- 1.
Ye, X.S.; Tian, W.J.; Wang, G.H.; et al. The food and medicine homologous Chinese Medicine from Leguminosae species: A comprehensive review on bioactive constituents with neuroprotective effects on nervous system. Food Med. Homol. 2025, 2, 9420033.
- 2.
Curran, J. The Yellow Emperor’s Classic of Internal Medicine. BMJ 2008, 336, 777.
- 3.
Zeng, Q.H.; Zhang, X.W.; Xu, K.P.; et al. Application of fluorescently labeled tracer technique for detection of natural active macromolecules in Chinese medicine. Drug Metab. Rev. 2014, 46, 57–71.
- 4.
Anywar, G.; Kakudidi, E.; Byamukama, R.; et al. A Review of the Toxicity and Phytochemistry of Medicinal Plant Species Used by Herbalists in Treating People Living With HIV/AIDS in Uganda. Front. Pharmacol. 2021, 12, 615147.
- 5.
Omara, T.; Kiprop, A.K.; Ramkat, R.C.; et al. Medicinal plants used in traditional management of cancer in Uganda: A review of ethnobotanical surveys, phytochemistry, and anticancer studies. Evid.-Based Complement. Alternat. Med. 2020, 1, 3529081.
- 6.
Matowa, P.R.; Gundidza, M.; Gwanzura, L.; et al. A survey of ethnomedicinal plants used to treat cancer by traditional medicine practitioners in Zimbabwe. BMC Complement. Med. Ther. 2020, 20, 278.
- 7.
Pan, Y.; Jin, H.; Yang, S.; et al. Changes of volatile organic compounds and bioactivity of Alternaria brassicae GL07 in different ages. J. Basic Microbiol. 2019, 59, 713–722.
- 8.
Zhao, L.; Xu, C.; Zhou, W.; et al. Polygonati Rhizoma with the homology of medicine and food: A review of ethnopharmacology, botany, phytochemistry, pharmacology and applications. J. Ethnopharmacol. 2023, 309, 116296.
- 9.
Chen, R. Shennong Bencao Jing; Traditional Chinese Medicine Press: Beijing, China, 2014.
- 10.
Wiseman, N.; Feng, Y. A Practical Dictionary of Chinese Medicine; Paradigm Publications: Boulder, CO, USA, 1998.
- 11.
Pharmacopoeia Commission of the People’s Republic of China. Pharmacopoeia of the People’s Republic of China, 11th ed.; ChP 2020; China Medical Science Press: Beijing, China, 2020.
- 12.
Kim, E.J.; Woo, J.; Shin, S.; et al. A focused natural compound screen reveals senolytic and senostatic effects of Isatis tinctoria. Anim. Cells Syst. 2022, 26, 310–317.
- 13.
Bouarab Chibane, L.; Degraeve, P.; Ferhout, H.; et al. Plant antimicrobial polyphenols as potential natural food preservatives. J. Sci. Food Agric. 2019, 99, 1457–1474.
- 14.
El–Sabrout, K.; Khalifah, A.; Mishra, B. Application of botanical products as nutraceutical feed additives for improving poultry health and production. Vet. World 2023, 16, 369–379.
- 15.
Kalsoom, U.; Bhatti, H.N.; Aftab, K.; et al. Biocatalytic potential of Brassica oleracea L. var. botrytis leaves peroxidase for efficient degradation of textile dyes in aqueous medium. Bioprocess Biosyst. Eng. 2023, 46, 453–465.
- 16.
Kawai, S.; Iijima, H.; Shinzaki, S.; et al. Indigo Naturalis ameliorates murine dextran sodium sulfate-induced colitis via aryl hydrocarbon receptor activation. J. Gastroenterol. 2017, 52, 904–919.
- 17.
Guo, Q.; Li, D.; Xu, C.; et al. Indole alkaloid glycosides with a 1′-(phenyl)ethyl unit from I. indigotica leaves. Acta Pharm. Sin. B 2020, 10, 895–902.
- 18.
Chen, R.; Li, Y.; Dong, H.; et al. Optimization of ultrasonic extraction process of polysaccharides from Ornithogalum Caudatum Ait and evaluation of its biological activities. Ultrason. Sonochem. 2012, 19, 1160–1168.
- 19.
