2509001279
  • Open Access
  • Review

Long Non-Coding RNAs in Viral Immunity: From Regulatory Mechanisms to Therapeutic Potential

  • Majd H. Aldweik 1,   
  • Yasmin Hisham  2, *, †

Received: 06 Aug 2025 | Revised: 09 Sep 2025 | Accepted: 26 Sep 2025 | Published: 30 Sep 2025

Abstract

Long non-coding RNAs (lncRNAs) are a class of regulatory RNAs that do not encode proteins but play essential roles in controlling gene expression at multiple levels, including chromatin modification, transcription, and RNA stability. LncRNAs have emerged as important regulators of antiviral immunity. These molecules function in both cis and trans to modulate chromatin states, guide transcription factors, scaffold signaling complexes, or act as decoys for regulatory proteins and RNAs. During viral infection, host lncRNAs are dynamically expressed and can either enhance antiviral responses or be hijacked by viruses to suppress immunity, promote replication, or facilitate latency. Virus-encoded lncRNAs also manipulate host gene expression to their advantage. Recent research has uncovered specific lncRNAs involved in regulating interferon signaling, cytokine production, antigen presentation, and immune cell differentiation. Concurrently, advances in computational biology have enabled the discovery and characterization of lncRNAs through methods such as RNA-seq analysis, transcript assembly, coding potential prediction, co-expression network analysis, and interaction modeling with proteins and RNAs. Functional inference is further supported by enrichment analyses and studies of conservation and localization. This mini review summarizes the current understanding of host and viral lncRNAs in antiviral defense and pathogenesis. It also highlights the translational potential of lncRNAs as biomarkers and therapeutic targets, discussing emerging strategies including CRISPR-based modulation, synthetic RNA therapeutics, and innovative delivery methods. Together, these findings underscore the critical role of lncRNAs in viral immunity and their promise in guiding novel approaches for diagnosing and treating viral infections.

References 

  • 1.
    Kopp, F.; Mendell, J.T. Functional Classification and Experimental Dissection of Long Noncoding RNAs. Cell 2018, 172, 393–407. https://doi.org/10.1016/j.cell.2018.01.011.
  • 2.
    Statello, L.; Guo, C.-J.; Chen, L.-L.; Huarte, M. Gene Regulation by Long Non-Coding RNAs and Its Biological Functions. Nat. Rev. Mol. Cell Biol. 2021, 22, 96–118. https://doi.org/10.1038/s41580-020-00315-9.
  • 3.
    Jarroux, J.; Morillon, A.; Pinskaya, M. History, Discovery, and Classification of lncRNAs. Adv. Exp. Med. Biol. 2017, 1008, 1–46. https://doi.org/10.1007/978-981-10-5203-3_1.
  • 4.
    Mattick, J.S.; Amaral, P.P.; Carninci, P.; Carpenter, S.; Chang, H.Y.; Chen, L.-L.; Chen, R.; Dean, C.; Dinger, M.E.; Fitzgerald, K.A.; et al. Long Non-Coding RNAs: Definitions, Functions, Challenges and Recommendations. Nat. Rev. Mol. Cell Biol. 2023, 24, 430–447. https://doi.org/10.1038/s41580-022-00566-8.
  • 5.
    Deniz, E.; Erman, B. Long Noncoding RNA (lincRNA), a New Paradigm in Gene Expression Control. Funct. Integr. Genom. 2017, 17, 135–143. https://doi.org/10.1007/s10142-016-0524-x.
  • 6.
    Atianand, M.K.; Fitzgerald, K.A. Long Non-Coding RNAs and Control of Gene Expression in the Immune System. Trends Mol. Med. 2014, 20, 623–631. https://doi.org/10.1016/j.molmed.2014.09.002.
  • 7.
    Oo, J.A.; Brandes, R.P.; Leisegang, M.S. Long Non-Coding RNAs: Novel Regulators of Cellular Physiology and Function. Pflugers Arch. 2022, 474, 191–204. https://doi.org/10.1007/s00424-021-02641-z.
  • 8.
    Kalita, A.I.; Keller Valsecchi, C.I. Dosage Compensation in Non-Model Insects-Progress and Perspectives. Trends Genet. 2025, 41, 76–98. https://doi.org/10.1016/j.tig.2024.08.010.
  • 9.
