- 1.
Sharifi-Rad, M.; Anil Kumar, N.V.; Zucca, P.; et al. Lifestyle, Oxidative Stress, and Antioxidants: Back and Forth in the Pathophysiology of Chronic Diseases. Front. Physiol. 2020, 11, 552535. https://doi.org/10.3389/fphys.2020.00694.
- 2.
Sinenko, S.A.; Starkova, T.Y.; Kuzmin, A.A.; et al. Physiological Signaling Functions of Reactive Oxygen Species in Stem Cells: From Flies to Man. Front. Cell Dev. Biol. 2021, 9, 714370. https://doi.org/10.3389/fcell.2021.714370.
- 3.
Chen, X.; Guo, C.; Kong, J. Oxidative stress in neurodegenerative diseases. Neural Regen. Res. 2012, 7, 376–385.
- 4.
Holmström, K.M.; Finkel, T. Cellular mechanisms and physiological consequences of redox-dependent signalling. Nat. Rev. Mol. Cell Biol. 2014, 15, 411–421.
- 5.
Al-Horani, R.A. A Narrative Review of Exercise-Induced Oxidative Stress: Oxidative DNA Damage Underlined. Open Sports Sci. J. 2022, 15. https://doi.org/10.2174/1875399X-v15-e2202220.
- 6.
Domazetovic, V.; Marcucci, G.; Iantomasi, T.; et al. Oxidative stress in bone remodeling: Role of antioxidants. Clin. Cases Miner. Bone Metab. 2017, 14, 209–216.
- 7.
Cichoż-Lach, H.; Michalak, A. Oxidative stress as a crucial factor in liver diseases. World J. Gastroenterol. 2014, 20, 8082–8091.
- 8.
Guo, J.; Hu, H.; Chen, Z.; et al. Cold Exposure Induces Intestinal Barrier Damage and Endoplasmic Reticulum Stress in the Colon via the SIRT1/Nrf2 Signaling Pathway. Front. Physiol. 2022, 13, 822348. https://doi.org/10.3389/fphys.2022.822348.
- 9.
Cooper, J.S.; Phuyal, P.; Shah, N. Oxygen Toxicity. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2023. Available online: http://www.ncbi.nlm.nih.gov/books/NBK430743/ (accessed on 22 October 2023).
- 10.
Caliri, A.W.; Tommasi, S.; Besaratinia, A. Relationships among smoking, oxidative stress, inflammation, macromolecular damage, and cancer. Mutat. Res. Mutat. Res. 2021, 787, 108365.
- 11.
Dmitrieva, N.I.; Gagarin, A.; Liu, D.; et al. Middle-age high normal serum sodium as a risk factor for accelerated biological aging, chronic diseases, and premature mortality. eBioMedicine 2023, 2, 87. Available online: https://www.thelancet.com/journals/ebiom/article/PIIS2352-3964(22)00586-2/fulltext (accessed on 6 January 2023).
- 12.
Marrugo, D.G.; León-Méndez, D.; Silva, J.P.; et al. Metal fumes: Exposure to heavy metals, their relationship with oxidative stress and their effect on health. Prod. Limpia 2019, 14, 8–20.
- 13.
Lunderius-Andersson, C.; Enoksson, M.; Nilsson, G. Mast Cells Respond to Cell Injury through the Recognition of IL-33. Front Immunol. 2012, 3, 82.
- 14.
Feinman, R.; Deitch, E.A.; Watkins, A.C.; et al. HIF-1 mediates pathogenic inflammatory responses to intestinal ischemia-reperfusion injury. Am. J. Physiol. Gastrointest. Liver Physiol. 2010, 299, G833–G843.
- 15.
Liguori, I.; Russo, G.; Curcio, F.; et al. Oxidative stress, aging, and diseases. Clin. Interv. Aging. 2018, 13, 757–772.
- 16.
Kıvrak, E.G.; Yurt, K.K.; Kaplan, A.A.; et al. Effects of electromagnetic fields exposure on the antioxidant defense system. J. Microsc. Ultrastruct. 2017, 5, 167–176.
- 17.
Ghaemi Kerahrodi, J.; Michal, M. The fear-defense system, emotions, and oxidative stress. Redox Biol. 2020, 37, 101588.
- 18.
Schiavone, S.; Jaquet, V.; Trabace, L.; et al. Severe Life Stress and Oxidative Stress in the Brain: From Animal Models to Human Pathology. Antioxid. Redox Signal. 2013, 18, 1475–1490.
