- 1.
Petrovska, B.B. Historical review of medicinal plants’ usage. Pharmacogn. Rev. 2012, 6, 1–5. https://doi.org/10.4103/0973-7847.95849.
- 2.
Park, H.; Kim, H.S. Korean traditional natural herbs and plants as immune enhancing, antidiabetic, chemopreventive, and antioxidative agents: A narrative review and perspective. J. Med. Food 2014, 17, 21–27. https://doi.org/10.1089/jmf.2013.3059.
- 3.
Yuan, H.; Ma, Q.; Ye, L.; Piao, G. The Traditional Medicine and Modern Medicine from Natural Products. Molecules 2016, 21, 559. https://doi.org/10.3390/molecules21050559.
- 4.
Kumar, H.; Song, S.Y.; More, S.V.; Kang, S.M.; Kim, B.W.; Kim, I.S.; Choi, D.K. Traditional Korean East Asian medicines and herbal formulations for cognitive impairment. Molecules 2013, 18, 14670–14693. https://doi.org/10.3390/molecules181214670.
- 5.
Wanjari, A.S.; Wanjari, D.S. An Overview on Herbal Medicine. Res. J. Pharmacogn. Phytochem. 2019, 11, 14–17. https://doi.org/10.5958/0975-4385.2019.00003.7.
- 6.
Sanjoy Kumar Pal, Y.S. Herbal Medicine: Current Status and the Future. Asian Pac. J. Cancer Prev. 2003, 4, 281–288.
- 7.
Ekor, M. The growing use of herbal medicines: Issues relating to adverse reactions and challenges in monitoring safety. Front. Pharmacol. 2014, 4, 177. https://doi.org/10.3389/fphar.2013.00177.
- 8.
Ben-Shabat, S.; Yarmolinsky, L.; Porat, D.; Dahan, A. Antiviral effect of phytochemicals from medicinal plants: Applications and drug delivery strategies. Drug Deliv. Transl. Res. 2020, 10, 354–367. https://doi.org/10.1007/s13346-019-00691-6.
- 9.
Che, C.T.; Wang, Z.J.; Chow, M.S.; Lam, C.W. Herb-herb combination for therapeutic enhancement and advancement: Theory, practice and future perspectives. Molecules 2013, 18, 5125–5141. https://doi.org/10.3390/molecules18055125.
- 10.
Choi, M.; Hwang, J.; Han, K.; Noh, H.; Kang, B.; Jeong, T.; Choi, G.; Lee, H.; Kim, Y.; Ryu, H.; et al. Natural Plant Extracts as Novel Antiviral Candidates: Citrus extracts. J. Inflamm. Infect. Med. 2025, 1, 3. https://doi.org/10.53941/jiim.2025.100003.
- 11.
Wang, Y.; Yang, H.; Chen, L.; Jafari, M.; Tang, J. Network-based modeling of herb combinations in traditional Chinese medicine. Brief. Bioinform. 2021, 22, bbab106. https://doi.org/10.1093/bib/bbab106.
- 12.
Ai, S.; Li, Y.; Zheng, H.; Zhang, M.; Tao, J.; Liu, W.; Peng, L.; Wang, Z.; Wang, Y. Collision of herbal medicine and nanotechnology: A bibliometric analysis of herbal nanoparticles from 2004 to 2023. J. Nanobiotechnol. 2024, 22, 140. https://doi.org/10.1186/s12951-024-02426-3.
- 13.
Bonifacio, B.V.; Silva, P.B.; Ramos, M.A.; Negri, K.M.; Bauab, T.M.; Chorilli, M. Nanotechnology-based drug delivery systems and herbal medicines: A review. Int. J. Nanomed. 2014, 9, 1–15. https://doi.org/10.2147/IJN.S52634.
- 14.
Moradi, S.Z.; Momtaz, S.; Bayrami, Z.; Farzaei, M.H.; Abdollahi, M. Nanoformulations of Herbal Extracts in Treatment of Neurodegenerative Disorders. Front. Bioeng. Biotechnol. 2020, 8, 238. https://doi.org/10.3389/fbioe.2020.00238.