    Wang, T.; Li, J.; Yang, L.; Wu, M.; Ma, Q. The Role of Long Non-Coding RNAs in Human Imprinting Disorders: Prospective Therapeutic Targets. Front. Cell Dev. Biol. 2021, 9, 730014. https://doi.org/10.3389/fcell.2021.730014.
  • 10.
    Ouyang, J.; Zhong, Y.; Zhang, Y.; Yang, L.; Wu, P.; Hou, X.; Xiong, F.; Li, X.; Zhang, S.; Gong, Z.; et al. Long Non-Coding RNAs Are Involved in Alternative Splicing and Promote Cancer Progression. Br. J. Cancer 2022, 126, 1113–1124. https://doi.org/10.1038/s41416-021-01600-w.
  • 11.
    Hazra, R.; Brine, L.; Garcia, L.; Benz, B.; Chirathivat, N.; Shen, M.M.; Wilkinson, J.E.; Lyons, S.K.; Spector, D.L. Platr4 Is an Early Embryonic lncRNA That Exerts Its Function Downstream on Cardiogenic Mesodermal Lineage Commitment. Dev. Cell 2022, 57, 2450–2468.e7. https://doi.org/10.1016/j.devcel.2022.10.002.
  • 12.
    de Goede, O.M.; Nachun, D.C.; Ferraro, N.M.; Gloudemans, M.J.; Rao, A.S.; Smail, C.; Eulalio, T.Y.; Aguet, F.; Ng, B.; Xu, J.; et al. Population-Scale Tissue Transcriptomics Maps Long Non-Coding RNAs to Complex Disease. Cell 2021, 184, 2633–2648.e19. https://doi.org/10.1016/j.cell.2021.03.050.
  • 13.
    Vierbuchen, T.; Fitzgerald, K.A. Long Non-Coding RNAs in Antiviral Immunity. Semin. Cell Dev. Biol. 2021, 111, 126–134. https://doi.org/10.1016/j.semcdb.2020.06.009.
  • 14.
    Meng, X.-Y.; Luo, Y.; Anwar, M.N.; Sun, Y.; Gao, Y.; Zhang, H.; Munir, M.; Qiu, H.-J. Long Non-Coding RNAs: Emerging and Versatile Regulators in Host-Virus Interactions. Front. Immunol. 2017, 8, 1663. https://doi.org/10.3389/fimmu.2017.01663.
  • 15.
    Sajjad, N.; Wang, S.; Liu, P.; Chen, J.-L.; Chi, X.; Liu, S.; Ma, S. Functional Roles of Non-Coding RNAs in the Interaction Between Host and Influenza A Virus. Front. Microbiol. 2021, 12, 742984. https://doi.org/10.3389/fmicb.2021.742984.
  • 16.
    Enguita, F.J.; Leitão, A.L.; McDonald, J.T.; Zaksas, V.; Das, S.; Galeano, D.; Taylor, D.; Wurtele, E.S.; Saravia-Butler, A.; Baylin, S.B.; et al. The Interplay between lncRNAs, RNA-Binding Proteins and Viral Genome during SARS-CoV-2 Infection Reveals Strong Connections with Regulatory Events Involved in RNA Metabolism and Immune Response. Theranostics 2022, 12, 3946–3962. https://doi.org/10.7150/thno.73268.
  • 17.
    Della Bella, E.; Koch, J.; Baerenfaller, K. Translation and Emerging Functions of Non-Coding RNAs in Inflammation and Immunity. Allergy 2022, 77, 2025–2037. https://doi.org/10.1111/all.15234.
  • 18.
    Pushparaj, S.; Zhu, Z.; Huang, C.; More, S.; Liang, Y.; Lin, K.; Vaddadi, K.; Liu, L. Regulation of Influenza A Virus Infection by Lnc-PINK1-2:5. J. Cell Mol. Med. 2022, 26, 2285–2298. https://doi.org/10.1111/jcmm.17249.
  • 19.
    Ma, Y.; Ouyang, J.; Wei, J.; Maarouf, M.; Chen, J.-L. Involvement of Host Non-Coding RNAs in the Pathogenesis of the Influenza Virus. Int. J. Mol. Sci. 2016, 18, 39. https://doi.org/10.3390/ijms18010039.
  • 20.