- 19.
Emerson, S.R.; Kurti, S.P.; Harms, C.A.; et al. Magnitude and Timing of the Postprandial Inflammatory Response to a High-Fat Meal in Healthy Adults: A Systematic Review. Adv. Nutr. Bethesda Md. 2017, 8, 213–225.
- 20.
Jansen, F.; Yang, X.; Franklin, B.S.; et al. High glucose condition increases NADPH oxidase activity in endothelial microparticles that promote vascular inflammation. Cardiovasc. Res. 2013, 98, 94–106.
- 21.
DiNicolantonio, J.J.; Lucan, S.C.; O’Keefe, J.H. The Evidence for Saturated Fat and for Sugar Related to Coronary Heart Disease. Prog. Cardiovasc. Dis. 2016, 58, 464–472.
- 22.
Hyperthermia, dehydration, and osmotic stress: Unconventional sources of exercise-induced reactive oxygen species. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2016, 310, R105–R114. https://doi.org/10.1152/ajpregu.00395.2015.
- 23.
Wimalawansa, S.J. Vitamin D Deficiency: Effects on Oxidative Stress, Epigenetics, Gene Regulation, and Aging. Biology 2019, 8, 30.
- 24.
Vaccaro, A.; Dor, Y.K.; Nambara, K.; et al. Sleep Loss Can Cause Death through Accumulation of Reactive Oxygen Species in the Gut. Cell 2020, 181, 1307–1328.e15.
- 25.
Chong, W.C.; Shastri, M.D.; Eri, R. Endoplasmic Reticulum Stress and Oxidative Stress: A Vicious Nexus Implicated in Bowel Disease Pathophysiology. Int. J. Mol. Sci. 2017, 18, 771.
- 26.
Matés, J.M.; Pérez-Gómez, C.; Núñez de Castro, I. Antioxidant enzymes and human diseases. Clin. Biochem. 1999, 32, 595–603.
- 27.
Polonikov, A. Endogenous Deficiency of Glutathione as the Most Likely Cause of Serious Manifestations and Death in COVID-19 Patients. ACS Infect. Dis. 2020, 6, 1558–1562.
- 28.
Badawy, M.A.; Yasseen, B.A.; El-Messiery, R.M.; et al. Neutrophil-mediated oxidative stress and albumin structural damage predict COVID-19-associated mortality. eLife 2021, 10, e69417.
- 29.
Nutrient Data Laboratory (U.S.). USDA Database for the Oxygen Radical Absorbance Capacity (ORAC) of Selected Foods; USDA: Washington, DC, USA, 2010.
- 30.
Behl, T.; Kumar, K.; Brisc, C.; et al. Exploring the multifocal role of phytochemicals as immunomodulators. Biomed. Pharmacother. 2021, 133, 110959.
- 31.
van de Lagemaat, E.E.; de Groot, L.C.P.G.M.; van den Heuvel, E.G.H.M. Vitamin B12 in Relation to Oxidative Stress: A Systematic Review. Nutrients 2019, 11, 482.
- 32.
Heiss, E.; Herhaus, C.; Klimo, K.; et al. Nuclear Factor κB Is a Molecular Target for Sulforaphane-mediated Anti-inflammatory Mechanisms. J. Biol. Chem. 2001, 276, 32008–32015. Available online: https://www.jbc.org/article/S0021-9258(19)31512-1/fulltext (accessed on 23 October 2022).
- 33.
Zhang, Z.; Yang, P.; Zhao, J. Ferulic acid mediates prebiotic responses of cereal-derived arabinoxylans on host health. Anim. Nutr. 2021, 9, 31–38.
- 34.
Gomez-Cabrera, M.C.; Domenech, E.; Viña, J. Moderate exercise is an antioxidant: Upregulation of antioxidant genes by training. Free Radic. Biol. Med. 2008, 44, 126–131.
- 35.
Mohr, A.E.; McEvoy, C.; Sears, D.D.; et al. Impact of intermittent fasting regimens on circulating markers of oxidative stress in overweight and obese humans: A systematic review of randomized controlled trials. Adv. Redox Res. 2021, 3, 100026.
- 36.
