2512002475
  • Open Access
  • Article

Comparative Purification Strategies for Recombinant Canine Interferon γ in Escherichia coli: Denaturing versus Native Conditions

  • Seungheon Lee 1,2,   
  • Donghwan Song 1,2,   
  • Sangyoon Kim 3,   
  • Jaewon Park 4,   
  • HeeJoon Kim 5,   
  • Saerok Shim 1,5,*

Received: 06 Nov 2025 | Revised: 02 Dec 2025 | Accepted: 09 Dec 2025 | Published: 19 Dec 2025

Abstract

Interferon gamma (IFNγ) is a critical cytokine that activates various immune cells, including macrophages, NK cells, T cells, and even non-immune cells, to fight particularly intracellular infections and cancers. But to use this as medicine for dogs, it is necessary to purify IFNγ for dogs due to its species-specificity. However, efficient purification protocols for recombinant canine IFNγ (rcIFNγ) from Escherichia coli that ensure protein stability remain poorly established. In this study, we systematically compared two distinct purification strategies: a denaturing method (lysis with urea) and a native method (lysis without urea), each followed by subsequent purification steps. The two strategies yielded markedly different outcomes. The denaturing protocol resulted in a highly pure and intact monomeric protein. In contrast, the native protocol led to severe proteolytic degradation of the rcIFNγ, resulting in multiple smaller fragments. This present study suggests that it is crucial to explore various conditions for developing stable purification protocols and formulations for rcIFNγ.

References 

  • 1.

    Isaacs, A.; Lindenmann, J. Virus Interference: I. The Interferon. CA A Cancer J. Clin. 1988, 38, 280–290. https://doi.org/10.3322/canjclin.38.5.280.

  • 2.

    Pestka, S. The interferons: 50 years after their discovery, there is much more to learn. J. Biol. Chem. 2007, 282, 20047–20051. https://doi.org/10.1074/jbc.R700004200.

  • 3.

    Borden, E.C.; Sen, G.C.; Uze, G.; Silverman, R.H.; Ransohoff, R.M.; Foster, G.R.; Stark, G.R. Interferons at age 50: Past, current and future impact on biomedicine. Nat. Rev. Drug Discov. 2007, 6, 975–990. https://doi.org/10.1038/nrd2422.

  • 4.

    Walker, F.C.; Sridhar, P.R.; Baldridge, M.T. Differential roles of interferons in innate responses to mucosal viral infections. Trends Immunol. 2021, 42, 1009–1023. https://doi.org/10.1016/j.it.2021.09.003.

  • 5.

    Sekimoto, T.; Nakajima, K.; Tachibana, T.; Hirano, T.; Yoneda, Y. Interferon-gamma-dependent nuclear import of Stat1 is mediated by the GTPase activity of Ran/TC4. J. Biol. Chem. 1996, 271, 31017–31020. https://doi.org/10.1074/jbc.271.49.31017.

  • 6.

    Quelle, F.W.; Thierfelder, W.; Witthuhn, B.A.; Tang, B.; Cohen, S.; Ihle, J.N. Phosphorylation and activation of the DNA binding activity of purified Stat1 by the Janus protein-tyrosine kinases and the epidermal growth factor receptor. J. Biol. Chem. 1995, 270, 20775–20780. https://doi.org/10.1074/jbc.270.35.20775.

  • 7.

    Alspach, E.; Lussier, D.M.; Schreiber, R.D. Interferon gamma and Its Important Roles in Promoting and Inhibiting Spontaneous and Therapeutic Cancer Immunity. Cold Spring Harb. Perspect. Biol. 2019, 11, a028480. https://doi.org/10.1101/cshperspect.a028480.

  • 8.

    Mertowska, P.; Smolak, K.; Mertowski, S.; Grywalska, E. Immunomodulatory Role of Interferons in Viral and Bacterial Infections. Int. J. Mol. Sci. 2023, 24, 10115. https://doi.org/10.3390/ijms241210115.

  • 9.

    Gray, P.W.; Goeddel, D.V. Structure of the human immune interferon gene. Nature 1982, 298, 859–863. https://doi.org/10.1038/298859a0.

  • 10.

    Kim, E.; Jhun, H.; Kim, J.; Park, U.; Jo, S.; Kwak, A.; Kim, S.; Nguyen, T.T.; Kang, Y.; Choi, I.; et al. Species Specific Antiviral Activity of Porcine Interferon-alpha8 (IFNalpha8). Immune Netw. 2017, 17, 424–436. https://doi.org/10.4110/in.2017.17.6.424.

  • 11.

    Yoon, M.; Lee, S.; Song, D.; Hwang, J.; Kim, H.; Yoo, H.; Choi, M.; Kim, S. Antiviral Activity of Gallus Recombinant Interferon α3. J. Inflamm. Infect. Med. 2025, 1, 2504000509. https://doi.org/10.53941/jiim.2025.100006.

  • 12.

    Petrov, S.; Nacheva, G.; Ivanov, I. Purification and refolding of recombinant human interferon-gamma in urea-ammonium chloride solution. Protein Expr. Purif. 2010, 73, 70–73. https://doi.org/10.1016/j.pep.2010.03.026.

  • 13.

    Zhu, F.; Wang, Q.; Pu, H.; Gu, S.; Luo, L.; Yin, Z. Optimization of soluble human interferon-gamma production in Escherichia coli using SUMO fusion partner. World J. Microbiol. Biotechnol. 2013, 29, 319–325. https://doi.org/10.1007/s11274-012-1185-0.

  • 14.