    Gomez, J.A.; Wapinski, O.L.; Yang, Y.W.; Bureau, J.-F.; Gopinath, S.; Monack, D.M.; Chang, H.Y.; Brahic, M.; Kirkegaard, K. The NeST Long ncRNA Controls Microbial Susceptibility and Epigenetic Activation of the Interferon-γ Locus. Cell 2013, 152, 743–754. https://doi.org/10.1016/j.cell.2013.01.015.
  • 21.
    Ouyang, J.; Zhu, X.; Chen, Y.; Wei, H.; Chen, Q.; Chi, X.; Qi, B.; Zhang, L.; Zhao, Y.; Gao, G.F.; et al. NRAV, a Long Noncoding RNA, Modulates Antiviral Responses through Suppression of Interferon-Stimulated Gene Transcription. Cell Host Microbe 2014, 16, 616–626. https://doi.org/10.1016/j.chom.2014.10.001.
  • 22.
    Chen, R.; Zou, J.; Chen, J.; Zhong, X.; Kang, R.; Tang, D. Pattern Recognition Receptors: Function, Regulation and Therapeutic Potential. Signal Transduct. Target. Ther. 2025, 10, 216. https://doi.org/10.1038/s41392-025-02264-1.
  • 23.
    Friedl, M.-S.; Djakovic, L.; Kluge, M.; Hennig, T.; Whisnant, A.W.; Backes, S.; Dölken, L.; Friedel, C.C. HSV-1 and Influenza Infection Induce Linear and Circular Splicing of the Long NEAT1 Isoform. PLoS ONE 2022, 17, e0276467. https://doi.org/10.1371/journal.pone.0276467.
  • 24.
    Media, T.S.; Cano-Aroca, L.; Tagawa, T. Non-Coding RNAs and Immune Evasion in Human Gamma-Herpesviruses. Viruses 2025, 17, 1006. https://doi.org/10.3390/v17071006.
  • 25.
    Meydan, C.; Madrer, N.; Soreq, H. The Neat Dance of COVID-19: NEAT1, DANCR, and Co-Modulated Cholinergic RNAs Link to Inflammation. Front. Immunol. 2020, 11, 590870. https://doi.org/10.3389/fimmu.2020.590870.
  • 26.
    Huan, C.; Li, Z.; Ning, S.; Wang, H.; Yu, X.-F.; Zhang, W. Long Noncoding RNA Uc002yug.2 Activates HIV-1 Latency through Regulation of mRNA Levels of Various RUNX1 Isoforms and Increased Tat Expression. J. Virol. 2018, 92, e01844-17. https://doi.org/10.1128/JVI.01844-17.
  • 27.
    Imamura, K.; Imamachi, N.; Akizuki, G.; Kumakura, M.; Kawaguchi, A.; Nagata, K.; Kato, A.; Kawaguchi, Y.; Sato, H.; Yoneda, M.; et al. Long Noncoding RNA NEAT1-Dependent SFPQ Relocation from Promoter Region to Paraspeckle Mediates IL8 Expression upon Immune Stimuli. Mol. Cell 2014, 53, 393–406. https://doi.org/10.1016/j.molcel.2014.01.009.
  • 28.
    Guo, F.; Yuan, Y.; Chen, Z.; Gao, F.; Li, X.; Wang, H.; Wang, X.; Bai, G. Downregulation of the Long Non-Coding RNA MALAT1 in Tenofovir-Treated Pregnant Women with Hepatitis B Virus Infection Promotes Immune Recovery of Natural Killer Cells via the Has-miR-155-5p/HIF-1α Axis. Int. Immunopharmacol. 2022, 107, 108701. https://doi.org/10.1016/j.intimp.2022.108701.
  • 29.
    Liu, W.; Wang, Z.; Liu, L.; Yang, Z.; Liu, S.; Ma, Z.; Liu, Y.; Ma, Y.; Zhang, L.; Zhang, X.; et al. LncRNA Malat1 Inhibition of TDP43 Cleavage Suppresses IRF3-Initiated Antiviral Innate Immunity. Proc. Natl. Acad. Sci. USA 2020, 117, 23695–23706. https://doi.org/10.1073/pnas.2003932117.
  • 30.
    Barriocanal, M.; Carnero, E.; Segura, V.; Fortes, P. Long Non-Coding RNA BST2/BISPR Is Induced by IFN and Regulates the Expression of the Antiviral Factor Tetherin. Front. Immunol. 2014, 5, 655. https://doi.org/10.3389/fimmu.2014.00655.
  • 31.