Calabrese, V.; Cornelius, C.; Dinkova-Kostova, A.T.; et al. Cellular Stress Responses, The Hormesis Paradigm, and Vitagenes: Novel Targets for Therapeutic Intervention in Neurodegenerative Disorders. Antioxid. Redox Signal. 2010, 13, 1763–1811.
- 37.
Calabrese, V.; Cornelius, C.; Dinkova-Kostova, A.T.; et al. Vitagenes, cellular stress response, and acetylcarnitine: Relevance to hormesis. BioFactors Oxf. Engl. 2009, 35, 146–160.
- 38.
Bellot, G.L.; Dong, X.; Lahiri, A.; et al. MnSOD is implicated in accelerated wound healing upon Negative Pressure Wound Therapy (NPWT): A case in point for MnSOD mimetics as adjuvants for wound management. Redox Biol. 2018, 20, 307–320.
- 39.
Ngo, V.; Duennwald, M.L. Nrf2 and Oxidative Stress: A General Overview of Mechanisms and Implications in Human Disease. Antioxidants 2022, 11, 2345.
- 40.
Carlson, D.; Wilson, C. Redox Imbalance Theory of Disease, The Triple Oxidant Sink, and The Antioxidant Lifestyle. Int. J. Dis. Reversal Prev. 2024, 6, 23.
- 41.
Leimkühler, M.; Bourgonje, A.R.; van Goor, H.; et al. Oxidative Stress Predicts Post-Surgery Complications in Gastrointestinal Cancer Patients. Ann. Surg. Oncol. 2022, 29, 4540–4547.
- 42.
Dekker, A.B.E.; Krijnen, P.; Schipper, I.B. Predictive value of cytokines for developing complications after polytrauma. World J. Crit. Care Med. 2016, 5, 187–200.
- 43.
Moisejevs, G.; Bormane, E.; Trumpika, D.; et al. Glutathione Reductase Is Associated with the Clinical Outcome of Septic Shock in the Patients Treated Using Continuous Veno-Venous Haemofiltration. Medicina 2021, 57, 689.
- 44.
Ayala, J.C.; Grismaldo, A.; Sequeda-Castañeda, L.G.; et al. Oxidative Stress in ICU Patients: ROS as Mortality Long-Term Predictor. Antioxidants 2021, 10, 1912.
- 45.
Servia, L.; Serrano, J.C.E.; Pamplona, R.; et al. Location-dependent effects of trauma on oxidative stress in humans. PLoS ONE 2018, 13, e0205519.
- 46.
Liguori, I.; Russo, G.; Curcio, F.; et al. Oxidative stress, aging, and diseases. Clin. Interv. Aging. 2018, 13, 757–772.
- 47.
Victorino, G.P.; Chong, T.J.; Pal, J.D. Trauma in the Elderly Patient. Arch. Surg. 2003, 138, 1093–1098.
- 48.
Resnick, S.; Inaba, K.; Okoye, O.; et al. Impact of Smoking on Trauma Patients. Turk. J. Trauma. Emerg. Surg. 2014, 20 248–252.
- 49.
He, K.; Hemmila, M.R.; Cain-Nielsen, A.H.; et al. Complications and resource utilization in trauma patients with diabetes. PLoS ONE 2019, 14, e0221414.
- 50.
Pugachev, A.; Gershevich, V.; Korzhuk, M.; et al. Treatment of Patients with A Chest Trauma Suffering COPD. In A41 Chronic Obstructive Pulmonary Disease Exacerbations: Epidemiology and Outcomes; American Thoracic Society International Conference Abstracts; American Thoracic Society: New York, NY, USA, 2010. p. A1514. Available online: https://www.atsjournals.org/doi/abs/10.1164/ajrccm-conference.2010.181.1_MeetingAbstracts.A1514 (accessed on 27 October 2023).
- 51.
Ferraris, V.A.; Ferraris, S.P.; Saha, S.P. The relationship between mortality and preexisting cardiac disease in 5971 trauma patients. J. Trauma Acute Care Surg. 2010, 69, 645–652.
- 52.
Kelley, N.; Jeltema, D.; Duan, Y.; et al. The NLRP3 Inflammasome: An Overview of Mechanisms of Activation and Regulation. Int. J. Mol. Sci. 2019, 20, 3328.
- 53.
Duan, J.; Gao, S.; Tu, S.; et al. Pathophysiology and Therapeutic Potential of NADPH Oxidases in Ischemic Stroke-Induced Oxidative Stress. Oxid. Med. Cell Longev. 2021, 2021, 6631805.