    Devos, R.; Opsomer, C.; Scahill, S.J.; Van der Heyden, J.; Fiers, W. Purification of recombinant glycosylated human gamma interferon expressed in transformed Chinese hamster ovary cells. J. Interferon Res. 1984, 4, 461–468. https://doi.org/10.1089/jir.1984.4.461.

  • 15.

    Zhang, J.; Alfonso, P.; Thotakura, N.R.; Su, J.; Buergin, M.; Parmelee, D.; Collins, A.W.; Oelkuct, M.; Gaffney, S.; Gentz, S.; et al. Expression, purification, and bioassay of human stanniocalcin from baculovirus-infected insect cells and recombinant CHO cells. Protein Expr. Purif. 1998, 12, 390–398. https://doi.org/10.1006/prep.1997.0857.

  • 16.

    Uchino, T.; Yamada, K.; Okano, F.; Satoh, M.; Kawakami, I. Use of Canine Interferon-Γ (Ifn-Γ) το Treat Non-Atopic Dermatitis. U.S. Patent No. 5,955,069, 21 September 1999.

  • 17.

    Zucker, K.; Lu, P.; Asthana, D.; Carreno, M.; Yang, W.C.; Esquenazi, V.; Fuller, L.; Miller, J. Production and characterization of recombinant canine interferon-gamma from Escherichia coli. J. Interferon Res. 1993, 13, 91–97. https://doi.org/10.1089/jir.1993.13.91.

  • 18.

    Okano, F.; Satoh, M.; Ido, T.; Okamoto, N.; Yamada, K. Production of canine IFN-gamma in silkworm by recombinant baculovirus and characterization of the product. J. Interferon Cytokine Res. 2000, 20, 1015–1022. https://doi.org/10.1089/10799900050198462.

  • 19.
  • 20.

    Grand View Research. Veterinary Medicine Market Size, Share & Trends Analysis Report by Product (Biologics, Pharmaceuticals), by Animal Type, by Route of Administration, by Distribution Channel, by Region, and Segment Forecasts; Grand View Research: San Francisco, CA, USA, 2024.

  • 21.

    Li, S.F.; Zhao, F.R.; Shao, J.J.; Xie, Y.L.; Chang, H.Y.; Zhang, Y.G. Interferon-omega: Current status in clinical applications. Int. Immunopharmacol. 2017, 52, 253–260. https://doi.org/10.1016/j.intimp.2017.08.028.

  • 22.

    Samuel, C.E.; Farris, D.A. Mechanism of interferon action. Species specificity of interferon and of the interferon-mediated inhibitor of translation from mouse, monkey, and human cells. Virology 1977, 77, 556–565. https://doi.org/10.1016/0042-6822(77)90481-0.

  • 23.

    Warburg, O.; Christian, W. Isolierung und Kristallisation des Grungsferments Enolase. Die Naturwissenschaften 1941, 29, 589–590. https://doi.org/10.1007/bf01482279.

  • 24.

    Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. https://doi.org/10.1016/0003-2697(76)90527-3.

  • 25.

    Gupta, V.; Sengupta, M.; Prakash, J.; Tripathy, B.C. Production of Recombinant Pharmaceutical Proteins. In Basic and Applied Aspects of Biotechnology; Gupta, V., Sengupta, M., Prakash, J., Tripathy, B.C., Eds.; Springer: Singapore, 2017; pp. 77–101.

  • 26.

    Ryan, B.J.; Henehan, G.T. Overview of approaches to preventing and avoiding proteolysis during expression and purification of proteins. Curr. Protoc. Protein Sci. 2013, 71, 5–25. https://doi.org/10.1002/0471140864.ps0525s71.

  • 27.

    Sareneva, T.; Pirhonen, J.; Cantell, K.; Julkunen, I. N-glycosylation of human interferon-gamma: Glycans at Asn-25 are critical for protease resistance. Biochem. J. 1995, 308, 9–14. https://doi.org/10.1042/bj3080009.

  • 28.

    Schutz, A.; Bernhard, F.; Berrow, N.; Buyel, J.F.; Ferreira-da-Silva, F.; Haustraete, J.; van den Heuvel, J.; Hoffmann, J.E.; de Marco, A.; Peleg, Y.; et al. A concise guide to choosing suitable gene expression systems for recombinant protein production. STAR Protoc. 2023, 4, 102572. https://doi.org/10.1016/j.xpro.2023.102572.

  • 29.

    Jaffe, S.R.; Strutton, B.; Levarski, Z.; Pandhal, J.; Wright, P.C. Escherichia coli as a glycoprotein production host: Recent developments and challenges. Curr. Opin. Biotechnol. 2014, 30, 205–210. https://doi.org/10.1016/j.copbio.2014.07.006.

  • 30.

    Ribeiro, R.; Abreu, T.R.; Silva, A.C.; Gonçalves, J.; Moreira, J.N. Insights on the Formulation of Recombinant Proteins. In Current Applications of Pharmaceutical Biotechnology; Silva, A.C., Moreira, J.N., Lobo, J.M.S., Almeida, H., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 23–54.

Share this article:
How to Cite
Lee, S.; Song, D.; Kim, S.; Park, J.; Kim, H.; Shim, S. Comparative Purification Strategies for Recombinant Canine Interferon γ in Escherichia coli: Denaturing versus Native Conditions. Journal of Inflammatory and Infectious Medicine 2025, 1 (4), 1. https://doi.org/10.53941/jiim.2025.100016.
RIS
BibTex
Copyright & License
article copyright Image
Copyright (c) 2025 by the authors.