Yang, S.Z. The Divine Farmer’s Materia Medica: A Translation of the Shen Nong Ben Cao Jing; Blue Poppy Enterprises, Inc.: Portland, OR, USA, 1998.
- 20.
Mawangdui Han Tomb Silk Texts Collation Group (Ed.). Recipes for Fifty-Two Ailments; Cultural Relics Publishing House: Beijing, China, 1979.
- 21.
Su, J. Newly Revised Materia Medica (Xinxiu Bencao); Shanghai People’s Publishing House: Shanghai, China, 1957.
- 22.
Tang, S. Classified Materia Medica (Zhenglei Bencao); Shanghai Ancient Books Publishing House: Shanghai, China, 1991.
- 23.
Wang, H. Taiping Holy Prescriptions for Universal Relief (Taiping Shenghui Fang); People’s Medical Publishing House: Beijing, China, 1990.
- 24.
Li, S.Z. Compendium of Materia Medica (Bencao Gangmu); Xi’an Jiaotong University Press: Xi’an, China, 2015.
- 25.
Wu, T. Systematic Differentiation of Warm Diseases (Wenbing Tiaobian); People’s Medical Publishing House: Beijing, China, 2005.
- 26.
Zhu, S. The Great Herbal for Relief of Famine (Jiuhuang Bencao); China Agricultural Press: Beijing, China, 2008.
- 27.
Huang, G.X. Seeking Truth in the Materia Medica (Bencao Qiuzhen); China Press of Traditional Chinese Medicine: Beijing, China, 1997.
- 28.
Carr, A.C.; Bozonet, S.M.; Pullar, J.M.; et al. A randomized steady-state bioavailability study of synthetic versus natural (kiwifruit-derived) vitamin C. Nutrients 2013, 5, 3684–3695.
- 29.
Madureira, M.B.; Concato, V.M.; Cruz, E.M.S.; et al. Naringenin and Hesperidin as Promising Alternatives for Prevention and Co-Adjuvant Therapy for Breast Cancer. Antioxidants 2023, 12, 586.
- 30.
Xiao, L. Leigong Paozhilun [Thunder’s Treatise on Medicinal Processing]; United Reader Publishing House: Lakewood, OH, USA, 2024.
- 31.
Song, Y., & Li, J. B. Tiangong Kaiwu [Heavenly Creations]. Northern Art Publishing House: Harbin, China, 2023.
- 32.
Gugong Bowuyuan (The Palace Museum). Xiushi Zhinan [Guide to Restoration]; Hainan Publishing House: Beijing, China, 2000.
- 33.
Li, S.; Wang, G.; Zhao, J.; et al. Ultrasound-Assisted Extraction of Phenolic Compounds from Celtuce (Lactuca sativa var. augustana) Leaves Using Natural Deep Eutectic Solvents (NADES): Process Optimization and Extraction Mechanism Research. Molecules 2024, 29, 2385.
- 34.
Huang, W.; Liu, B.; Shi, D.; et al. Research Progress on the Quality, Extraction Technology, Food Application, and Physiological Function of Rice Bran Oil. Foods 2024, 13, 3262.
- 35.
Mutavski, Z.; Vidović, S.; Ambrus, R.; et al. CO2-Based Encapsulation of Rutin-Rich Extracts from Black Elderberry Waste Using Advanced PGSS Process. Foods 2024, 13, 3929.
- 36.
Costa, D.; Rupasinghe, H.P.V. Development of a Scalable Extraction Process for Anthocyanins of Haskap Berry (Lonicera caerulea). Molecules 2025, 30, 1071.
- 37.
Song, S.Y.; Park, D.H.; Seo, S.W.; et al. Effects of Harvest Time on Phytochemical Constituents and Biological Activities of Panax ginseng Berry Extracts. Molecules 2019, 24, 3343.
- 38.
Choi, S.R.; Lee, M.Y.; Reddy, C.K.; et al. Evaluation of Metabolite Profiles of Ginseng Berry Pomace Obtained after Different Pressure Treatments and Their Correlation with the Antioxidant Activity. Molecules 2021, 26, 284.
- 39.
Kong, F.; Yu, S.; Bi, Y.; et al. Optimization of Process Parameters and Kinetic Model of Enzymatic Extraction of Polyphenols from Lonicerae Flos. Pharmacogn. Mag. 2016, 12, 70–74.
- 40.