    Ismail, M.; Fadul, M.M.; Taha, R.; Siddig, O.; Elhafiz, M.; Yousef, B.A.; Jiang, Z.; Zhang, L.; Sun, L. Dynamic Role of Exosomal Long Non-Coding RNA in Liver Diseases: Pathogenesis and Diagnostic Aspects. Hepatol. Int. 2024, 18, 1715–1730. https://doi.org/10.1007/s12072-024-10722-1.
  • 32.
    Pan, Q.; Zhao, Z.; Liao, Y.; Chiu, S.-H.; Wang, S.; Chen, B.; Chen, N.; Chen, Y.; Chen, J.-L. Identification of an Interferon-Stimulated Long Noncoding RNA (LncRNA ISR) Involved in Regulation of Influenza A Virus Replication. Int. J. Mol. Sci. 2019, 20, 5118. https://doi.org/10.3390/ijms20205118.
  • 33.
    Firoozi, Z.; Mohammadisoleimani, E.; Bagheri, F.; Taheri, A.; Pezeshki, B.; Naghizadeh, M.M.; Daraei, A.; Karimi, J.; Gholampour, Y.; Mansoori, Y.; et al. Evaluation of the Expression of Infection-Related Long Noncoding RNAs among COVID-19 Patients: A Case-Control Study. Genet. Res. 2024, 2024, 3391054. https://doi.org/10.1155/2024/3391054.
  • 34.
    Wang, J.; Wang, Y.; Zhou, R.; Zhao, J.; Zhang, Y.; Yi, D.; Li, Q.; Zhou, J.; Guo, F.; Liang, C.; et al. Host Long Noncoding RNA lncRNA-PAAN Regulates the Replication of Influenza A Virus. Viruses 2018, 10, 330. https://doi.org/10.3390/v10060330.
  • 35.
    Li, X.; Guo, G.; Lu, M.; Chai, W.; Li, Y.; Tong, X.; Li, J.; Jia, X.; Liu, W.; Qi, D.; et al. Long Noncoding RNA Lnc-MxA Inhibits Beta Interferon Transcription by Forming RNA-DNA Triplexes at Its Promoter. J. Virol. 2019, 93, e00786-19. https://doi.org/10.1128/JVI.00786-19.
  • 36.
    Sefatjoo, Z.; Mohebbi, S.R.; Hosseini, S.M.; Shoraka, S.; Saeedi Niasar, M.; Baghaei, K.; Meyfour, A.; Sadeghi, A.; Malekpour, H.; Asadzadeh Aghdaei, H.; et al. Evaluation of Long Non-Coding RNAs EGOT, NRAV, NRIR and mRNAs ISG15 and IFITM3 Expressions in COVID-19 Patients. Cytokine 2024, 175, 156495. https://doi.org/10.1016/j.cyto.2023.156495.
  • 37.
    Li, J.; Li, M.; Wang, X.; Sun, M.; Ma, C.; Liang, W.; Gao, X.; Wei, L. Long Noncoding RNA NRAV Promotes Respiratory Syncytial Virus Replication by Targeting the MicroRNA miR-509-3p/Rab5c Axis To Regulate Vesicle Transportation. J. Virol. 2020, 94, e00113-20. https://doi.org/10.1128/JVI.00113-20.
  • 38.
    Paniri, A.; Akhavan-Niaki, H. Emerging Role of IL-6 and NLRP3 Inflammasome as Potential Therapeutic Targets to Combat COVID-19: Role of lncRNAs in Cytokine Storm Modulation. Life Sci. 2020, 257, 118114. https://doi.org/10.1016/j.lfs.2020.118114.
  • 39.
    John, K.; Huntress, I.; Smith, E.; Chou, H.; Tollison, T.S.; Covarrubias, S.; Crisci, E.; Carpenter, S.; Peng, X. Human Long Noncoding RNA, VILMIR, Is Induced by Major Respiratory Viral Infections and Modulates the Host Interferon Response. bioRxiv 2024. https://doi.org/10.1101/2024.03.25.586578.
  • 40.
    Abbasi-Kolli, M.; Sadri Nahand, J.; Kiani, S.J.; Khanaliha, K.; Khatami, A.; Taghizadieh, M.; Torkamani, A.R.; Babakhaniyan, K.; Bokharaei-Salim, F. The Expression Patterns of MALAT-1, NEAT-1, THRIL, and miR-155-5p in the Acute to the Post-Acute Phase of COVID-19 Disease. Braz. J. Infect. Dis. 2022, 26, 102354. https://doi.org/10.1016/j.bjid.2022.102354.
