2506000741
  • Open Access
  • Article
IL-32γ Plays a Neuroprotective Role after Acute Stroke in Middle Cerebral Artery Occlusion Mouse Model
  • Jaewoo Hong 1, †,   
  • Suyoung Bae 2, †,   
  • Yasmin Hisham 3,   
  • Taewon Han 4,   
  • Hyunjung Jhun 4, *

Received: 07 Apr 2025 | Revised: 15 May 2025 | Accepted: 04 Jun 2025 | Published: 12 Jun 2025

Abstract

Stroke is the second leading cause of death and a major cause of long-term disability worldwide. Within minutes of onset, cerebral ischemia triggers a cascade of pathophysiological events that ultimately result in irreversible tissue damage. Post-ischemic inflammation plays a critical role in cerebral ischemia-reperfusion injury, characterized by the elevated release of cytokines and chemokines. Interleukin (IL)-32 is known to induce several cytokines, particularly pro-inflammatory ones such as IL-6, tumor necrosis factor (TNF)-α, and IL-1β. Targeting inflammatory pathways are of great interest in stroke research. In this study, we investigated the role of IL-32γ in a middle cerebral artery occlusion (MCAO) model using transgenic (TG) mice expressing human IL-32γ. Compared to wild-type (WT) mice, IL-32γ TG mice exhibited a significantly reduced infarct volume after MCAO. Accompanying the decreased brain tissue damage, the levels of pro-inflammatory cytokines IL-6, TNF-α, and IL-1β were markedly lower in IL-32γ TG mice than in WT controls. These findings suggest that IL-32γ attenuates the inflammatory response in ischemic brain injury. Specifically, IL-32γ reduced the expression of pro-inflammatory cytokines and the number of apoptotic cells following ischemic insult. In conclusion, our results demonstrate that IL-32γ protects the neuroinflammatory response in brain injury and may serve as a potential neuroprotective therapeutic target.

References 

  • 1.
    Virani, S.S.; Alonso, A.; Aparicio, H.J.; Benjamin, E.J.; Bittencourt, M.S.; Callaway, C.W.; Carson, A.P.; Chamberlain, A.M.; Cheng, S.; Delling, F.N.; et al. Heart Disease and Stroke Statistics-2021 Update: A Report From the American Heart Association. Circulation 2021, 143, e254–e743. https://doi.org/10.1161/CIR.0000000000000950.
  • 2.
    Katan, M.; Luft, A. Global Burden of Stroke. Semin. Neurol. 2018, 38, 208–211. https://doi.org/10.1055/s-0038-1649503.
  • 3.
    Sveinsson, O.A.; Kjartansson, O.; Valdimarsson, E.M. Cerebral ischemia/infarction—Epidemiology, causes and symptoms. Laeknabladid 2014, 100, 271–279. https://doi.org/10.17992/lbl.2014.05.543.
  • 4.
    Orellana-Urzua, S.; Rojas, I.; Libano, L.; Rodrigo, R. Pathophysiology of Ischemic Stroke: Role of Oxidative Stress. Curr. Pharm. Des. 2020, 26, 4246–4260. https://doi.org/10.2174/1381612826666200708133912.
  • 5.
    Huang, J.; Upadhyay, U.M.; Tamargo, R.J. Inflammation in stroke and focal cerebral ischemia. Surg. Neurol. 2006, 66, 232–245. https://doi.org/10.1016/j.surneu.2005.12.028.
  • 6.
    Shi, K.; Tian, D.C.; Li, Z.G.; Ducruet, A.F.; Lawton, M.T.; Shi, F.D. Global brain inflammation in stroke. Lancet Neurol. 2019, 18, 1058–1066. https://doi.org/10.1016/S1474-4422(19)30078-X.
  • 7.
    Jin, R.; Liu, L.; Zhang, S.; Nanda, A.; Li, G. Role of inflammation and its mediators in acute ischemic stroke. J. Cardiovasc. Transl. Res. 2013, 6, 834–851. https://doi.org/10.1007/s12265-013-9508-6.
  • 8.
    Kim, E.; Cho, S. Microglia and Monocyte-Derived Macrophages in Stroke. Neurotherapeutics 2016, 13, 702–718. https://doi.org/10.1007/s13311-016-0463-1.