Bilal, M.; Iqbal, H.M.N. State-of-the-art strategies and applied perspectives of enzyme biocatalysis in food sector–current status and future trends. Crit. Rev. Food Sci. Nutr. 2020, 60, 2052–2066.
- 41.
Zhou, C.; Okonkwo, C.E.; Inyinbor, A.A.; et al. Ultrasound, infrared and its assisted technology, a promising tool in physical food processing: A review of recent developments. Crit. Rev. Food Sci. Nutr. 2023, 63, 1587–1611.
- 42.
Mieszczakowska-Frąc, M.; Celejewska, K.; Płocharski, W. Impact of Innovative Technologies on the Content of Vitamin C and Its Bioavailability from Processed Fruit and Vegetable Products. Antioxidants 2021, 10, 54.
- 43.
Zhang, D.; Shi, Y.; Li, J.; et al. Alkaloids with Nitric Oxide Inhibitory Activities from the Roots of Isatis tinctoria. Molecules 2019, 24, 4033.
- 44.
Chen, J.; Dong, X.; Li, Q.; et al. Biosynthesis of the active compounds of I. indigotica based on transcriptome sequencing and metabolites profiling. BMC Genom. 2013, 14, 1–13.
- 45.
Shen, J.; Li, P.; Liu, S.; et al. Traditional uses, ten-years research progress on phytochemistry and pharmacology, and clinical studies of the genus Scutellaria. J. Ethnopharmacol. 2021, 265, 113198.
- 46.
Casciaro, B.; Mangiardi, L.; Cappiello, F.; et al. Naturally-Occurring Alkaloids of Plant Origin as Potential Antimicrobials against Antibiotic-Resistant Infections. Molecules 2020, 25, 3619.
- 47.
Dhama, K.; Karthik, K.; Khandia, R.; et al. Medicinal and Therapeutic Potential of Herbs and Plant Metabolites/Extracts Countering Viral Pathogens—Current Knowledge and Future Prospects. Curr. Drug Metab. 2018, 19, 236–263.
- 48.
Mittal, R.P.; Jaitak, V. Plant-Derived Natural Alkaloids as New Antimicrobial and Adjuvant Agents in Existing Antimicrobial Therapy. Curr. Drug Targets 2019, 20, 1409–1433.
- 49.
Shi, Y.J.; Zhang, J.; Wang, Y.W.; et al. The untapped potential of spermidine alkaloids: Sources, structures, bioactivities and syntheses. Eur. J. Med. Chem. 2022, 240, 114600.
- 50.
Lourenco, A.M.; Ferreira, L.M.; Branco, P.S. Molecules of natural origin, semi-synthesis and synthesis with anti-inflammatory and anticancer utilities. Curr. Pharm. Des. 2012, 18, 3979–4046.
- 51.
Cui, G.; Shu, B.; Veeran, S.; et al. Natural β-carboline alkaloids regulate the PI3K/Akt/mTOR pathway and induce autophagy in insect Sf9 cells. Pestic. Biochem. Physiol. 2019, 154, 67–77.
- 52.
Popolo, A.; Pinto, A.; Daglia, M.; et al. Two likely targets for the anti-cancer effect of indole derivatives from cruciferous vegetables: PI3K/Akt/mTOR signalling pathway and the aryl hydrocarbon receptor. Semin. Cancer Biol. 2017, 46, 132–137.
- 53.
An, C.Y.; Li, X.M.; Li, C.S.; et al. Aniquinazolines A-D, four new quinazolinone alkaloids from marine-derived endophytic fungus Aspergillus nidulans. Mar. Drugs 2013, 11, 2682–2694.
- 54.
Haider, K.; Das, S.; Joseph, A.; et al. An appraisal of anticancer activity with structure-activity relationship of quinazoline and quinazolinone analogues through EGFR and VEGFR inhibition: A review. Drug Dev. Res. 2022, 83, 859–890.
- 55.
Hameed, A.; Al-Rashida, M.; Uroos, M.; et al. Quinazoline and quinazolinone as important medicinal scaffolds: A comparative patent review (2011–2016). Expert Opin. Ther. Pat. 2018, 28, 281–297.
- 56.
Deng, Z.; Li, J.; Zhu, P.; et al. Quinazolinones as Potential Anticancer Agents: Synthesis and Action Mechanisms. Biomolecules 2025, 15, 210.
- 57.