  • 41.
    Wang, M.-R.; Bai, C.-S.; Dai, J.; Yang, L.; Quan, F.-Y.; Ma, J.; Chen, X.-Y.; Zhu, S.-W.; Xu, Y.; Xiang, Z.; et al. LncRNA MALAT1 Facilitates HIV-1 Replication by Upregulation of CHCHD2 and Downregulation of IFN-I Expression. Mol. Cell. Proteom. 2025, 24, 100997. https://doi.org/10.1016/j.mcpro.2025.100997.
  • 42.
    Cyr, Y.; Gourvest, M.; Ciabattoni, G.O.; Zhang, T.; Newman, A.A.; Zahr, T.; Delbare, S.; Schlamp, F.; Dittmann, M.; Moore, K.J.; et al. lncRNA CARINH Regulates Expression and Function of Innate Immune Transcription Factor IRF1 in Macrophages. Life Sci. Alliance 2025, 8, e202403021. https://doi.org/10.26508/lsa.202403021.
  • 43.
    Chen, W.; Liu, J.; Ge, F.; Chen, Z.; Qu, M.; Nan, K.; Gu, J.; Jiang, Y.; Gao, S.; Liao, Y.; et al. Long Noncoding RNA HOTAIRM1 Promotes Immunosuppression in Sepsis by Inducing T Cell Exhaustion. J. Immunol. 2022, 208, 618–632. https://doi.org/10.4049/jimmunol.2100709.
  • 44.
    Wang, Y.; Zhong, H.; Xie, X.; Chen, C.Y.; Huang, D.; Shen, L.; Zhang, H.; Chen, Z.W.; Zeng, G. Long Noncoding RNA Derived from CD244 Signaling Epigenetically Controls CD8+ T-Cell Immune Responses in Tuberculosis Infection. Proc. Natl. Acad. Sci. USA 2015, 112. https://doi.org/10.1073/pnas.1501662112.
  • 45.
    Kolenda, T.; Białas, P.; Guglas, K.; Stasiak, M.; Kozłowska-Masłoń, J.; Tylkowska, K.; Zapłata, A.; Poter, P.; Janiczek-Polewska, M.; Mantaj, P.; et al. lncRNA EGOT Is the Marker of HPV Infection and a Prognostic Factor for HNSCC Patients. Biomedicines 2025, 13, 798. https://doi.org/10.3390/biomedicines13040798.
  • 46.
    Wang, P.; Xu, J.; Wang, Y.; Cao, X. An Interferon-Independent lncRNA Promotes Viral Replication by Modulating Cellular Metabolism. Science 2017, 358, 1051–1055. https://doi.org/10.1126/science.aao0409.
  • 47.
    Runtsch, M.C.; O’Neill, L.A. GOTcha: lncRNA-ACOD1 Targets Metabolism during Viral Infection. Cell Res. 2018, 28, 137–138. https://doi.org/10.1038/cr.2017.153.
  • 48.
    Xiong, Y.; Yuan, J.; Zhang, C.; Zhu, Y.; Kuang, X.; Lan, L.; Wang, X. The STAT3-Regulated Long Non-Coding RNA Lethe Promote the HCV Replication. Biomed. Pharmacother. 2015, 72, 165–171. https://doi.org/10.1016/j.biopha.2015.04.019.
  • 49.
    Baysal, A.Ç.; Kıymaz, Y.Ç.; Şahin, N.Ö.; Bakır, M. Investigation of Long Noncoding RNA-NRAV and Long Noncoding RNA-Lethe Expression in Crimean−Congo Hemorrhagic Fever. J. Med. Virol. 2024, 96, e70142. https://doi.org/10.1002/jmv.70142.
  • 50.
    Chai, W.; Li, J.; Shangguan, Q.; Liu, Q.; Li, X.; Qi, D.; Tong, X.; Liu, W.; Ye, X. Lnc-ISG20 Inhibits Influenza A Virus Replication by Enhancing ISG20 Expression. J. Virol. 2018, 92, e00539-18. https://doi.org/10.1128/JVI.00539-18.
  • 51.
