 230–236. https://doi.org/10.1038/s41416-019-0511-9.
  • 34.
    Karsono, R.; Azhar, M.A.; Pratiwi, Y.; Saputra, F.; Nadliroh, S.; Aryandono, T. Effect of Primary Systemic Therapy on PD-1, PD-L1, and PD-L2 mRNA Expression in Advanced Breast Cancer. Asian Pac. J. Cancer Prev. 2021, 22, 2069–2077. https://doi.org/10.31557/apjcp.2021.22.7.2069.
  • 35.
    Baptista, M.Z.; Sarian, L.O.; Derchain, S.F.; Pinto, G.A.; Vassallo, J. Prognostic significance of PD-L1 and PD-L2 in breast cancer. Pathol. 2016, 47, 78–84. https://doi.org/10.1016/j.humpath.2015.09.006.
  • 36.
    Solinas, C.; Garaud, S.; De Silva, P.; Boisson, A.; Van den Eynden, G.; de Wind, A.; Risso, P.; Rodrigues Vitória, J.; Richard, F.; Migliori, E.; et al. Immune Checkpoint Molecules on Tumor-Infiltrating Lymphocytes and Their Association with Tertiary Lymphoid Structures in Human Breast Cancer. Immunol. 2017, 8, 1412. https://doi.org/10.3389/fimmu.2017.01412.
  • 37.
    Noblejas-López, M.D.M.; Nieto-Jiménez, C.; Morcillo García, S.; Pérez-Peña, J.; Nuncia-Cantarero, M.; Andrés-Pretel, F.; Galán-Moya, E.M.; Amir, E.; Pandiella, A.; Győrffy, B.; et al. Expression of MHC class I, HLA-A and HLA-B identifies immune-activated breast tumors with favorable outcome. Oncoimmunology 2019, 8, e1629780. https://doi.org/10.1080/2162402x.2019.1629780.
  • 38.
    Martínez-Canales, S.; Cifuentes, F.; López De Rodas Gregorio, M.; Serrano-Oviedo, L.; Galán-Moya, E.M.; Amir, E.; Pandiella, A.; Győrffy, B.; Ocaña, A. Transcriptomic immunologic signature associated with favorable clinical outcome in basal-like breast tumors. PLoS ONE 2017, 12, e0175128. https://doi.org/10.1371/journal.pone.0175128.
  • 39.
    Stefanovic, S.; Wirtz, R.; Sütterlin, M.; Karic, U.; Schneeweiss, A.; Deutsch, T.M.; Wallwiener, M. Cut-off Analysis of HLA-A and HLA-B/C Expression as a Potential Prognosticator of Favorable Survival in Patients With Metastatic Breast Cancer. Res. 2023, 43, 1449–1454. https://doi.org/10.21873/anticanres.16293.
  • 40.
    Sinn, B.V.; Weber, K.E.; Schmitt, W.D.; Fasching, P.A.; Symmans, W.F.; Blohmer, J.U.; Karn, T.; Taube, E.T.; Klauschen, F.; Marmé, F.; et al. Human leucocyte antigen class I in hormone receptor-positive, HER2-negative breast cancer: association with response and survival after neoadjuvant chemotherapy. Breast Cancer Res. 2019, 21, 142. https://doi.org/10.1186/s13058-019-1231-z.
  • 41.
    Jeong, S.; Park, S.; Park, B.W.; Park, Y.; Kwon, O.J.; Kim, H.S. Human leukocyte antigen-G (HLA-G) polymorphism and expression in breast cancer patients. PLoS ONE 2014, 9, e98284. https://doi.org/10.1371/journal.pone.0098284.
  • 42.
    Dong, D.D.; Yie, S.M.; Li, K.; Li, F.; Xu, Y.; Xu, G.; Song, L.; Yang, H. Importance of HLA-G expression and tumor infiltrating lymphocytes in molecular subtypes of breast cancer. Immunol. 2012, 73, 998–1004. https://doi.org/10.1016/j.humimm.2012.07.321.