Cushnie, T.T.; Cushnie, B.; Lamb, A.J. Alkaloids: An overview of their antibacterial, antibiotic-enhancing and antivirulence activities. Int. J. Antimicrob. Agents 2014, 44, 377–386.
- 58.
Trost, B.M.; Hung, C.I.J.; Jiao, Z.; et al. Enantioselective Divergent Syntheses of (+)-Bulleyanaline and Related Isoquinoline Alkaloids from the Genus Corydalis. J. Am. Chem. Soc. 2019, 141, 16085–16092.
- 59.
Ghoneim, M.M.; Abdelgawad, M.A.; Elkanzi, N.A.; et al. A literature review on pharmacological aspects, docking studies, and synthetic approaches of quinazoline and quinazolinone derivatives. Arch. Pharm. 2024, 357, e2400057.
- 60.
Kumaraswamy, B.; Hemalatha, K.; Pal, R.; et al. An insight into sustainable and green chemistry approaches for the synthesis of quinoline derivatives as anticancer agents. Eur. J. Med. Chem. 2024, 275, 116561.
- 61.
Abonia, R.; Cabrera, L.; Arteaga, D.; et al. Using Quinolin-4-Ones as Convenient Common Precursors for a Metal-Free Total Synthesis of Both Dubamine and Graveoline Alkaloids and Diverse Structural Analogues. Molecules 2024, 29, 1959.
- 62.
Khadem, S.; Marles, R.J. The occurrence and bioactivity of tetrahydronaphthoquinoline-diones (THNQ-dione). Nat. Prod. Res. 2025, 39, 1622–1635.
- 63.
Oladeji, O.S.; Odelade, K.A.; Mahal, A.; et al. Systematic appraisals of naturally occurring alkaloids from medicinal plants. Naunyn-Schmiedeberg's Arch. Pharmacol. 2024, 397, 7439–7471.
- 64.
Jaini, R.; Wang, P.; Dudareva, N.; et al. Targeted Metabolomics of the Phenylpropanoid Pathway in Arabidopsis thaliana using Reversed Phase Liquid Chromatography Coupled with Tandem Mass Spectrometry. Phytochem. Anal. 2017, 28, 267–2676.
- 65.
Olszewska, M.A.; Kolodziejczyk-Czepas, J.; Rutkowska, M.; et al. The Effect of Standardised Flower Extracts of Sorbus aucuparia L. on Proinflammatory Enzymes, Multiple Oxidants, and Oxidative/Nitrative Damage of Human Plasma Components In Vitro. Oxid. Med. Cell. Longev. 2019, 2019, 9746358.
- 66.
Xiang, Y.; Jing, Z.; Haixia, W.; et al. Antiproliferative Activity of Phenylpropanoids Isolated from Lagotis brevituba Maxim. Phytother. Res. 2017, 31, 1509–1520.
- 67.
Khan, M.S.A.; Ahmad, I.; Cameotra, S.S.; et al. Phenyl aldehyde and propanoids exert multiple sites of action towards cell membrane and cell wall targeting ergosterol in Candida albicans. AMB Express 2013, 3, 54.
- 68.
Lin, H.; Wang, W.; Peng, M.; et al. Pharmacological properties of Polygonatum and its active ingredients for the prevention and treatment of cardiovascular diseases. Chin. Med. 2024, 19, 1.
- 69.
Li, D.; Luo, F.; Guo, T.; et al. Targeting NF-κB pathway by dietary lignans in inflammation: Expanding roles of gut microbiota and metabolites. Crit. Rev. Food Sci. Nutr. 2023, 63, 5967–5983.
- 70.
Laveriano-Santos, E.P.; Luque-Corredera, C.; Trius-Soler, M.; et al. Enterolignans: From natural origins to cardiometabolic significance, including chemistry, dietary sources, bioavailability, and activity. Crit. Rev. Food Sci. Nutr. 2024, 65, 3764–3784.
- 71.
Wróbel, A.; Eklund, P.; Bobrowska-Hägerstrand, M.; et al. Lignans and norlignans inhibit multidrug resistance protein 1 (MRP1/ABCC1)-mediated transport. Anticancer Res. 2010, 30, 4423–4428.
- 72.
Zálešák, F.; Bon, D.J.Y.D.; Pospíšil, J. Lignans and Neolignans: Plant secondary metabolites as a reservoir of biologically active substances. Pharmacol. Res. 2019, 146, 104284.
