2506000759
  • Open Access
  • Mini Review
Effects of Simulated Microgravity on Anti-Cancer Drug Responsiveness
  • Sun-Young Han 1, 2

Received: 11 May 2025 | Revised: 06 Jun 2025 | Accepted: 13 Jun 2025 | Published: 18 Jun 2025

Abstract

This review examines the effects of simulated microgravity on cancer cells and their response to anticancer drugs. In the unique environment of space, characterized by near-weightlessness, biological systems function differently compared to Earth’s normal gravitational conditions, potentially altering drug efficacy. As human space exploration advances, understanding pharmaceutical behavior in microgravity becomes essential for astronaut healthcare. We present comprehensive findings on how microgravity conditions, simulated using technologies such as the Rotary Cell Culture System and 3D clinostats, affect cancer cell behavior and drug sensitivity. The review analyzes how microgravity influences anticancer drug effectiveness, with evidence suggesting increased drug sensitivity in certain cancer types through mechanisms involving membrane property alterations, drug transport modifications, and signaling pathway changes. We discuss key experimental findings across various cancer models, including leukemia, gastric, ovarian, and colorectal cancers, while addressing methodological limitations of microgravity simulation research. This synthesis of current knowledge advances our understanding of cancer treatment in space environments and may offer novel insights for terrestrial therapeutic strategies.

