2510001783
  • Open Access
  • Mini Review

Cytokines in Pathogen Infection and Autoimmune Disease

  • Hwi Park 1,†,   
  • Mi-Jeong Choi 2,†,   
  • Taemin Kim 1,   
  • Jiwoo Kim 1,   
  • Jinsung Choi 1,   
  • Jinho Jo 1,   
  • Haekyoung Lee  2,   
  • Yuri Kim 2,   
  • Byeongju Kang 2,   
  • Taehwa Jeong 2,   
  • Gyumin Choi 2,   
  • Soohyun Kim 1,3,*

Received: 08 Aug 2025 | Revised: 06 Oct 2025 | Accepted: 22 Oct 2025 | Published: 25 Dec 2025

Abstract

Immune responses have long been classified into T helper (Th)1, Th2, and Th17, with different Th type immune cells classified according to the cells that secrete specific cytokines. However, careful examination of cytokine production allows distinction between Th1 and Th2 depending on the type of infectious pathogen. For instance, Th1 cytokines are produced after intracellular pathogens such as intracellular bacteria, viruses, and protozoa whereas Th2 cytokines are produced after extracellular pathogens such as multicellular parasites. Autoimmune diseases are caused by chronic inflammation due to overproduction of Th1 or Th2 cytokines without a clear cause, but are related to aging, genetic factors, and environmental factors. This brief review explores the regulation of immune responses by cytokines, outlining potential theories for understanding infectious and inflammatory autoimmune diseases.

References 

  • 1.

    Kim, S. Cytokines in Immune Response and Disorders: Cytokines and Soluble Inhibitors. J. Inflamm. Infect. Med. 2025, 1, 4.

  • 2.

    Al-Qahtani, A.A.; Alhamlan, F.S. Pro-Inflammatory and Anti-Inflammatory Interleukins in Infectious Diseases: A Comprehensive Review. Trop. Med. Infect. Dis. 2024, 9, 13.

  • 3.

    Shi, Y.; Strasser, A.; Green, D.R.; et al. Legacy of the discovery of the T-cell receptor: 40 years of shaping basic immunology and translational work to develop novel therapies. Cell Mol. Immunol. 2024, 21, 790–797.

  • 4.

    Chaplin, D.D. Overview of the immune response. J. Allergy Clin. Immunol. 2010, 125, S3–S23.

  • 5.

    Rock, K.L.; Farfan-Arribas, D.J.; Colbert, J.D.; et al. Re-examining class-I presentation and the DRiP hypothesis. Trends Immunol. 2014, 35, 144–152.

  • 6.

    Grandea, A.G., 3rd; Androlewicz, M.J.; Athwal, R.S.; et al. Dependence of peptide binding by MHC class I molecules on their interaction with TAP. Science 1995, 270, 105–108.

  • 7.

    Frickel, E.M.; Frei, P.; Bouvier, M.; et al. ERp57 is a multifunctional thiol-disulfide oxidoreductase. J. Biol. Chem. 2004, 279, 18277–18287.

  • 8.

    Ellgaard, L.; Frickel, E.M. Calnexin, calreticulin, and ERp57: Teammates in glycoprotein folding. Cell Biochem. Biophys. 2003, 39, 223–247.

  • 9.

    Frickel, E.M.; Riek, R.; Jelesarov, I.; et al. TROSY-NMR reveals interaction between ERp57 and the tip of the calreticulin P-domain. Proc. Natl. Acad. Sci. USA 2002, 99, 1954–1959.

  • 10.

    Oliver, J.D.; Roderick, H.L.; Llewellyn, D.H.; et al. ERp57 functions as a subunit of specific complexes formed with the ER lectins calreticulin and calnexin. Mol. Biol. Cell 1999, 10, 2573–2582.

  • 11.

    Zhang, Y.; Baig, E.; Williams, D.B. Functions of ERp57 in the folding and assembly of major histocompatibility complex class I molecules. J. Biol. Chem. 2006, 281, 14622–14631.

  • 12.

    Rock, K.L.; Reits, E.; Neefjes, J. Present Yourself! By MHC Class I and MHC Class II Molecules. Trends Immunol. 2016, 37, 724–737.

  • 13.

    Santambrogio, L. Molecular Determinants Regulating the Plasticity of the MHC Class II Immunopeptidome. Front. Immunol. 2022, 13, 878271.

  • 14.

    Medzhitov, R. Recognition of microorganisms and activation of the immune response. Nature 2007, 449, 819–826.

  • 15.

    Berger, A. Th1 and Th2 responses: What are they? BMJ 2000, 321, 424.

  • 16.

    Gereda, J.E.; Leung, D.Y.; Thatayatikom, A.; et al. Relation between house-dust endotoxin exposure, type 1 T-cell development, and allergen sensitisation in infants at high risk of asthma. Lancet 2000, 355, 1680–1683.

  • 17.

    Jones, C.A.; Holloway, J.A.; Warner, J.O. Does atopic disease start in foetal life? Allergy 2000, 55, 2–10.