- 73.
Zhao, M.; Lv, D.; Hu, J.; et al. Hybrid Broussonetia papyrifera Fermented Feed Can Play a Role Through Flavonoid Extracts to Increase Milk Production and Milk Fatty Acid Synthesis in Dairy Goats. Front. Vet. Sci. 2022, 9, 794443.
- 74.
Urbanek Krajnc, A.; Bakonyi, T.; Ando, I.; et al. The Effect of Feeding with Central European Local Mulberry Genotypes on the Development and Health Status of Silkworms and Quality Parameters of Raw Silk. Insects 2022, 13, 836.
- 75.
Zhang, Z.; Shi, J.; Nice, E.C.; et al. The Multifaceted Role of Flavonoids in Cancer Therapy: Leveraging Autophagy with a Double-Edged Sword. Antioxidants 2021, 10, 1138.
- 76.
Lee, Y.; Lee, J.; Lim, C.; et al. Anticancer activity of flavonoids accompanied by redox state modulation and the potential for a chemotherapeutic strategy. Food Sci. Biotechnol. 2021, 30, 321–340.
- 77.
Chen, Z.; Zhang, S.L. The role of flavonoids in the prevention and management of cardiovascular complications: A narrative review. Ann. Palliat. Med. 2021, 10, 8254–8263.
- 78.
Wang, Y.; Liu, X.J.; Chen, J.B.; et al. Citrus flavonoids and their antioxidant evaluation. Crit. Rev. Food Sci. Nutr. 2022, 62, 3833–3854.
- 79.
Kaushal, N.; Singh, M.; Sangwan, R.S.; et al. Flavonoids: Food associations, therapeutic mechanisms, metabolism and nanoformulations. Food Res. Int. 2022, 157, 111442.
- 80.
Koch, E.A.; Wessely, A.; Steeb, T.; et al. Safety of topical interventions for the treatment of actinic keratosis. Expert Opin. Drug Saf. 2021, 20, 801–814.
- 81.
Kalderon, B.; Azazmeh, N.; Azulay, N.; et al. Suppression of adipose lipolysis by long-chain fatty acid analogs. J. Lipid Res. 2012, 53, 868–878.
- 82.
Yoon, J.H.; Oh, M.S.; Lee, S.Y. Effectiveness of organic acids for inactivating pathogenic bacteria inoculated in laboratory media and foods: An updated minireview. Food Sci. Biotechnol. 2024, 33, 2715–2728.
- 83.
Aksoy, A.; Altunatmaz, S.S.; Aksu, F.; et al. Bee Bread as a Functional Product: Phenolic Compounds, Amino Acid, Sugar, and Organic Acid Profiles. Foods 2024, 13, 795.
- 84.
Liu, Y.; Yang, C.; Zhang, J.; et al. Recent progress in adverse events of carboxylic acid non-steroidal anti-inflammatory drugs (CBA-NSAIDs) and their association with the metabolism: The consequences on mitochondrial dysfunction and oxidative stress, and prevention with natural plant extracts. Expert Opin. Drug Metab. Toxicol. 2024, 20, 765–785.
- 85.
Shi, Y.; Zheng, C.; Li, J.; et al. Separation and Quantification of Four Main Chiral Glucosinolates in Radix Isatidis and Its Granules Using High-Performance Liquid Chromatography/Diode Array Detector Coupled with Circular Dichroism Detection. Molecules 2018, 23, 1305.
- 86.
Niu, Y.; Liu, W.; Fan, X.; et al. Beyond cellulose: Pharmaceutical potential for bioactive plant polysaccharides in treating disease and gut dysbiosis. Front. Microbiol. 2023, 14, 1183130.
- 87.
Xiong, H.; Han, X.; Cai, L.; et al. Natural polysaccharides exert anti-tumor effects as dendritic cell immune enhancers. Front. Oncol. 2023, 13, 1274048.
- 88.
Yang, R.; Pei, T.; Huang, R.; et al. Platycodon grandiflorum Triggers Antitumor Immunity by Restricting PD-1 Expression of CD8+ T Cells in Local Tumor Microenvironment. Front. Pharmacol. 2022, 13, 774440.
- 89.
Liu, Y.; Chen, Q.; Ren, R.; et al. Platycodon grandiflorus polysaccharides deeply participate in the anti-chronic bronchitis effects of platycodon grandiflorus decoction, a representative of “the lung and intestine are related”. Front. Pharmacol. 2022, 13, 927384.