  • 9.
    Drieu, A.; Buendia, I.; Levard, D.; Helie, P.; Brodin, C.; Vivien, D.; Rubio, M. Immune Responses and Anti-inflammatory Strategies in a Clinically Relevant Model of Thromboembolic Ischemic Stroke with Reperfusion. Transl. Stroke Res. 2020, 11, 481–495. https://doi.org/10.1007/s12975-019-00733-8.
  • 10.
    Drieu, A.; Levard, D.; Vivien, D.; Rubio, M. Anti-inflammatory treatments for stroke: From bench to bedside. Ther. Adv. Neurol. Disord. 2018, 11. https://doi.org/10.1177/1756286418789854.
  • 11.
    Heinz, R.; Brandenburg, S.; Nieminen-Kelha, M.; Kremenetskaia, I.; Boehm-Sturm, P.; Vajkoczy, P.; Schneider, U.C. Microglia as target for anti-inflammatory approaches to prevent secondary brain injury after subarachnoid hemorrhage (SAH). J. Neuroinflamm. 2021, 18, 36. https://doi.org/10.1186/s12974-021-02085-3.
  • 12.
    Choi, J.; Bae, S.; Hong, J.; Ryoo, S.; Jhun, H.; Hong, K.; Yoon, D.; Lee, S.; Her, E.; Choi, W.; et al. Paradoxical effects of constitutive human IL-32{gamma} in transgenic mice during experimental colitis. Proc. Natl. Acad. Sci. USA 2010, 107, 21082–21086. https://doi.org/10.1073/pnas.1015418107.
  • 13.
    Joosten, L.A.; Netea, M.G.; Kim, S.H.; Yoon, D.Y.; Oppers-Walgreen, B.; Radstake, T.R.; Barrera, P.; van de Loo, F.A.; Dinarello, C.A.; van den Berg, W.B. IL-32, a proinflammatory cytokine in rheumatoid arthritis. Proc. Natl. Acad. Sci. USA 2006, 103, 3298–3303.
  • 14.
    Shioya, M.; Nishida, A.; Yagi, Y.; Ogawa, A.; Tsujikawa, T.; Kim-Mitsuyama, S.; Takayanagi, A.; Shimizu, N.; Fujiyama, Y.; Andoh, A. Epithelial overexpression of interleukin-32alpha in inflammatory bowel disease. Clin. Exp. Immunol. 2007, 149, 480–486. https://doi.org/10.1111/j.1365-2249.2007.03439.x.
  • 15.
    Calabrese, F.; Baraldo, S.; Bazzan, E.; Lunardi, F.; Rea, F.; Maestrelli, P.; Turato, G.; Lokar-Oliani, K.; Papi, A.; Zuin, R.; et al. IL-32, a novel proinflammatory cytokine in chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 2008, 178, 894–901. https://doi.org/10.1164/rccm.200804-646OC.
  • 16.
    Dinarello, C.A.; Kim, S.H. IL-32, a novel cytokine with a possible role in disease. Ann. Rheum. Dis. 2006, 65 (Suppl. 3), 61–64.
  • 17.
    Hong, J.T.; Son, D.J.; Lee, C.K.; Yoon, D.Y.; Lee, D.H.; Park, M.H. Interleukin 32, inflammation and cancer. Pharmacol. Ther. 2017, 174, 127–137. https://doi.org/10.1016/j.pharmthera.2017.02.025.
  • 18.
    Gong, L.; Dong, C.; Cai, Q.; Ouyang, W. Interleukin 32: A novel player in perioperative neurocognitive disorders. Med. Hypotheses. 2020, 144, 110158. https://doi.org/10.1016/j.mehy.2020.110158.
  • 19.
    Safari-Alighiarloo, N.; Taghizadeh, M.; Mohammad Tabatabaei, S.; Namaki, S.; Rezaei-Tavirani, M. Identification of common key genes and pathways between type 1 diabetes and multiple sclerosis using transcriptome and interactome analysis. Endocrine 2020, 68, 81–92. https://doi.org/10.1007/s12020-019-02181-8.
  • 20.
