2508001173
  • Open Access
  • Article

Differential Effects of Afatinib on Cytokine- and Oncology-Related Profiles in Mesenchymal and Basal-Like 1 Triple-Negative Breast Cancer Cells

  • Deok-Soo Son 1, *,   
  • Joan E. Obot 1,   
  • Kathleen Campbell 2,   
  • Eun-Sook Lee 3

Received: 04 Jul 2025 | Revised: 28 Jul 2025 | Accepted: 27 Aug 2025 | Published: 04 Sep 2025

Abstract

Triple-negative breast cancer (TNBC) is an aggressive subtype associated with high recurrence, metastasis, and mortality rates. Elevated epidermal growth factor receptor (EGFR) expression in TNBC cells positions it as a promising target for tyrosine kinase inhibitors (TKIs). This study compared the effects of afatinib on cytokine- and oncology-related profiles in mesenchymal BT549 vs. basal-like 1 MB468 TNBC cell lines. We assessed cytotoxicity, signaling pathways, cytokine- and oncology-related protein expression, and overall survival, using cell viability assay, immunoblots, human proteomic arrays, and TNBC datasets. Afatinib exhibited superior cytotoxicity compared to erlotinib, gefitinib, and lapatinib in both TNBC cells. Afatinib suppressed AKT and ERK activation in both cell lines and reduced vimentin and N-cadherin expression in BT549 cells. As cytokines are involved in TNBC development and progression, afatinib altered cytokine-related profiles, decreasing CD147, FGF2, GDF-15, and MIF, with variable CD71 and uPAR expression in BT549 cells, and reducing CD147 and PDGFB in MB468 cells. Oncology-related profile analysis showed decreased FGF2, GAL3, p53, survivin, and vimentin, and increased CTSD, HSP32, and PGRN in BT549 cells, while capG, GAL3, nectin-4, p53, and survivin were reduced in MB468 cells. Notably, elevated GAL3 and nectin-4 expressions were correlated with worse overall survival in basal-like 1 TNBC patients. In conclusion, afatinib exhibits superior cytotoxicity and selectively modulates cytokine- and oncology-related signatures in TNBC subtypes, warranting further mechanistic and in vivo studies to evaluate its therapeutic potential for TNBC.