  • 18.

    Rakshit, S.; Ahmed, A.; Adiga, V.; et al. BCG revaccination boosts adaptive polyfunctional Th1/Th17 and innate effectors in IGRA+ and IGRA- Indian adults. JCI Insight 2019, 4, e130540.

  • 19.

    Hou, S.; Hyland, L.; Ryan, K.W.; et al. Virus-specific CD8+ T-cell memory determined by clonal burst size. Nature 1994, 369, 652–654.

  • 20.

    Badovinac, V.P.; Harty, J.T. Programming, demarcating, and manipulating CD8+ T-cell memory. Immunol. Rev. 2006, 211, 67–80.

  • 21.

    Schmidt, N.W.; Podyminogin, R.L.; Butler, N.S.; et al. Memory CD8 T cell responses exceeding a large but definable threshold provide long-term immunity to malaria. Proc. Natl. Acad. Sci. USA 2008, 105, 14017–14022.

  • 22.

    Ebner, S.; Ratzinger, G.; Krosbacher, B.; et al. Production of IL-12 by human monocyte-derived dendritic cells is optimal when the stimulus is given at the onset of maturation, and is further enhanced by IL-4. J. Immunol. 2001, 166, 633–641.

  • 23.

    Heufler, C.; Koch, F.; Stanzl, U.; et al. Interleukin-12 is produced by dendritic cells and mediates T helper 1 development as well as interferon-gamma production by T helper 1 cells. Eur. J. Immunol. 1996, 26, 659–668.

  • 24.

    Cella, M.; Scheidegger, D.; Palmer-Lehmann, K.; et al. Ligation of CD40 on dendritic cells triggers production of high levels of interleukin-12 and enhances T cell stimulatory capacity: T-T help via APC activation. J. Exp. Med. 1996, 184, 747–752.

  • 25.

    Reis e Sousa, C.; Hieny, S.; Scharton-Kersten, T.; et al. In vivo microbial stimulation induces rapid CD40 ligand-independent production of interleukin 12 by dendritic cells and their redistribution to T cell areas. J. Exp. Med. 1997, 186, 1819–1829.

  • 26.

    Cella, M.; Salio, M.; Sakakibara, Y.; et al. Maturation, activation, and protection of dendritic cells induced by double-stranded RNA. J. Exp. Med. 1999, 189, 821–829.

  • 27.

    Koch, F.; Stanzl, U.; Jennewein, P.; et al. High level IL-12 production by murine dendritic cells: Upregulation via MHC class II and CD40 molecules and downregulation by IL-4 and IL-10. J. Exp. Med. 1996, 184, 741–746.

  • 28.

    Liu, J.; Cao, S.; Kim, S.; et al. Interleukin-12: An update on its immunological activities, signaling and regulation of gene expression. Curr. Immunol. Rev. 2005, 1, 119–137.

  • 29.

    Goronzy, J.J.; Weyand, C.M. Immune aging and autoimmunity. Cell Mol. Life Sci. 2012, 69, 1615–1623.

  • 30.

    Larbi, A.; Fulop, T.; Pawelec, G. Immune receptor signaling, aging and autoimmunity. Adv. Exp. Med. Biol. 2008, 640, 312–324.

  • 31.

    Prelog, M. Aging of the immune system: A risk factor for autoimmunity? Autoimmun. Rev. 2006, 5, 136–139.

  • 32.

    Goronzy, J.J.; Fujii, H.; Weyand, C.M. Telomeres, immune aging and autoimmunity. Exp. Gerontol. 2006, 41, 246–251.

  • 33.

    Hasler, P.; Zouali, M. Immune receptor signaling, aging, and autoimmunity. Cell Immunol. 2005, 233, 102–108.

  • 34.

    Boren, E.; Gershwin, M.E. Inflamm-aging: Autoimmunity, and the immune-risk phenotype. Autoimmun. Rev. 2004, 3, 401–406.

  • 35.

    Okada, H.; Kuhn, C.; Feillet, H.; et al. The 'hygiene hypothesis' for autoimmune and allergic diseases: An update. Clin. Exp. Immunol. 2010, 160, 1–9.

  • 36.

    Vojdani, A.; Pollard, K.M.; Campbell, A.W. Environmental triggers and autoimmunity. Autoimmune Dis. 2014, 2014, 798029.

  • 37.

    Vojdani, A. A Potential Link between Environmental Triggers and Autoimmunity. Autoimmune Dis. 2014, 2014, 437231.

Share this article:
How to Cite
Park, H.; Choi, M.-J.; Kim, T.; Kim, J.; Choi, J.; Jo, J.; Lee , H.; Kim, Y.; Kang, B.; Jeong, T.; Choi, G.; Kim, S. Cytokines in Pathogen Infection and Autoimmune Disease. Journal of Inflammatory and Infectious Medicine 2025, 1 (4), 2. https://doi.org/10.53941/jiim.2025.100017.
RIS
BibTex
Copyright & License
article copyright Image
Copyright (c) 2025 by the authors.