    Zhao, L.; Xia, M.; Wang, K.; Lai, C.; Fan, H.; Gu, H.; Yang, P.; Wang, X. A Long Non-Coding RNA IVRPIE Promotes Host Antiviral Immune Responses Through Regulating Interferon Β1 and ISG Expression. Front. Microbiol. 2020, 11, 260. https://doi.org/10.3389/fmicb.2020.00260.
  • 52.
    Nishitsuji, H.; Ujino, S.; Yoshio, S.; Sugiyama, M.; Mizokami, M.; Kanto, T.; Shimotohno, K. Long Noncoding RNA #32 Contributes to Antiviral Responses by Controlling Interferon-Stimulated Gene Expression. Proc. Natl. Acad. Sci. USA 2016, 113, 10388–10393. https://doi.org/10.1073/pnas.1525022113.
  • 53.
    Wang, Y.; Huo, Z.; Lin, Q.; Lin, Y.; Chen, C.; Huang, Y.; Huang, C.; Zhang, J.; He, J.; Liu, C.; et al. Positive Feedback Loop of Long Noncoding RNA OASL-IT1 and Innate Immune Response Restricts the Replication of Zika Virus in Epithelial A549 Cells. J. Innate Immun. 2021, 13, 179–193. https://doi.org/10.1159/000513606.
  • 54.
    Chao, T.-C.; Zhang, Q.; Li, Z.; Tiwari, S.K.; Qin, Y.; Yau, E.; Sanchez, A.; Singh, G.; Chang, K.; Kaul, M.; et al. The Long Noncoding RNA HEAL Regulates HIV-1 Replication through Epigenetic Regulation of the HIV-1 Promoter. mBio 2019, 10, e02016-19. https://doi.org/10.1128/mBio.02016-19.
  • 55.
    Krueger, F.; Andrews, S.R. Bismark: A Flexible Aligner and Methylation Caller for Bisulfite-Seq Applications. Bioinformatics 2011, 27, 1571–1572. https://doi.org/10.1093/bioinformatics/btr167.
  • 56.
    Dong, X.; Du, M.R.M.; Gouil, Q.; Tian, L.; Jabbari, J.S.; Bowden, R.; Baldoni, P.L.; Chen, Y.; Smyth, G.K.; Amarasinghe, S.L.; et al. Benchmarking Long-Read RNA-Sequencing Analysis Tools Using in Silico Mixtures. Nat. Methods 2023, 20, 1810–1821. https://doi.org/10.1038/s41592-023-02026-3.
  • 57.
    Santus, L.; Sopena-Rios, M.; García-Pérez, R.; Lin, A.E.; Adams, G.C.; Barnes, K.G.; Siddle, K.J.; Wohl, S.; Reverter, F.; Rinn, J.L.; et al. Single-Cell Profiling of lncRNA Expression during Ebola Virus Infection in Rhesus Macaques. Nat. Commun. 2023, 14, 3866. https://doi.org/10.1038/s41467-023-39627-7.
  • 58.
    Wang, L.; Park, H.J.; Dasari, S.; Wang, S.; Kocher, J.-P.; Li, W. CPAT: Coding-Potential Assessment Tool Using an Alignment-Free Logistic Regression Model. Nucleic Acids Res. 2013, 41, e74. https://doi.org/10.1093/nar/gkt006.
  • 59.
    Varet, H.; Brillet-Guéguen, L.; Coppée, J.-Y.; Dillies, M.-A. SARTools: A DESeq2- and EdgeR-Based R Pipeline for Comprehensive Differential Analysis of RNA-Seq Data. PLoS ONE 2016, 11, e0157022. https://doi.org/10.1371/journal.pone.0157022.
  • 60.
    Colantoni, A.; Rupert, J.; Vandelli, A.; Tartaglia, G.G.; Zacco, E. Zooming in on Protein–RNA Interactions: A Multi-Level Workflow to Identify Interaction Partners. Biochem. Soc. Trans. 2020, 48, 1529–1543. https://doi.org/10.1042/BST20191059.
  • 61.
    Li, J.; Ma, W.; Zeng, P.; Wang, J.; Geng, B.; Yang, J.; Cui, Q. LncTar: A Tool for Predicting the RNA Targets of Long Noncoding RNAs. Brief. Bioinform. 2015, 16, 806–812. https://doi.org/10.1093/bib/bbu048.
  • 62.