- 54.
Lord, J.M.; Midwinter, M.J.; Chen, Y.F.; et al. The systemic immune response to trauma: An overview of pathophysiology and treatment. Lancet Lond. Engl. 2014, 384, 1455–1465.
- 55.
Rao, R. Oxidative Stress-Induced Disruption of Epithelial and Endothelial Tight Junctions. Front. Biosci. J. Virtual Libr. 2008, 13, 7210–7226.
- 56.
Nadatani, Y.; Watanabe, T.; Shimada, S.; et al. Microbiome and intestinal ischemia/reperfusion injury. J. Clin. Biochem. Nutr. 2018, 63, 26–32.
- 57.
Hernández-Reséndiz, S.; Muñoz-Vega, M.; Contreras, W.E.; et al. Responses of Endothelial Cells Towards Ischemic Conditioning Following Acute Myocardial Infarction. Cond. Med. 2018, 1, 247. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6191189/ (accessed on 29 March 2023).
- 58.
Chelombitko, M.A.; Fedorov, A.V.; Ilyinskaya, O.P.; et al. Role of Reactive Oxygen Species in Mast Cell Degranulation. Biochemistry 2016, 81, 1564–1577.
- 59.
Bortolotti, P.; Faure, E.; Kipnis, E. Inflammasomes in Tissue Damages and Immune Disorders after Trauma. Front. Immunol. 2018, 9, 1900. https://doi.org/10.3389/fimmu.2018.01900.
- 60.
Brito, G.M.C.; Fontenele, A.M.M.; Carneiro, E.C.R.L.; et al. Neutrophil-to-Lymphocyte and Platelet-to-Lymphocyte Ratios in Nondialysis Chronic Kidney Patients. Int. J. Inflamm. 2021, 2021, 6678960.
- 61.
Amer, S.A.; Albeladi, O.A.; Elshabrawy, A.M.; et al. Role of neutrophil to lymphocyte ratio as a prognostic indicator for COVID-19. Health Sci. Rep. 2021, 4, e442.
- 62.
Xu, J.; Li, S.; Lui, K.Y.; et al. The neutrophil-to-lymphocyte ratio: A potential predictor of poor prognosis in adult patients with trauma and traumatic brain injury. Front. Surg. 2022, 9, 917172. https://doi.org/10.3389/fsurg.2022.917172.
- 63.
Sørensen, O.E.; Borregaard, N. Neutrophil extracellular traps—The dark side of neutrophils. J. Clin. Investig. 2016, 126, 1612–1620.
- 64.
White, N.J.; Wang, Y.; Fu, X.; et al. Post-translational oxidative modification of fibrinogen is associated with coagulopathy after traumatic injury. Free Radic. Biol. Med. 2016, 96, 181–189.
- 65.
Oxidative Stress and Platelet Dysfunction. Available online: https://austinpublishinggroup.com/thrombosis-haemostasis/fulltext/thrombosis-v2-id1017.php (accessed on 2 October 2022).
- 66.
Dayal, S.; Gu, S.X.; Hutchins, R.D.; et al. Deficiency of Superoxide Dismutase Impairs Protein C Activation and Enhances Susceptibility to Experimental Thrombosis. Arterioscler. Thromb. Vasc. Biol. 2015, 35, 1798–1804.
- 67.
Perler, B.A.; Tohmeh, A.G.; Bulkley, G.B. Inhibition of the compartment syndrome by the ablation of free radical-mediated reperfusion injury. Surgery 1990, 108, 40–47.
- 68.
Lawendy, A.R.; Bihari, A.; Sanders, D.W.; et al. Contribution of inflammation to cellular injury in compartment syndrome in an experimental rodent model. Bone Jt. J. 2015, 97, 539–543.
- 69.
Tharayil, A.M.; Ganaw, A.; Abdulrahman, S.; et al. Abdominal Compartment Syndrome: What Is New? Intensive Care. IntechOpen 2017. Available online: https://www.intechopen.com/state.item.id (accessed on 28 January 2023).
- 70.
Leng, Y.; Zhang, K.; Fan, J.; et al. Effect of Acute, Slightly Increased Intra-Abdominal Pressure on Intestinal Permeability and Oxidative Stress in a Rat Model. PLoS ONE 2014, 9, e109350.
- 71.