- 15.
Teja, P.K.; Mithiya, J.; Kate, A.S.; Bairwa, K.; Chauthe, S.K. Herbal nanomedicines: Recent advancements, challenges, opportunities and regulatory overview. Phytomedicine 2022, 96, 153890. https://doi.org/10.1016/j.phymed.2021.153890.
- 16.
Sasidharan, S.; Chen, Y.; Saravanan, D.; Sundram, K.M.; Yoga Latha, L. Extraction, isolation and characterization of bioactive compounds from plants’ extracts. Afr. J.Tradit. Complement. Altern. Med. 2011, 8, 1–10.
- 17.
Atanasov, A.G.; Waltenberger, B.; Pferschy-Wenzig, E.M.; Linder, T.; Wawrosch, C.; Uhrin, P.; Temml, V.; Wang, L.; Schwaiger, S.; Heiss, E.H.; et al. Discovery and resupply of pharmacologically active plant-derived natural products: A review. Biotechnol. Adv. 2015, 33, 1582–1614. https://doi.org/10.1016/j.biotechadv.2015.08.001.
- 18.
Zhao, Q.; Luan, X.; Zheng, M.; Tian, X.H.; Zhao, J.; Zhang, W.D.; Ma, B.L. Synergistic Mechanisms of Constituents in Herbal Extracts during Intestinal Absorption: Focus on Natural Occurring Nanoparticles. Pharmaceutics 2020, 12, 128. https://doi.org/10.3390/pharmaceutics12020128.
- 19.
Wagner, H.; Ulrich-Merzenich, G. Synergy research: Approaching a new generation of phytopharmaceuticals. Phytomedicine 2009, 16, 97–110. https://doi.org/10.1016/j.phymed.2008.12.018.
- 20.
Hou, Z.; Shi, D.; Lin, J.; Zhao, X.; Zhang, H.; Ding, J. Effect of ion pair strategy on transdermal delivery of guanfacine: Which factor dominates drug permeation? Int. J. Pharm. 2024, 652, 123835. https://doi.org/10.1016/j.ijpharm.2024.123835.
- 21.
Ristroph, K.D.; Prud’homme, R.K. Hydrophobic ion pairing: Encapsulating small molecules, peptides, and proteins into nanocarriers. Nanoscale Adv. 2019, 1, 4207–4237. https://doi.org/10.1039/c9na00308h.
- 22.
Samiei, N.; Foroutan, S.M.; Razipour, F.; Zarghi, A.; Shafaati, A. An investigation into the ability of alendronate ion pairs to increase oral absorption. Int. J. Pharm. 2017, 527, 184–190. https://doi.org/10.1016/j.ijpharm.2017.05.042.
- 23.
Schütz, K.; Kammerer, D.R.; Carle, R.; Schieber, A. Characterization of phenolic acids and flavonoids in dandelion (Taraxacum officinale WEB. ex WIGG.) root and herb by high-performance liquid chromatography/electrospray ionization mass spectrometry. Rapid Commun. Mass Spectrom. 2005, 19, 179–186. https://doi.org/10.1002/rcm.1767.
- 24.
Qiu, Z.D.; Chen, J.L.; Zeng, W.; Ma, Y.; Chen, T.; Tang, J.F.; Lai, C.J.; Huang, L.Q. Real-time toxicity prediction of Aconitum stewing system using extractive electrospray ionization mass spectrometry. Acta Pharm. Sin. B 2020, 10, 903–912. https://doi.org/10.1016/j.apsb.2019.08.012.
- 25.
Su, H.; Liu, K.T.; Chen, B.H.; Lin, Y.P.; Jiang, Y.M.; Tsai, Y.H.; Chang, F.R.; Shiea, J.; Lee, C.W. Rapid identification of herbal toxins using electrospray laser desorption ionization mass spectrometry for emergency care. J. Food Drug Anal. 2019, 27, 415–427. https://doi.org/10.1016/j.jfda.2018.11.001.
- 26.