    Kolberg, L.; Raudvere, U.; Kuzmin, I.; Adler, P.; Vilo, J.; Peterson, H. G: Profiler—Interoperable Web Service for Functional Enrichment Analysis and Gene Identifier Mapping (2023 Update). Nucleic Acids Res. 2023, 51, W207–W212. https://doi.org/10.1093/nar/gkad347.
  • 63.
    Xu, S.; Hu, E.; Cai, Y.; Xie, Z.; Luo, X.; Zhan, L.; Tang, W.; Wang, Q.; Liu, B.; Wang, R.; et al. Using clusterProfiler to Characterize Multiomics Data. Nat. Protoc. 2024, 19, 3292–3320. https://doi.org/10.1038/s41596-024-01020-z.
  • 64.
    Liu, H.; Li, D.; Wu, H. lncLocator-Imb: An Imbalance-Tolerant Ensemble Deep Learning Framework for Predicting Long Non-Coding RNA Subcellular Localization. IEEE J. Biomed. Health Inform. 2024, 28, 538–547. https://doi.org/10.1109/JBHI.2023.3324709.
  • 65.
    Mas-Ponte, D.; Carlevaro-Fita, J.; Palumbo, E.; Hermoso Pulido, T.; Guigo, R.; Johnson, R. LncATLAS Database for Subcellular Localization of Long Noncoding RNAs. RNA 2017, 23, 1080–1087. https://doi.org/10.1261/rna.060814.117.
  • 66.
    Ramani, R.; Krumholz, K.; Huang, Y.-F.; Siepel, A. PhastWeb: A Web Interface for Evolutionary Conservation Scoring of Multiple Sequence Alignments Using phastCons and phyloP. Bioinformatics 2019, 35, 2320–2322. https://doi.org/10.1093/bioinformatics/bty966.
  • 67.
    Thatai, A.K.S.; Ammankallu, S.; Devasahayam Arokia Balaya, R.; Soman, S.P.; Nisar, M.; Babu, S.; John, L.; George, A.; Anto, C.K.; Sanjeev, D.; et al. VirhostlncR: A Comprehensive Database to Explore lncRNAs and Their Targets in Viral Infections. Comput. Biol. Med. 2023, 164, 107279. https://doi.org/10.1016/j.compbiomed.2023.107279.
  • 68.
    Suarez, B.; Prats-Mari, L.; Unfried, J.P.; Fortes, P. LncRNAs in the Type I Interferon Antiviral Response. IJMS 2020, 21, 6447. https://doi.org/10.3390/ijms21176447.
  • 69.
    Ginn, L.; La Montagna, M.; Wu, Q.; Shi, L. Diverse Roles of Long Non-coding RNAs in Viral Diseases. Rev. Med. Virol. 2021, 31, e2198. https://doi.org/10.1002/rmv.2198.
  • 70.
    Makgoo, L.; Mosebi, S.; Mbita, Z. Long Noncoding RNAs (lncRNAs) in HIV-Mediated Carcinogenesis: Role in Cell Homeostasis, Cell Survival Processes and Drug Resistance. Noncoding RNA Res. 2022, 7, 184–196. https://doi.org/10.1016/j.ncrna.2022.07.003.
  • 71.
    Saha, A.; Ganguly, A.; Kumar, A.; Srivastava, N.; Pathak, R. Harnessing Epigenetics: Innovative Approaches in Diagnosing and Combating Viral Acute Respiratory Infections. Pathogens 2025, 14, 129. https://doi.org/10.3390/pathogens14020129.
  • 72.
    Kulkarni, C.R.; Prajnashree, A.; Nyamagoud, S.B. CRISPR Technology in Antiviral Therapy: Advancements, Applications, and Implications. D Y Patil. J. Health Sci. 2025, 13, 25–31. https://doi.org/10.4103/DYPJ.DYPJ_2_25.
  • 73.
    Papadopoulos, K.I.; Papadopoulou, A.; Aw, T.C. Anexelekto (AXL) No More: microRNA-155 (miR-155) Controls the “Uncontrolled” in SARS-CoV-2. Human. Cell 2024, 37, 582–592. https://doi.org/10.1007/s13577-024-01041-6.
  • 74.
    Hull, R.; Mbita, Z.; Dlamini, Z. Long Non-Coding RNAs (LncRNAs), Viral Oncogenomics, and Aberrant Splicing Events: Therapeutics Implications. Am. J. Cancer Res. 2021, 11, 866–883.