    Hamzaoui, K.; Borhani-Haghighi, A.; Dhifallah, I.B.; Hamzaoui, A. Elevated levels of IL-32 in cerebrospinal fluid of neuro-Behcet disease: Correlation with NLRP3 inflammasome. J. Neuroimmunol. 2022, 365, 577820. https://doi.org/10.1016/j.jneuroim.2022.577820.
  • 21.
    Cho, K.S.; Park, S.H.; Joo, S.H.; Kim, S.H.; Shin, C.Y. The effects of IL-32 on the inflammatory activation of cultured rat primary astrocytes. Biochem. Biophys. Res. Commun. 2010, 402, 48–53. https://doi.org/10.1016/j.bbrc.2010.09.099.
  • 22.
    Sohn, D.H.; Nguyen, T.T.; Kim, S.; Shim, S.; Lee, S.; Lee, Y.; Jhun, H.; Azam, T.; Kim, J.; Kim, S. Structural Characteristics of Seven IL-32 Variants. Immune Netw. 2019, 19, e8.
  • 23.
    Kim, S.; Yu, H.; Azam, T.; Dinarello, C.A. Interleukin-18 Binding Protein (IL-18BP): A Long Journey From Discovery to Clinical Application. Immune Netw. 2024, 24, e1.
  • 24.
    Hua, F.; Ma, J.; Ha, T.; Kelley, J.; Williams, D.L.; Kao, R.L.; Kalbfleisch, J.H.; Browder, I.W.; Li, C. Preconditioning with a TLR2 specific ligand increases resistance to cerebral ischemia/reperfusion injury. J. Neuroimmunol. 2008, 199, 75–82. https://doi.org/10.1016/j.jneuroim.2008.05.009.
  • 25.
    Chen, Y.; Ito, A.; Takai, K.; Saito, N. Blocking pterygopalatine arterial blood flow decreases infarct volume variability in a mouse model of intraluminal suture middle cerebral artery occlusion. J. Neurosci. Methods 2008, 174, 18–24. https://doi.org/10.1016/j.jneumeth.2008.06.021.
  • 26.
    Reglodi, D.; Tamas, A.; Somogyvari-Vigh, A.; Szanto, Z.; Kertes, E.; Lenard, L.; Arimura, A.; Lengvari, I. Effects of pretreatment with PACAP on the infarct size and functional outcome in rat permanent focal cerebral ischemia. Peptides 2002, 23, 2227–2234.
  • 27.
    Hatcher, J.P.; Virley, D.; Hadingham, S.J.; Roberts, J.; Hunter, A.J.; Parsons, A.A. The behavioural effect of middle cerebral artery occlusion on apolipoprotein-E deficient mice. Behav. Brain Res. 2002, 131, 139–149.
  • 28.
    Nurmi, A.; Lindsberg, P.J.; Koistinaho, M.; Zhang, W.; Juettler, E.; Karjalainen-Lindsberg, M.L.; Weih, F.; Frank, N.; Schwaninger, M.; Koistinaho, J. Nuclear factor-kappaB contributes to infarction after permanent focal ischemia. Stroke 2004, 35, 987–991. https://doi.org/10.1161/01.STR.0000120732.45951.26.
  • 29.
    Howell, J.A.; Bidwell, G.L., 3rd. Targeting the NF-kappaB pathway for therapy of ischemic stroke. Ther. Deliv. 2020, 11, 113–123. https://doi.org/10.4155/tde-2019-0075.
  • 30.
    Ginsberg, M.D.; Busto, R. Rodent models of cerebral ischemia. Stroke 1989, 20, 1627–1642. https://doi.org/10.1161/01.str.20.12.1627.
  • 31.
    Kim, S.H.; Han, S.Y.; Azam, T.; Yoon, D.Y.; Dinarello, C.A. Interleukin-32: A cytokine and inducer of TNFalpha. Immunity 2005, 22, 131–142.
  • 32.
    Aass, K.R.; Kastnes, M.H.; Standal, T. Molecular interactions and functions of IL-32. J. Leukoc. Biol. 2021, 109, 143–159. https://doi.org/10.1002/JLB.3MR0620-550R.
  • 33.
    Park, H.M.; Park, J.Y.; Kim, N.Y.; Kim, H.; Kim, H.G.; Son, D.J.; Hong, J.T.; Yoon, D.Y. Recombinant Human IL-32theta Induces Polarization Into M1-like Macrophage in Human Monocytic Cells. Immune Netw. 2024, 24, e27. https://doi.org/10.4110/in.2024.24.e27.