Chan, S.L.; Wong, M.Y.; Tang, H.W.; Che, C.M.; Ng, K.M. Tissue-spray ionization mass spectrometry for raw herb analysis. Rapid Commun. Mass Spectrom. 2011, 25, 2837–2843. https://doi.org/10.1002/rcm.5177.
- 27.
Bora, J.; Khan, T.; Mahnot, N. Cold Plasma Treatment Concerning Quality and Safety of Food: A Review. Curr. Res. Nutr. Food Sci. J. 2022, 10, 427–446. https://doi.org/10.12944/CRNFSJ.10.2.3.
- 28.
Pogorzelska-Nowicka, E.; Hanula, M.M.; Brodowska-Trębacz, M.; Górska-Horczyczak, E.; Jankiewicz, U.; Mazur, T.; Marcinkowska-Lesiak, M.; Półtorak, A.; Wierzbicka, A. The Effect of Cold Plasma Pretreatment on Water-Suspended Herbs Measured in the Content of Bioactive Compounds, Antioxidant Activity, Volatile Compounds and Microbial Count of Final Extracts. Antioxidants 2021, 10, 1740.
- 29.
Jin Su, Y.; Sang Yong, K.; Sang Hyun, K.; Tae Yong, S. Antiallergic and Anti-inflammatory Effects of Perilla frutescens var. acuta. Korean J. Pharmacogn. 2012, 43, 163–166.
- 30.
Son, H.-U.; Heo, J.-C.; Seo, M.-S.; Lee, S.-H. Effects of Perilla frutescens L. on anti-oxidant and anti-inflammation activity. Korean J. Food Preserv. 2010, 17, 757–761.
- 31.
Youn, I.; Han, S.; Jung, H.J.; Noh, S.G.; Chung, H.Y.; Koo, Y.K.; Shin, S.; Seo, E.K. Anti-Inflammatory Activity of the Constituents from the Leaves of Perilla frutescens var. acuta. Pharmaceuticals 2023, 16, 1655.
- 32.
Huang, B.P.; Lin, C.H.; Chen, Y.C.; Kao, S.H. Anti-inflammatory effects of Perilla frutescens leaf extract on lipopolysaccharide-stimulated RAW264.7 cells. Mol. Med. Rep. 2014, 10, 1077–1083. https://doi.org/10.3892/mmr.2014.2298.
- 33.
Kangwan, N.; Pintha, K.; Khanaree, C.; Kongkarnka, S.; Chewonarin, T.; Suttajit, M. Anti-inflammatory effect of Perilla frutescens seed oil rich in omega-3 fatty acid on dextran sodium sulfate-induced colitis in mice. Res. Pharm. Sci. 2021, 16, 464–473. https://doi.org/10.4103/1735-5362.323913.
- 34.
Yon-Suk, K.; Mi-Yeun, J.; Beom-Seok, R.; Pyo-Jam, P.; Jae-Hyun, J. Anti-Inflammatory Activities of Extracts from Fermented Taraxacum platycarpum D. Leaves Using Hericium erinaceum Mycelia. J. Korean Soc. Food Sci. Nutr. 2016, 45, 20–26.
- 35.
Talapphet, N.; Palanisamy, S.; Li, C.; Ma, N.; Prabhu, N.M.; You, S. Polysaccharide extracted from Taraxacum platycarpum root exerts immunomodulatory activity via MAPK and NF-κB pathways in RAW264.7 cells. J. Ethnopharmacol. 2021, 281, 114519. https://doi.org/10.1016/j.jep.2021.114519.
- 36.
Cheong, H.; Choi, E.J.; Yoo, G.S.; Kim, K.M.; Ryu, S.Y. Desacetylmatricarin, an anti-allergic component from Taraxacum platycarpum. Planta Med. 1998, 64, 577–578. https://doi.org/10.1055/s-2006-957520.
- 37.
Saxena, R.K.; Vallyathan, V.; Lewis, D.M. Evidence for lipopolysaccharideinduced differentiation of RAW264.7 murine macrophage cell line into dendritic like cells. J. Biosci. 2003, 28, 129–134. https://doi.org/10.1007/BF02970143.