- 90.
Ji, M.Y.; Bo, A.; Yang, M.; et al. The Pharmacological Effects and Health Benefits of Platycodon grandiflorus-A Medicine Food Homology Species. Foods 2020, 9, 142.
- 91.
Li, S.; Liu, F.; Zhang, K.; et al. Research Progress on the Mechanism of Natural Product Ingredients in the Treatment of Uveitis. J. Immunol. Res. 2021, 2021, 6683411.
- 92.
Zhang, L.; Wang, X.; Zhang, J.; et al. Ethnopharmacology, phytochemistry, pharmacology and product application of Platycodon grandiflorum: A review. Chin. Herb. Med. 2024, 16, 327–343.
- 93.
Wang, P.Y.; Zhu, X.L.; Lin, Z.B. Antitumor and Immunomodulatory Effects of Polysaccharides from Broken-Spore of Ganoderma lucidum. Front. Pharmacol. 2012, 3, 135.
- 94.
Rod-In, W.; Kim, M.; Jang, A.Y.; et al. Immunostimulatory Activity of a Mixture of Platycodon grandiflorum, Pyrus serotine, Chaenomeles sinensis, and Raphanus sativus in RAW264.7 Macrophages. Int. J. Mol. Sci. 2024, 25, 10660.
- 95.
Yang, Q.; Zhang, T.; He, Y.; et al. From natural dye to herbal medicine: A systematic review of chemical constituents, pharmacological effects and clinical applications of indigo naturalis. Chin. Med. 2020, 15, 127.
- 96.
Kapai, N.A.; Anisimova, N.Y.; Kiselevskii, M.V.; et al. Selective cytokine-inducing effects of low dose Echinacea. Bull. Exp. Biol. Med. 2011, 150, 711–713.
- 97.
Kawaguchi, S.; Sakuraba, H.; Kikuchi, H.; et al. Polygonum tinctorium leaf extract ameliorates high-fat diet-induced intestinal epithelial damage in mice. Exp. Ther. Med. 2023, 25, 112.
- 98.
Ayroldi, E.; Cannarile, L.; Migliorati, G.; et al. Mechanisms of the anti-inflammatory effects of glucocorticoids: Genomic and nongenomic interference with MAPK signaling pathways. FASEB J. 2012, 26, 4805–4820.
- 99.
Švajger, U.; Jeras, M. Anti-inflammatory effects of resveratrol and its potential use in therapy of immune-mediated diseases. Int. Rev. Immunol. 2012, 31, 202–222.
- 100.
Wang, J.; Lu, S.; Yang, F.; et al. The role of macrophage polarization and associated mechanisms in regulating the anti-inflammatory action of acupuncture: A literature review and perspectives. Chin. Med. 2021, 16, 56.
- 101.
Kayama, H.; Takeda, K. Manipulation of epithelial integrity and mucosal immunity by host and microbiota-derived metabolites. Eur. J. Immunol. 2020, 50, 921–931.
- 102.
Soldevila-Barreda, J.J.; Fawibe, K.B.; Azmanova, M.; et al. Synthesis, Characterisation and In Vitro Anticancer Activity of Catalytically Active Indole-Based Half-Sandwich Complexes. Molecules 2020, 25, 4540.
- 103.
Busbee, P.B.; Rouse, M.; Nagarkatti, M.; et al. Use of natural AhR ligands as potential therapeutic modalities against inflammatory disorders. Nutr. Rev. 2013, 71, 353–369.
- 104.
Yang, Q.Y.; Ma, L.L.; Zhang, C.; et al. Exploring the Mechanism of Indigo Naturalis in the Treatment of Ulcerative Colitis Based on TLR4/MyD88/NF-κB Signaling Pathway and Gut Microbiota. Front. Pharmacol. 2021, 12, 674416.
- 105.
Lin, Y.H.; Luck, H.; Khan, S.; et al. Aryl hydrocarbon receptor agonist indigo protects against obesity-related insulin resistance through modulation of intestinal and metabolic tissue immunity. Int. J. Obes. 2019, 43, 2407–2421.
- 106.
Gu, S.; Xue, Y.; Gao, Y.; et al. Mechanisms of indigo naturalis on treating ulcerative colitis explored by GEO gene chips combined with network pharmacology and molecular docking. Sci. Rep. 2020, 10, 15204.