  • 43.
    van de Water, R.B.; Krijgsman, D.; Houvast, R.D.; Vahrmeijer, A.L.; Kuppen, P.J.K. A Critical Assessment of the Association between HLA-G Expression by Carcinomas and Clinical Outcome. J. Mol. Sci. 2021, 22, 8265.https://doi.org/10.3390/ijms22158265.
  • 44.
    Ramos, C.S.; Gonçalves, A.S.; Marinho, L.C.; Gomes Avelino, M.A.; Saddi, V.A.; Lopes, A.C.; Simões, R.T.; Wastowski, I.J. Analysis of HLA-G gene polymorphism and protein expression in invasive breast ductal carcinoma. Immunol. 2014, 75, 667–672. https://doi.org/10.1016/j.humimm.2014.04.005.
  • 45.
    Rebmann, V.; Schwich, E.; Michita, R.T.; Grüntkemeier, L.; Bittner, A.K.; Rohn, H.; Horn, P.A.; Hoffmann, O.; Kimmig, R.; Kasimir-Bauer, S. Systematic Evaluation of HLA-G 3’Untranslated Region Variants in Locally Advanced, Non-Metastatic Breast Cancer Patients: UTR-1, 2 or UTR-4 are Predictors for Therapy and Disease Outcome. Immunol. 2021, 12, 817132. https://doi.org/10.3389/fimmu.2021.817132.
  • 46.
    de Kruijf, E.M.; Sajet, A.; van Nes, J.G.; Natanov, R.; Putter, H.; Smit, V.T.; Liefers, G.J.; van den Elsen, P.J.; van de Velde, C.J.; Kuppen, P.J. HLA-E and HLA-G expression in classical HLA class I-negative tumors is of prognostic value for clinical outcome of early breast cancer patients. Immunol. 2010, 185, 7452–7459. https://doi.org/10.4049/jimmunol.1002629.
  • 47.
    Fang, J.; Chen, F.; Liu, D.; Gu, F.; Chen, Z.; Wang, Y. Prognostic value of immune checkpoint molecules in breast cancer. Rep. 2020, 40, BSR20201054.https://doi.org/10.1042/bsr20201054.
  • 48.
    Wu, G.; Xiao, G.; Yan, Y.; Guo, C.; Hu, N.; Shen, S. Bioinformatics analysis of the clinical significance of HLA class II in breast cancer. Medicine 2022, 101, e31071. https://doi.org/10.1097/md.0000000000031071.
  • 49.
    Moradpoor, R.; Gharebaghian, A.; Shahi, F.; Mousavi, A.; Salari, S.; Akbari, M.E.; Ajdari, S.; Salimi, M. Identification and Validation of Stage-Associated PBMC Biomarkers in Breast Cancer Using MS-Based Proteomics. Oncol. 2020, 10, 1101. https://doi.org/10.3389/fonc.2020.01101.
  • 50.
    Rojas, L.K.; Trilla-Fuertes, L.; Gámez-Pozo, A.; Chiva, C.; Sepúlveda, J.; Manso, L.; Prado-Vázquez, G.; Zapater-Moros, A.; López-Vacas, R.; Ferrer-Gómez, M.; et al. Proteomics characterisation of central nervous system metastasis biomarkers in triple negative breast cancer. Ecancermedicalscience 2019, 13, 891. https://doi.org/10.3332/ecancer.2019.891.
  • 51.
    Pectasides, D.; Papaxoinis, G.; Kotoula, V.; Fountzilas, H.; Korantzis, I.; Koutras, A.; Dimopoulos, A.M.; Papakostas, P.; Aravantinos, G.; Varthalitis, I.; et al. Expression of angiogenic markers in the peripheral blood of docetaxel-treated advanced breast cancer patients: a Hellenic Cooperative Oncology Group (HeCOG) study. Rep. 2012, 27, 216–224. https://doi.org/10.3892/or.2011.1504.