Floyd, R.A.; Hensley, K. Oxidative stress in brain aging: Implications for therapeutics of neurodegenerative diseases. Neurobiol. Aging 2002, 23, 795–807.
- 72.
Fesharaki-Zadeh, A. Oxidative Stress in Traumatic Brain Injury. Int. J. Mol. Sci. 2022, 23, 13000.
- 73.
Soeters, P.B.; Wolfe, R.R.; Shenkin, A. Hypoalbuminemia: Pathogenesis and Clinical Significance. JPEN J. Parenter. Enteral Nutr. 2019, 43, 181–193.
- 74.
Bissinger, R.; Bhuyan, A.A.M.; Qadri, S.M.; et al. Oxidative stress, eryptosis and anemia: A pivotal mechanistic nexus in systemic diseases. FEBS J. 2019, 286, 826–854.
- 75.
Gonçalves, A.C.; Alves, R.; Baldeiras, I.; et al. Oxidative Stress Parameters Can Predict the Response to Erythropoiesis-Stimulating Agents in Myelodysplastic Syndrome Patients. Front. Cell Dev. Biol. 2021, 9, 701328. https://doi.org/10.3389/fcell.2021.701328.
- 76.
Miller, M.W.; Sadeh, N. Traumatic stress, oxidative stress and post-traumatic stress disorder: Neurodegeneration and the accelerated-aging hypothesis. Mol. Psychiatry 2014, 19, 1156–1162.
- 77.
Bai, X.C.; Lu, D.; Bai, J.; et al. Oxidative stress inhibits osteoblastic differentiation of bone cells by ERK and NF-kappaB. Biochem. Biophys. Res. Commun. 2004, 314, 197–207.
- 78.
Wang, G.; Yang, F.; Zhou, W.; et al. The initiation of oxidative stress and therapeutic strategies in wound healing. Biomed. Pharmacother. 2023, 157, 114004.
- 79.
Kawahito, S.; Kitahata, H.; Oshita, S. Problems associated with glucose toxicity: Role of hyperglycemia-induced oxidative stress. World J. Gastroenterol. WJG 2009, 15, 4137–4142.
- 80.
Freeman, T.A.; Parvizi, J.; Dela Valle, C.J.; et al. Mast cells and hypoxia drive tissue metaplasia and heterotopic ossification in idiopathic arthrofibrosis after total knee arthroplasty. Fibrogenesis Tissue Repair 2010, 3, 17. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2940819/ (accessed on 21 October 2009).
- 81.
Ziskoven, C.; Jäger, M.; Zilkens, C.; et al. Oxidative stress in secondary osteoarthritis: From cartilage destruction to clinical presentation? Orthop. Rev. 2010, 2, e23.
- 82.
Song, Y.; Hao, D.; Jiang, H.; et al. Nrf2 Regulates CHI3L1 to Suppress Inflammation and Improve Post-Traumatic Osteoarthritis. J. Inflamm. Res. 2021, 14, 4079–4088.
- 83.
Guo, T.Z.; Wei, T.; Huang, T.T.; et al. Oxidative Stress Contributes to Fracture/Cast-Induced Inflammation and Pain in a Rat Model of Complex Regional Pain Syndrome. J. Pain 2018, 19, 1147–1156.
- 84.
Taha, R.; Blaise, G.A. Update on the pathogenesis of complex regional pain syndrome: Role of oxidative stress. Can. J. Anaesth. J. Can. Anesth. 2012, 59, 875–881.
- 85.
Lopez, M.G.; Hughes, C.G.; DeMatteo, A.; et al. Intraoperative oxidative damage and delirium following cardiac surgery. Anesthesiology 2020, 132, 551–561.
- 86.
Li, Q.H.; Yu, L.; Yu, Z.W.; et al. Relation of postoperative serum S100A12 levels to delirium and cognitive dysfunction occurring after hip fracture surgery in elderly patients. Brain Behav. 2019, 9, e01176.
- 87.
Davis, G.; Fayfman, M.; Reyes-Umpierrez, D.; et al. Stress hyperglycemia in general surgery: Why should we care? J. Diabetes Complicat. 2018, 32, 305–309.
- 88.
Campbell, T.C. Untold nutrition. Nutr. Cancer 2014, 66, 1077–1082.
- 89.
Bjelakovic, G.; Nikolova, D.; Gluud, C. Antioxidant supplements and mortality. Curr. Opin. Clin. Nutr. Metab. Care 2014, 17, 40–44.