- 107.
Deng, J.; Ma, Y.; He, Y.; et al. A Network Pharmacology-Based Investigation to the Pharmacodynamic Material Basis and Mechanisms of the Anti-Inflammatory and Anti-Viral Effect of I. indigotica. Drug Des. Dev. Ther. 2021, 15, 3193–3206.
- 108.
Pashirova, T.N.; Bogdanov, A.V.; Musin, L.I.; et al. Nanoscale isoindigo-carriers: Self-assembly and tunable properties. Beilstein J. Nanotechnol. 2017, 8, 313–324.
- 109.
Cho, B.; Yoon, S.M.; Son, S.M.; et al. Ischemic colitis induced by indigo naturalis in a patient with ulcerative colitis: A case report. BMC Gastroenterol. 2020, 20, 154.
- 110.
Cai, X.; Jiang, X.; Zhao, M.; et al. Identification of the target protein and molecular mechanism of honokiol in anti-inflammatory action. Phytomedicine 2023, 109, 154617.
- 111.
Yang, Z.; Wang, Y.; Zheng, Z.; et al. Antiviral activity of I. indigotica root-derived clemastanin B against human and avian influenza A and B viruses in vitro. Int. J. Mol. Med. 2013, 31, 867–873.
- 112.
Li, J.; Zhou, B.; Li, C.; et al. Lariciresinol-4-O-β-D-glucopyranoside from the root of I. indigotica inhibits influenza A virus-induced pro-inflammatory response. J. Ethnopharmacol. 2015, 174, 379–386.
- 113.
Liang, X.; Huang, Y.; Pan, X.; et al. Erucic acid from I. indigotica Fort. suppresses influenza A virus replication and inflammation in vitro and in vivo through modulation of NF-κB and p38 MAPK pathway. J. Pharm. Anal. 2020, 10, 130–146.
- 114.
Yang, Z.; Wang, Y.; Zhong, S.; et al. In vitro inhibition of influenza virus infection by a crude extract from I. indigotica root resulting in the prevention of viral attachment. Mol. Med. Rep. 2012, 5, 793–799.
- 115.
Liu, S.; Yan, J.; Xing, J.; et al. Characterization of compounds and potential neuraminidase inhibitors from the n-butanol extract of Compound Indigowoad Root Granule using ultrafiltration and liquid chromatography-tandem mass spectrometry. J. Pharm. Biomed. Anal. 2012, 59, 96–101.
- 116.
Xiao, Y.; Liu, C.; Tang, W.; et al. Evans Blue Inhibits HBV Replication Through a Dual Antiviral Mechanism by Targeting Virus Binding and Capsid Assembly. Front. Microbiol. 2019, 10, 2638.
- 117.
Ip, J.D.; Chu, A.W.H.; Chan, W.M.; et al. Global prevalence of SARS-CoV-2 3CL protease mutations associated with nirmatrelvir or ensitrelvir resistance. EBioMedicine 2023, 91, 104559.
- 118.
Chen, Z.; Ye, S.Y. Research progress on antiviral constituents in traditional Chinese medicines and their mechanisms of action. Pharm. Biol. 2022, 60, 1063–1076.
- 119.
Chen, L.; Wang, X.; Liao, W.; et al. Extraction of indirubin from indigo naruralis and its antioxidant activity. J. Jishou Univ. 2013, 34, 72–76.
- 120.
Zhao, G.; Li, T.; Qu, X.; et al. Optimization of ultrasound-assisted extraction of indigo and indirubin from I. indigotica Fort. and their antioxidant capacities. Food Sci. Biotechnol. 2017, 26, 1313–1323.
- 121.
Tkaczenko, H.; Kurhaluk, N. Antioxidant-Rich Functional Foods and Exercise: Unlocking Metabolic Health Through Nrf2 and Related Pathways. Int. J. Mol. Sci. 2025, 26, 1098.
- 122.
Chen, B.; Cai, S.; Cui, L.; et al. Novel peptide inhibitor of matrix Metalloproteinases-1 from pufferfish skin collagen hydrolysates and its potential Photoprotective activity via the MAPK/AP-1 signaling pathway. J. Photochem. Photobiol. B Biol. 2025, 262, 113088.
- 123.