References 

  • 1.
    Oluwafemi, F.A.; Neduncheran, A. Analog and simulated microgravity platforms for life sciences research: Their individual capacities, benefits and limitations. Adv. Space Res. 2022, 69, 2921–2929. https://doi.org/10.1016/j.asr.2022.01.007.
  • 2.
    Prasanth, D.; Suresh, S.; Prathivadhi-Bhayankaram, S.; Mimlitz, M.; Zetocha, N.; Lee, B.; Ekpenyong, A. Microgravity Modulates Effects of Chemotherapeutic Drugs on Cancer Cell Migration. Life 2020, 10, 162.
  • 3.
    McKinley, S.; Taylor, A.; Peeples, C.; Jacob, M.; Khaparde, G.; Walter, Y.; Ekpenyong, A. Simulated Microgravity-Induced Changes to Drug Response in Cancer Cells Quantified Using Fluorescence Morphometry. Life 2023, 13, 1683.
  • 4.
    Rembialkowska, N.; Baczynska, D.; Dubinska-Magiera, M.; Choromanska, A.; Biezunska-Kusiak, K.; Gajewska-Naryniecka, A.; Novickij, V.; Saczko, J.; Przystupski, D.; Kulbacka, J. RCCS Bioreactor-Based Modeled Microgravity Affects Gastric Cancer Cells and Improves the Chemotherapeutic Effect. Membranes 2022, 12, 448.
  • 5.
    Kim, S.-C.; Kim, M.J.; Park, J.W.; Shin, Y.-K.; Jeong, S.-Y.; Kim, S.; Ku, J.-L. Effects of simulated microgravity on colorectal cancer organoids growth and drug response. Sci. Rep. 2024, 14, 25526. https://doi.org/10.1038/s41598-024-76737-8.
  • 6.
    Przystupski, D.; Górska, A.; Szewczyk, A.; Drag-Zalesinska, M.; Kulbacka, J. 3D Clinorotation Affects Drug Sensitivity of Human Ovarian Cancer Cells. Microgravity Sci. Technol. 2021, 33, 42.
  • 7.
    Kim, Y.J.; Jeong, A.J.; Kim, M.; Lee, C.; Ye, S.-K.; Kim, S. Time-averaged simulated microgravity (taSMG) inhibits proliferation of lymphoma cells, L-540 and HDLM-2, using a 3D clinostat. Biomed. Eng. Online 2017, 16, 48. https://doi.org/10.1186/s12938-017-0337-8.
  • 8.
    Taga, M.; Yamauchi, K.; Odle, J.; Furian, L.; Sundaresan, A.; Ramesh, G.T.; Pellis, N.R.; Andrassy, R.J.; Kulkarni, A.D. Melanoma growth and tumorigenicity in models of microgravity.Aviat. Space Environ. Med. 2006, 77, 1113–1116.
  • 9.
    Grimm, D.; Schulz, H.; Krüger, M.; Cortés-Sánchez, J.L.; Egli, M.; Kraus, A.; Sahana, J.; Corydon, T.J.; Hemmersbach, R.; Wise, P.M.; et al. The Fight against Cancer by Microgravity: The Multicellular Spheroid as a Metastasis Model. Int. J. Mol. Sci. 2022, 23, 3073.
  • 10.
    Masiello, M.G.; Cucina, A.; Proietti, S.; Palombo, A.; Coluccia, P.; D’Anselmi, F.; Dinicola, S.; Pasqualato, A.; Morini, V.; Bizzarri, M. Phenotypic Switch Induced by Simulated Microgravity on MDA-MB-231 Breast Cancer Cells. BioMed Res. Int. 2014, 2014, 652434. https://doi.org/10.1155/2014/652434.
  • 11.
    Kopp, S.; Warnke, E.; Wehland, M.; Aleshcheva, G.; Magnusson, N.E.; Hemmersbach, R.; Corydon, T.J.; Bauer, J.; Infanger, M.; Grimm, D. Mechanisms of three-dimensional growth of thyroid cells during long-term simulated microgravity. Sci. Rep. 2015, 5, 16691. https://doi.org/10.1038/srep16691.
  • 12.
    Kopp, S.; Slumstrup, L.; Corydon, T.J.; Sahana, J.; Aleshcheva, G.; Islam, T.; Magnusson, N.E.; Wehland, M.; Bauer, J.; Infanger, M.; et al. Identifications of novel mechanisms in breast cancer cells involving duct-like multicellular spheroid formation after exposure to the Random Positioning Machine. Sci. Rep. 2016, 6, 26887. https://doi.org/10.1038/srep26887.
  • 13.
    Hybel, T.E.; Dietrichs, D.; Sahana, J.; Corydon, T.J.; Nassef, M.Z.; Wehland, M.; Krüger, M.; Magnusson, N.E.; Bauer, J.; Utpatel, K.; et al. Simulated Microgravity Influences VEGF, MAPK, and PAM Signaling in Prostate Cancer Cells. Int. J. Mol. Sci. 2020, 21, 1263.
  • 14.
    Grimm, D.; Wehland, M.; Corydon, T.J.; Richter, P.; Prasad, B.; Bauer, J.; Egli, M.; Kopp, S.; Lebert, M.; Krüger, M. The effects of microgravity on differentiation and cell growth in stem cells and cancer stem cells. Stem Cells Transl. Med. 2020, 9, 882–894. https://doi.org/10.1002/sctm.20-0084.
  • 15.
    Piepmeier, E.H.; Kalns, J.E.; McIntyre, K.M.; Lewis, M.L. Prolonged weightlessness affects promyelocytic multidrug resistance. Exp. Cell Res. 1997, 237, 410–418.
  • 16.
    Mylabathula, P.L.; Li, L.; Bigley, A.B.; Markofski, M.M.; Crucian, B.E.; Mehta, S.K.; Pierson, D.L.; Laughlin, M.S.; Rezvani, K.; Simpson, R.J. Simulated microgravity disarms human NK-cells and inhibits anti-tumor cytotoxicity in vitro. Acta Astronaut. 2020, 174, 32–40.
  • 17.
    Medha, M.; Roy, A. Microgravity: New aspect for breast cancer treatment, a review. Acta Astronaut. 2022, 190, 62–73.
Share this article:
How to Cite
Han, S.-Y. Effects of Simulated Microgravity on Anti-Cancer Drug Responsiveness. Journal of Inflammatory and Infectious Medicine 2025, 1 (2), 4. https://doi.org/10.53941/jiim.2025.100010.
RIS
BibTex
Copyright & License
article copyright Image
Copyright (c) 2025 by the authors.