  • 75.
    Wang, Z.; Aftab, M.; Dong, Z.; Jiang, Y.; Liu, K. LncRNA–Protein Interactions: A Key to Deciphering LncRNA Mechanisms. Biomolecules 2025, 15, 881. https://doi.org/10.3390/biom15060881.
  • 76.
    Ruiz Ramírez, A.V.; Prado Montes De Oca, E. Therapeutic Potential of Long Non-Coding RNAs of HIV-1, SARS-CoV-2, and Endogenous Retroviruses. Front. Virol. 2022, 2, 849349. https://doi.org/10.3389/fviro.2022.849349.
  • 77.
    Lin, W.; Liu, H.; Tang, Y.; Wei, Y.; Wei, W.; Zhang, L.; Chen, J. The Development and Controversy of Competitive Endogenous RNA Hypothesis in Non-Coding Genes. Mol. Cell Biochem. 2021, 476, 109–123. https://doi.org/10.1007/s11010-020-03889-2.
  • 78.
    Kandeel, M. Oncogenic Viruses-Encoded microRNAs and Their Role in the Progression of Cancer: Emerging Targets for Antiviral and Anticancer Therapies. Pharmaceuticals 2023, 16, 485. https://doi.org/10.3390/ph16040485.
  • 79.
    Li, Z.; Gao, J.; Xiang, X.; Deng, J.; Gao, D.; Sheng, X. Viral Long Non-Coding RNA Regulates Virus Life-Cycle and Pathogenicity. Mol. Biol. Rep. 2022, 49, 6693–6700. https://doi.org/10.1007/s11033-022-07268-6.
  • 80.
    Kulkarni, V.; Jayakumar, S.; Mohan, M.; Kulkarni, S. Aid or Antagonize: Nuclear Long Noncoding RNAs Regulate Host Responses and Outcomes of Viral Infections. Cells 2023, 12, 987. https://doi.org/10.3390/cells12070987.
  • 81.
    Bergara-Muguruza, L.; Castellanos-Rubio, A.; Santin, I.; Olazagoitia-Garmendia, A. lncRNA Involvement in Immune-Related Diseases-from SNP Association to Implication in Pathogenesis and Therapeutic Potential. J. Transl. Genet. Genom. 2023, 7, 213–229. https://doi.org/10.20517/jtgg.2023.14.
  • 82.
    Park, J.; Giudicatti, A.J.; Bader, Z.E.; Han, M.K.; Møller, C.; Arce, A.L.; Xu, Z.-Y.; Yang, S.W.; Manavella, P.A.; Yun, D.-J. The high expression of osmotically responsive gene15–histone deacetylase9 Complex Associates with hyponastic leaves 1 to Modulate microRNA Expression in Response to Abscisic Acid Signaling. Plant Cell 2023, 35, 2910–2928. https://doi.org/10.1093/plcell/koad132.
  • 83.
    Li, Y.; Wang, Y.; Zhao, H.; Pan, Q.; Chen, G. Engineering Strategies of Plant-Derived Exosome-Like Nanovesicles: Current Knowledge and Future Perspectives. IJN 2024, 19, 12793–12815. https://doi.org/10.2147/IJN.S496664.
  • 84.
    Sergazy, S.; Adekenov, S.; Khabarov, I.; Adekenova, K.; Maikenova, A.; Aljofan, M. Harnessing Mammalian- and Plant-Derived Exosomes for Drug Delivery: A Comparative Review. IJMS 2025, 26, 4857. https://doi.org/10.3390/ijms26104857.
  • 85.
    Liu, C.; Yu, Y.; Fang, L.; Wang, J.; Sun, C.; Li, H.; Zhuang, J.; Sun, C. Plant-Derived Nanoparticles and Plant Virus Nanoparticles: Bioactivity, Health Management, and Delivery Potential. Crit. Rev. Food Sci. Nutr. 2024, 64, 8875–8891. https://doi.org/10.1080/10408398.2023.2204375.
Share this article:
How to Cite
Aldweik, M. H.; Hisham , Y. Long Non-Coding RNAs in Viral Immunity: From Regulatory Mechanisms to Therapeutic Potential. Journal of Inflammatory and Infectious Medicine 2025, 1 (3), 3. https://doi.org/10.53941/jiim.2025.100015.
RIS
BibTex
Copyright & License
article copyright Image
Copyright (c) 2025 by the authors.