Ortega-Ramirez, L.A.; Rodriguez-Garcia, I.; Leyva, J.M.; et al. Potential of medicinal plants as antimicrobial and antioxidant agents in food industry: A hypothesis. J. Food Sci. 2014, 79, R129–R137.
- 124.
Alolga, R.N.; Amadi, S.W.; Onoja, V.; et al. Anti-inflammatory and antipyretic properties of Kang 601 heji, a traditional Chinese oral liquid dosage form. Asian Pac. J. Trop. Biomed. 2015, 5, 921–927.
- 125.
Liu, X.; Huang, L.; Zhang, X.; et al. Polysaccharides with antioxidant activity: Extraction, beneficial roles, biological mechanisms, structure-function relationships, and future perspectives: A review. Int. J. Biol. Macromol. 2025, 300, 140221.
- 126.
Wang, W.; Li, H.; Lv, J.; et al. Determination of the Anti-Oxidative Stress Mechanism of Isodon suzhouensis Leaves by Employing Bioinformatic and Novel Research Technology. ACS Omega 2023, 8, 3520–3529.
- 127.
Pinilla-González, V.; Rojas-Solé, C.; Gómez-Hevia, F.; et al. Tapping into Nature’s Arsenal: Harnessing the Potential of Natural Antioxidants for Human Health and Disease Prevention. Foods 2024, 13, 1999.
- 128.
Jenab, A.; Roghanian, R.; Emtiazi, G. Bacterial Natural Compounds with Anti-Inflammatory and Immunomodulatory Properties (Mini Review). Drug Des. Dev. Ther. 2020, 14, 3787–3801.
- 129.
Cör Andrejč, D.; Knez, Ž.; Knez Marevci, M. Antioxidant, antibacterial, antitumor, antifungal, antiviral, anti-inflammatory, and nevro-protective activity of Ganoderma lucidum: An overview. Front. Pharmacol. 2022, 13, 934982.
- 130.
Sethi, G.; Ahn, K.S.; Sandur, S.K.; et al. Indirubin enhances tumor necrosis factor-induced apoptosis through modulation of nuclear factor-kappa B signaling pathway. J. Biol. Chem. 2006, 281, 23425–23435.
- 131.
Song, F.; Li, H.; Sun, J.; et al. Protective effects of cinnamic acid and cinnamic aldehyde on isoproterenol-induced acute myocardial ischemia in rats. J. Ethnopharmacol. 2013, 150, 125–130.
- 132.
Martorana, F.; Foti, M.; Virtuoso, A.; et al. Differential Modulation of NF-κB in Neurons and Astrocytes Underlies Neuroprotection and Antigliosis Activity of Natural Antioxidant Molecules. Oxid. Med. Cell. Longev. 2019, 2019, 8056904.
- 133.
Alongi, M.; Anese, M. Re-thinking functional food development through a holistic approach. J. Funct. Foods 2021, 81, 104466.
- 134.
Putnik, P.; Bursać Kovačević, D. Sustainable Functional Food Processing. Foods 2021, 10, 1438.
- 135.
Topolska, K.; Florkiewicz, A.; Filipiak-Florkiewicz, A.; et al. Functional Food-Consumer Motivations and Expectations. Int. J. Environ. Res. Public Health 2021, 18, 5327.
- 136.
Gaitanis, G.; Magiatis, P.; Velegraki, A.; et al. A traditional Chinese remedy points to a natural skin habitat: Indirubin (indigo naturalis) for psoriasis and the Malassezia metabolome. Br. J. Dermatol. 2018, 179, 800.
- 137.
Konno, T.; Sasaki, K.; Kobayashi, K.; et al. Indirubin promotes adipocyte differentiation and reduces lipid accumulation in 3T3-L1 cells via peroxisome proliferator-activated receptor γ activation. Mol. Med. Rep. 2020, 21, 1552–1560.
- 138.
Gao, B.; Zhang, J.; Xie, L. Structure analysis of effective chemical compounds against dengue viruses isolated from Isatis tinctoria. Can. J. Infect. Dis. Med. Microbiol 2018, 2018, 3217473.
- 139.
Spataro, G.; Negri, V. Adaptability and variation in Isatis tinctoria L.: A new crop for Europe. Euphytica 2008, 163, 89–102.
- 140.
Choi, J.H.; Choi, M.S. Influence of eco-friendly underwears on atopic dermatitis. J. Fashion Bus. 2015, 19, 141–150.