  • 34.
    Lee, Y.S.; Han, S.B.; Ham, H.J.; Park, J.H.; Lee, J.S.; Hwang, D.Y.; Jung, Y.S.; Yoon, D.Y.; Hong, J.T. IL-32gamma suppressed atopic dermatitis through inhibition of miR-205 expression via inactivation of nuclear factor-kappa B. J. Allergy Clin. Immunol. 2020, 146, 156–168. https://doi.org/10.1016/j.jaci.2019.12.905.
  • 35.
    Nam, S.Y.; Kim, H.M.; Jeong, H.J. Attenuation of IL-32-induced caspase-1 and nuclear factor-kappaB activations by acteoside. Int. Immunopharmacol. 2015, 29, 574–582. https://doi.org/10.1016/j.intimp.2015.09.026.
  • 36.
    Al-Shobaili, H.A.; Farhan, J.; Zafar, U.; Rasheed, Z. Functional role of human interleukin-32 and nuclear transcription factor-kB in patients with psoriasis and psoriatic arthritis. Int. J. Health Sci. 2018, 12, 29–34.
  • 37.
    Lin, J.; Xu, R.; Hu, L.; You, J.; Jiang, N.; Li, C.; Che, C.; Wang, Q.; Xu, Q.; Li, J.; et al. Interleukin-32 induced thymic stromal lymphopoietin plays a critical role in the inflammatory response in human corneal epithelium. Cell. Signal. 2018, 49, 39–45. https://doi.org/10.1016/j.cellsig.2018.05.007.
  • 38.
    Cao, H.; Pan, X.F.; Zhang, K.; Shu, X.; Li, G. Interleukin-32 expression is induced by hepatitis B virus. Zhonghua Gan Zang Bing Za Zhi 2013, 21, 442–445. https://doi.org/10.3760/cma.j.issn.1007-3418.2013.06.014.
  • 39.
    Hwang, C.J.; Yun, H.M.; Jung, Y.Y.; Lee, D.H.; Yoon, N.Y.; Seo, H.O.; Han, J.Y.; Oh, K.W.; Choi, D.Y.; Han, S.B.; et al. Reducing effect of IL-32alpha in the development of stroke through blocking of NF-kappaB, but enhancement of STAT3 pathways. Mol. Neurobiol. 2015, 51, 648–660. https://doi.org/10.1007/s12035-014-8739-0.
  • 40.
    Yun, H.M.; Kim, J.A.; Hwang, C.J.; Jin, P.; Baek, M.K.; Lee, J.M.; Hong, J.E.; Lee, S.M.; Han, S.B.; Oh, K.W.; et al. Neuroinflammatory and Amyloidogenic Activities of IL-32beta in Alzheimer’s Disease. Mol. Neurobiol. 2015, 52, 341–352. https://doi.org/10.1007/s12035-014-8860-0.
  • 41.
    Yin, H.; Wu, M.; Jia, Y. Knockdown of IL-32 protects PC12 cells against oxygen-glucose deprivation/reoxygenation-induced injury via activation of Nrf2/NF-kappaB pathway. Metab. Brain Dis. 2020, 35, 363–371. https://doi.org/10.1007/s11011-019-00530-0.
  • 42.
    Liu, C.; Xu, X.; Huang, C.; Shang, D.; Zhang, L.; Wang, Y. Inhibition of IL-32 Expression Ameliorates Cerebral Ischemia-Reperfusion Injury via the NOD/MAPK/NF-kappaB Signaling Pathway. J. Mol. Neurosci. 2020, 70, 1713–1727. https://doi.org/10.1007/s12031-020-01557-0.
Share this article:
How to Cite
Hong, J.; Bae, S.; Hisham, Y.; Han, T.; Jhun, H. IL-32γ Plays a Neuroprotective Role after Acute Stroke in Middle Cerebral Artery Occlusion Mouse Model. Journal of Inflammatory and Infectious Medicine 2025, 1 (2), 3. https://doi.org/10.53941/jiim.2025.100009.
RIS
BibTex
Copyright & License
article copyright Image
Copyright (c) 2025 by the authors.