- 90.
Macpherson, H.; Pipingas, A.; Pase, M.P. Multivitamin-multimineral supplementation and mortality: A meta-analysis of randomized controlled trials. Am. J. Clin. Nutr. 2013, 97, 437–444.
- 91.
Antioxidant Supplements: What You Need to Know. NCCIH. Available online: https://www.nccih.nih.gov/health/antioxidant-supplements-what-you-need-to-know (accessed on 3 November 2023).
- 92.
Lonn, E.; Bosch, J.; Yusuf, S.; et al. Effects of long-term vitamin E supplementation on cardiovascular events and cancer: A randomized controlled trial. JAMA 2005, 293, 1338–1347.
- 93.
Jain, M.; Chandel, N.S. Rethinking Antioxidants in the Intensive Care Unit. Am. J. Respir. Crit. Care Med. 2013, 188, 1283–1285.
- 94.
Bouayed, J.; Bohn, T. Exogenous antioxidants—Double-edged swords in cellular redox state. Oxid. Med. Cell Longev. 2010, 3, 228–237.
- 95.
Gontero, P.; Marra, G.; Soria, F.; et al. A randomized double-blind placebo controlled phase I-II study on clinical and molecular effects of dietary supplements in men with precancerous prostatic lesions. Chemoprevention or “chemopromotion”? A RCT on Dietary Supplements in PCa Chemoprevention. Prostate 2015, 75, 1177–1186.
- 96.
Lock, M.; Loblaw, A. Vitamin E might increase risk of death. Can. Fam. Physician 2005, 51, 829–831.
- 97.
Haynes, R.; Jiang, L.; Hopewell, J.C.; et al. HPS2-THRIVE randomized placebo-controlled trial in 25673 high-risk patients of ER niacin/laropiprant: Trial design, pre-specified muscle and liver outcomes, and reasons for stopping study treatment. Eur. Heart J. 2013, 34, 1279–1291.
- 98.
null null. Niacin in Patients with Low HDL Cholesterol Levels Receiving Intensive Statin Therapy. N. Engl. J. Med. 2011, 365, 2255–2267.
- 99.
Ingles, D.P.; Cruz Rodriguez, J.B.; Garcia, H. Supplemental Vitamins and Minerals for Cardiovascular Disease Prevention and Treatment. Curr. Cardiol. Rep. 2020, 22, 22.
- 100.
Chen, F.; Du, M.; Blumberg, J.B.; et al. Association Between Dietary Supplement Use, Nutrient Intake, and Mortality Among US Adults: A Cohort Study. Ann. Intern. Med. 2019, 170, 604–613.
- 101.
Podmore, I.D.; Griffiths, H.R.; Herbert, K.E.; et al. Vitamin C exhibits pro-oxidant properties. Nature 1998, 392, 559.
- 102.
Heyland, D.; Muscedere, J.; Wischmeyer, P.E.; et al. A Randomized Trial of Glutamine and Antioxidants in Critically Ill Patients. N. Engl. J. Med. 2013, 368, 1489–1497.
- 103.
Gudivada, K.K.; Kumar, A.; Shariff, M.; et al. Antioxidant micronutrient supplementation in critically ill adults: A systematic review with meta-analysis and trial sequential analysis. Clin. Nutr. 2021, 40, 740–750.
- 104.
Ornish, D.; Scherwitz, L.W.; Billings, J.H.; et al. Intensive Lifestyle Changes for Reversal of Coronary Heart Disease. JAMA 1998, 280, 2001–2007.
- 105.
Esselstyn, C.B. A plant-based diet and coronary artery disease: A mandate for effective therapy. J. Geriatr. Cardiol. 2017, 14, 317–320.
- 106.
Bansal, S.; Connolly, M.; Harder, T. Impact of a Whole-Foods, Plant-Based Nutrition Intervention on Patients Living with Chronic Disease in an Underserved Community. Am. J. Lifestyle Med. 2021, 16, 382–389.
- 107.
Liu, R.H. Health benefits of fruit and vegetables are from additive and synergistic combinations of phytochemicals. Am. J. Clin. Nutr. 2003, 78, 517S–520S.
- 108.
Liu, R.H. Potential synergy of phytochemicals in cancer prevention: Mechanism of action. J. Nutr. 2004, 134, 3479S–3485S.
- 109.