References 

  • 1.
    Dogra, A.K.; Prakash, A.; Gupta, S.; Gupta, M. Prognostic Significance and Molecular Classification of Triple Negative Breast Cancer: A Systematic Review. Eur. J. Breast Health 2025, 21, 101. https://doi.org/10.4274/ejbh.galenos.2025.2024-10-2.
  • 2.
    Lehmann, B.D.; Bauer, J.A.; Chen, X.; Sanders, M.E.; Chakravarthy, A.B.; Shyr, Y.; Pietenpol, J.A. Identification of human triple-negative breast cancer subtypes and preclinical models for selection of targeted therapies. J. Clin. Investig. 2011, 121, 2750–2767. https://doi.org/10.1172/jci45014.
  • 3.
    Ignacio, R.M.C.; Gibbs, C.R.; Lee, E.S.; Son, D.S. The TGFα-EGFR-Akt signaling axis plays a role in enhancing proinflammatory chemokines in triple-negative breast cancer cells. Oncotarget 2018, 9, 29286–29303. https://doi.org/10.18632/oncotarget.25389.
  • 4.
    Son, D.S.; Kabir, S.M.; Dong, Y.; Lee, E.; Adunyah, S.E. Characteristics of chemokine signatures elicited by EGF and TNF in ovarian cancer cells. J. Inflamm. 2013, 10, 25. https://doi.org/10.1186/1476-9255-10-25.
  • 5.
    Pellecchia, S.; Franchini, M.; Viscido, G.; Arnese, R.; Gambardella, G. Single cell lineage tracing reveals clonal dynamics of anti-EGFR therapy resistance in triple negative breast cancer. Genome Med. 2024, 16, 55. https://doi.org/10.1186/s13073-024-01327-2.
  • 6.
    Son, D.S.; Done, K.A.; Son, J.; Izban, M.G.; Virgous, C.; Lee, E.S.; Adunyah, S.E. Intermittent Fasting Attenuates Obesity-Induced Triple-Negative Breast Cancer Progression by Disrupting Cell Cycle, Epithelial-Mesenchymal Transition, Immune Contexture, and Proinflammatory Signature. Nutrients 2024, 16, 2101. https://doi.org/10.3390/nu16132101.
  • 7.
    Győrffy, B. Integrated analysis of public datasets for the discovery and validation of survival-associated genes in solid tumors. Innovation 2024, 5, 100625. https://doi.org/10.1016/j.xinn.2024.100625.
  • 8.
    Lo, Y.L.; Wang, T.Y.; Chen, C.J.; Chang, Y.H.; Lin, A.M. Two-in-One Nanoparticle Formulation to Deliver a Tyrosine Kinase Inhibitor and microRNA for Targeting Metabolic Reprogramming and Mitochondrial Dysfunction in Gastric Cancer. Pharmaceutics 2022, 14, 1759. https://doi.org/10.3390/pharmaceutics14091759.
  • 9.
    Han, J.M.; Kim, S.M.; Kim, H.L.; Cho, H.J.; Jung, H.J. Natural Cyclophilin A Inhibitors Suppress the Growth of Cancer Stem Cells in Non-Small Cell Lung Cancer by Disrupting Crosstalk between CypA/CD147 and EGFR. Int. J. Mol. Sci. 2023, 24, 9437. https://doi.org/10.3390/ijms24119437.
  • 10.
    Azuma, K.; Kawahara, A.; Sonoda, K.; Nakashima, K.; Tashiro, K.; Watari, K.; Izumi, H.; Kage, M.; Kuwano, M.; Ono, M.; et al. FGFR1 activation is an escape mechanism in human lung cancer cells resistant to afatinib, a pan-EGFR family kinase inhibitor. Oncotarget 2014, 5, 5908–5919. https://doi.org/10.18632/oncotarget.1866.
  • 11.
    Zhan, W.J.; Zhu, J.F.; Wang, L.M. Inhibition of proliferation and induction of apoptosis in RB116 retinoblastoma cells by afatinib treatment. Tumour Biol. 2016, 37, 9249–9254. https://doi.org/10.1007/s13277-015-4768-1.
  • 12.
    Liu, Z.; Fu, Q.; Wang, Y.; Cui, L.; Zhang, W.; Teng, Y.; Yu, P. Synergy between vinorelbine and afatinib in the inhibition of non-small cell lung cancer progression by EGFR and p53 signaling pathways. Biomed. Pharmacother. 2021, 134, 111144. https://doi.org/10.1016/j.biopha.2020.111144.
  • 13.
    Liu, Z.; Shah, N.; Marshall, K.L.; Sprowls, S.A.; Saralkar, P.; Mohammad, A.; Blethen, K.E.; Arsiwala, T.A.; Fladeland, R.; Lockman, P.R.; et al. Overcoming the acquired resistance to gefitinib in lung cancer brain metastasis in vitro and in vivo. Arch. Toxicol. 2021, 95, 3575–3587. https://doi.org/10.1007/s00204-021-03147-4.
  • 14.
    Nakai, K.; Hung, M.C.; Yamaguchi, H. A perspective on anti-EGFR therapies targeting triple-negative breast cancer. Am. J. Cancer Res. 2016, 6, 1609–1623.
  • 15.
    Lin, P.H.; Tseng, L.M.; Lee, Y.H.; Chen, S.T.; Yeh, D.C.; Dai, M.S.; Liu, L.C.; Wang, M.Y.; Lo, C.; Chang, S.; et al. Neoadjuvant afatinib with paclitaxel for triple-negative breast cancer and the molecular characteristics in responders and non-responders. J. Formos. Med. Assoc. 2022, 121, 2538–2547. https://doi.org/10.1016/j.jfma.2022.05.015.
  • 16.
    Schuler, M.; Awada, A.; Harter, P.; Canon, J.L.; Possinger, K.; Schmidt, M.; De Grève, J.; Neven, P.; Dirix, L.; Jonat, W.; et al. A phase II trial to assess efficacy and safety of afatinib in extensively pretreated patients with HER2-negative metastatic breast cancer. Breast Cancer Res. Treat. 2012, 134, 1149–1159. https://doi.org/10.1007/s10549-012-2126-1.
  • 17.
    Canonici, A.; Browne, A.L.; Ibrahim, M.F.K.; Fanning, K.P.; Roche, S.; Conlon, N.T.; O’Neill, F.; Meiller, J.; Cremona, M.; Morgan, C.; et al. Combined targeting EGFR and SRC as a potential novel therapeutic approach for the treatment of triple negative breast cancer. Ther. Adv. Med. Oncol. 2020, 12. https://doi.org/10.1177/1758835919897546.
  • 18.
    Wang, X.; Zhu, X.; Li, B.; Wei, X.; Chen, Y.; Zhang, Y.; Wang, Y.; Zhang, W.; Liu, S.; Liu, Z.; et al. Intelligent Biomimetic Nanoplatform for Systemic Treatment of Metastatic Triple-Negative Breast Cancer via Enhanced EGFR-Targeted Therapy and Immunotherapy. ACS Appl. Mater. Interfaces 2022, 14, 23152–23163. https://doi.org/10.1021/acsami.2c02925.
Share this article:
How to Cite
Son, D.-S.; Obot, J. E.; Campbell, K.; Lee, E.-S. Differential Effects of Afatinib on Cytokine- and Oncology-Related Profiles in Mesenchymal and Basal-Like 1 Triple-Negative Breast Cancer Cells. Journal of Inflammatory and Infectious Medicine 2025, 1 (3), 1. https://doi.org/10.53941/jiim.2025.100013.
RIS
BibTex
Copyright & License
article copyright Image
Copyright (c) 2025 by the authors.