  • 52.
    Wang, T.; Srivastava, S.; Hartman, M.; Buhari, S.A.; Chan, C.W.; Iau, P.; Khin, L.W.; Wong, A.; Tan, S.H.; Goh, B.C.; et al. High expression of intratumoral stromal proteins is associated with chemotherapy resistance in breast cancer. Oncotarget 2016, 7, 55155–55168. https://doi.org/10.18632/oncotarget.10894.
  • 53.
    Li, Y.; Qin, J.; Chen, G.; Wu, W.; Sun, X. Plasma THBS1 as a predictive biomarker for poor prognosis and brain metastasis in patients with HER2-enriched breast cancer. J. Clin. Oncol. 2024, 29, 427–441. https://doi.org/10.1007/s10147-024-02472-9.
  • 54.
    Wang, X.; Gao, C.; Feng, F.; Zhuang, J.; Liu, L.; Li, H.; Liu, C.; Wu, J.; Zheng, X.; Ding, X.; et al. Construction and Analysis of Competing Endogenous RNA Networks for Breast Cancer Based on TCGA Dataset. Res. Int. 2020, 2020, 4078596. https://doi.org/10.1155/2020/4078596.
  • 55.
    Xu, M.; Liu, C.; Pu, L.; Lai, J.; Li, J.; Ning, Q.; Liu, X.; Deng, S. Systemic analysis of the expression levels and prognosis of breast cancer-related cadherins. Biol. Med. 2021, 246, 1706–1720. https://doi.org/10.1177/15353702211010417.
  • 56.
    Shi, H.; Yang, Y. Identification of inhibitory immune checkpoints and relevant regulatory pathways in breast cancer stem cells. Cancer Med. 2021, 10, 3794–3807. https://doi.org/10.1002/cam4.3902.
  • 57.
    Stamm, H.; Oliveira-Ferrer, L.; Grossjohann, E.M.; Muschhammer, J.; Thaden, V.; Brauneck, F.; Kischel, R.; Müller, V.; Bokemeyer, C.; Fiedler, W.; et al. Targeting the TIGIT-PVR immune checkpoint axis as novel therapeutic option in breast cancer. Oncoimmunology 2019, 8, e1674605. https://doi.org/10.1080/2162402x.2019.1674605.
  • 58.
    Boissière-Michot, F.; Chateau, M.C.; Thézenas, S.; Guiu, S.; Bobrie, A.; Jacot, W. Correlation of the TIGIT-PVR immune checkpoint axis with clinicopathological features in triple-negative breast cancer. Immunol. 2022, 13, 1058424. https://doi.org/10.3389/fimmu.2022.1058424.
  • 59.
    Corso, G.; Figueiredo, J.; De Angelis, S.P.; Corso, F.; Girardi, A.; Pereira, J.; Seruca, R.; Bonanni, B.; Carneiro, P.; Pravettoni, G.; et al. E-cadherin deregulation in breast cancer. Cell Mol. Med. 2020, 24, 5930–5936. https://doi.org/10.1111/jcmm.15140.
  • 60.
    Djerroudi, L.; Bendali, A.; Fuhrmann, L.; Benoist, C.; Pierron, G.; Masliah-Planchon, J.; Kieffer, Y.; Carton, M.; Tille, J.C.; Cyrta, J.; et al. E-Cadherin Mutational Landscape and Outcomes in Breast Invasive Lobular Carcinoma. Pathol. 2024, 37, 100570. https://doi.org/10.1016/j.modpat.2024.100570.
  • 61.
    Liu, Z.; Liang, G.; Tan, L.; Su, A.N.; Jiang, W.; Gong, C. High-efficient Screening Method for Identification of Key Genes in Breast Cancer Through Microarray and Bioinformatics. Res. 2017, 37, 4329–4335. https://doi.org/10.21873/anticanres.11826.
  • 62.