Wang, S.; Meckling, K.A.; Marcone, M.F.; et al. Synergistic, additive, and antagonistic effects of food mixtures on total antioxidant capacities. J. Agric. Food Chem. 2011, 59, 960–968.
- 110.
Einer, C.; Leitzinger, C.; Lichtmannegger, J.; et al. A High-Calorie Diet Aggravates Mitochondrial Dysfunction and Triggers Severe Liver Damage in Wilson Disease Rats. Cell Mol. Gastroenterol. Hepatol. 2018, 7, 571–596.
- 111.
Hernández-Aguilera, A.; Rull, A.; Rodríguez-Gallego, E.; et al. Mitochondrial Dysfunction: A Basic Mechanism in Inflammation-Related Non-Communicable Diseases and Therapeutic Opportunities. Mediat. Inflamm. 2013, 2013, 135698.
- 112.
Hübner, M.; Mantziari, S.; Demartines, N.; et al. Postoperative Albumin Drop Is a Marker for Surgical Stress and a Predictor for Clinical Outcome: A Pilot Study. Gastroenterol. Res. Pract. 2016, 2016, 8743187.
- 113.
Liu, L.; Xie, K.; Yin, M.; et al. Serum potassium, albumin and vitamin B12 as potential oxidative stress markers of fungal peritonitis. Ann. Med. 2021, 53, 2132–2141.
- 114.
Casey, L. Hope and Healing: Type 2 Diabetes Remission with Lifestyle Medicine. Am. Coll. Lifestyle Med. 2023. Available online: https://lifestylemedicine.org/articles/type-2-diabetes-remission-with-lifestyle-medicine/ (accessed on 21 April 2025).
- 115.
Percival, S.S.; Vanden Heuvel, J.P.; Nieves, C.J.; et al. Bioavailability of herbs and spices in humans as determined by ex vivo inflammatory suppression and DNA strand breaks. J. Am. Coll. Nutr. 2012, 31, 288–294.
- 116.
Lu, Q.; Summanen, P.H.; Lee, R.; et al. Prebiotic Potential and Chemical Composition of Seven Culinary Spice Extracts. J. Food Sci. 2017, 82, 1807–1813.
- 117.
Gut Microbial Modulation by Culinary Herbs and Spices | Elsevier Enhanced Reader. Available online: https://reader.elsevier.com/reader/sd/pii/S0308814622032484?token=9FCAF3B54B201EE12984EF64F732F2814E5880280BEAA0D401FDD7B3DA5943A413C8CABDC54A9D1E105835DC41456AE9&originRegion=us-east-1&originCreation=20230110222333 (accessed on 10 January 2023).
- 118.
Meyer, M.; Kesic, M.J.; Clarke, J.; et al. Sulforaphane induces SLPI secretion in the nasal mucosa. Respir. Med. 2013, 107, 472–475.
- 119.
Yang, L.; Palliyaguru, D.L.; Kensler, T.W. Frugal Chemoprevention: Targeting Nrf2 with Foods Rich in Sulforaphane. Semin. Oncol. 2016, 43, 146–153.
- 120.
Yagishita, Y.; Fahey, J.W.; Dinkova-Kostova, A.T.; et al. Broccoli or Sulforaphane: Is It the Source or Dose That Matters? Molecules 2019, 24, 3593.
- 121.
Sedlak, T.W.; Nucifora, L.G.; Koga, M.; et al. Sulforaphane Augments Glutathione and Influences Brain Metabolites in Human Subjects: A Clinical Pilot Study. Mol. Neuropsychiatry 2018, 3, 214–222.
- 122.
Gan, N.; Wu, Y.C.; Brunet, M.; et al. Sulforaphane Activates Heat Shock Response and Enhances Proteasome Activity through Up-regulation of Hsp27. J. Biol. Chem. 2010, 285, 35528–35536.
- 123.
Maheshwari, S.; Kumar, V.; Bhadauria, G.; et al. Immunomodulatory potential of phytochemicals and other bioactive compounds of fruits: A review. Food Front. 2022, 3, 221–238.
- 124.
Liu, X.F.; Shao, J.H.; Liao, Y.T.; et al. Regulation of short-chain fatty acids in the immune system. Front. Immunol. 2023, 14, 1186892.
- 125.
Nielsen, S.J.J.; Trak-Fellermeier, M.A.; Joshipura, K. The Association between Dietary Fiber Intake and CRP levels, US Adults, 2007–2010. FASEB J. 2017, 31, 648.8–648.8.