    Liu, J.; Sun, X.; Qin, S.; Wang, H.; Du, N.; Li, Y.; Pang, Y.; Wang, C.; Xu, C.; Ren, H. CDH1 promoter methylation correlates with decreased gene expression and poor prognosis in patients with breast cancer. Lett. 2016, 11, 2635–2643. https://doi.org/10.3892/ol.2016.4274.
  • 63.
    Ősz, Á.; Lánczky, A.; Győrffy, B. Survival analysis in breast cancer using proteomic data from four independent datasets. Rep. 2021, 11, 16787. https://doi.org/10.1038/s41598-021-96340-5.
  • 64.
    Zhang, X.; Dai, S.; Li, L.; Wang, P.; Dong, M. UL16-binding protein 1 is a significant prognostic and diagnostic marker for breast cancer. Lett. 2025, 29, 15. https://doi.org/10.3892/ol.2024.14761.
  • 65.
    Ghaderi, F.; Ahmadvand, S.; Ramezani, A.; Montazer, M.; Ghaderi, A. Production and characterization of monoclonal antibody against a triple negative breast cancer cell line. Biophys. Res. Commun. 2018, 505, 181–186. https://doi.org/10.1016/j.bbrc.2018.09.087.
  • 66.
    Jia, R.; Li, Z.; Liang, W.; Ji, Y.; Weng, Y.; Liang, Y.; Ning, P. Identification of key genes unique to the luminal a and basal-like breast cancer subtypes via bioinformatic analysis. World J. Surg. Oncol. 2020, 18, 268. https://doi.org/10.1186/s12957-020-02042-z.
  • 67.
    Nagahara, M.; Mimori, K.; Kataoka, A.; Ishii, H.; Tanaka, F.; Nakagawa, T.; Sato, T.; Ono, S.; Sugihara, K.; Mori, M. Correlated expression of CD47 and SIRPA in bone marrow and in peripheral blood predicts recurrence in breast cancer patients. Cancer Res. 2010, 16, 4625–4635. https://doi.org/10.1158/1078-0432.Ccr-10-0349.
  • 68.
    Paredes, J.; Figueiredo, J.; Albergaria, A.; Oliveira, P.; Carvalho, J.; Ribeiro, A.S.; Caldeira, J.; Costa, A.M.; Simões-Correia, J.; Oliveira, M.J.; et al. Epithelial E- and P-cadherins: role and clinical significance in cancer. Biophys. Acta 2012, 1826, 297–311. https://doi.org/10.1016/j.bbcan.2012.05.002.
  • 69.
    Vieira, A.F.; Ricardo, S.; Ablett, M.P.; Dionísio, M.R.; Mendes, N.; Albergaria, A.; Farnie, G.; Gerhard, R.; Cameselle-Teijeiro, J.F.; Seruca, R.; et al. P-cadherin is coexpressed with CD44 and CD49f and mediates stem cell properties in basal-like breast cancer. Stem Cells 2012, 30, 854–864. https://doi.org/10.1002/stem.1075.
  • 70.
    Nam, S.; Chang, H.R.; Jung, H.R.; Gim, Y.; Kim, N.Y.; Grailhe, R.; Seo, H.R.; Park, H.S.; Balch, C.; Lee, J.; et al. A pathway-based approach for identifying biomarkers of tumor progression to trastuzumab-resistant breast cancer. Cancer Lett. 2015, 356, 880–890. https://doi.org/10.1016/j.canlet.2014.10.038.
Share this article:
How to Cite
Son, D.-S.; Son, J.; Lee, E.-S.; Adunyah, S. E. Critical Immune Checkpoints Linked with NK and T Cells for Overall Survival of Breast Cancer Subtypes. Journal of Inflammatory and Infectious Medicine 2025, 1 (2), 2. https://doi.org/10.53941/jiim.2025.100008.
RIS
BibTex
Copyright & License
article copyright Image
Copyright (c) 2025 by the authors.