- 126.
Bouayed, M.Z.; Laaribi, I.; Chatar, C.E.M.; et al. C-Reactive Protein (CRP): A poor prognostic biomarker in COVID-19. Front. Immunol. 2022, 13, 1040024. https://doi.org/10.3389/fimmu.2022.1040024.
- 127.
Clark, A.; Mach, N. The Crosstalk between the Gut Microbiota and Mitochondria during Exercise. Front. Physiol. 2017, 8, 319. https://doi.org/10.3389/fphys.2017.00319/full.
- 128.
Imdad, S.; Lim, W.; Kim, J.H.; et al. Intertwined Relationship of Mitochondrial Metabolism, Gut Microbiome and Exercise Potential. Int. J. Mol. Sci. 2022, 23, 2679.
- 129.
Liu, T.; Li, J.; Liu, Y.; et al. Short-Chain Fatty Acids Suppress Lipopolysaccharide-Induced Production of Nitric Oxide and Proinflammatory Cytokines Through Inhibition of NF-κB Pathway in RAW264.7 Cells. Inflammation 2012, 35, 1676–1684.
- 130.
Jackson, D.N.; Theiss, A.L. Gut bacteria signaling to mitochondria in intestinal inflammation and cancer. Gut Microbes 2020, 11, 285–304.
- 131.
Pisoschi, A.M.; Iordache, F.; Stanca, L.; et al. Antioxidant, Anti-inflammatory, and Immunomodulatory Roles of Nonvitamin Antioxidants in Anti-SARS-CoV-2 Therapy. J. Med. Chem. 2022, 65, 12562–12593.
- 132.
Chen, R.; Kang, R.; Tang, D. The mechanism of HMGB1 secretion and release. Exp. Mol. Med. 2022, 54, 91–102.
- 133.
Li, M.; van Esch, B.C.A.M.; Henricks, P.A.J.; et al. Time and Concentration Dependent Effects of Short Chain Fatty Acids on Lipopolysaccharide- or Tumor Necrosis Factor α-Induced Endothelial Activation. Front. Pharmacol. 2018, 9, 233.
- 134.
Muzio, G.; Barrera, G.; Pizzimenti, S. Peroxisome Proliferator-Activated Receptors (PPARs) and Oxidative Stress in Physiological Conditions and in Cancer. Antioxidants 2021, 10, 1734.
- 135.
Cotogni, P.; Trombetta, A.; Muzio, G.; et al. Polyunsaturated Fatty Acids and Cytokines: Their Relationship in Acute Lung Injury. Diet. Nutr. Crit. Care 2015, 12, 929–942.
- 136.
Kaya, M.O.; Pamukçu, E.; Yakar, B. The role of vitamin D deficiency on COVID-19: A systematic review and meta-analysis of observational studies. Epidemiol. Health 2021, 43, e2021074.
- 137.
Oh, E.S.; Petersen, K.S.; Kris-Etherton, P.M.; et al. Spices in a High-Saturated-Fat, High-Carbohydrate Meal Reduce Postprandial Proinflammatory Cytokine Secretion in Men with Overweight or Obesity: A 3-Period, Crossover, Randomized Controlled Trial. J. Nutr. 2020, 150, 1600–1609.
- 138.
Burmeister, D.M.; Johnson, T.R.; Lai, Z.; et al. The Gut Microbiome Distinguishes Mortality in Trauma Patients Upon Admission to the Emergency Department. J. Trauma. Acute Care Surg. 2020, 88, 579–587.
- 139.
Mohammadi, Z.; Abdollahzad, H.; Rezaeian, S.; et al. The Association of Dietary Total Antioxidant Capacity with Inflammatory Biomarkers and Anthropometric Indices in Patients Who Candidate for Coronary Artery Bypass Graft Surgery: A Cross-sectional Study. Clin. Nutr. Res. 2021, 10, 353–363.
- 140.
Mittal, M.; Siddiqui, M.R.; Tran, K.; et al. Reactive Oxygen Species in Inflammation and Tissue Injury. Antioxid. Redox Signal. 2014, 20, 1126.
- 141.
Yang, D.; Elner, S.G.; Bian, Z.M.; et al. Pro-inflammatory cytokines increase reactive oxygen species through mitochondria and NADPH oxidase in cultured RPE cells. Exp. Eye Res. 2007, 85, 462–472.