- 1.
Callahan, A.; Leonard, H.; Powell, T. Nutrition: Science and Everyday Application. Oregon Educational Resources. 2022; Volume 2. Available online: https://openoregon.pressbooks.pub/nutritionscience2e/#main (accessed on 14 April 2024).
- 2.
UN-SDGs. United Nations Sustainable Development Goals. 2025. Available online: https://unglobalcompact.org/sdgs (accessed on 24 March 2025).
- 3.
Infantes-Garcia, M.R.; Verkempinck, S.H.E.; Saadi, M.R.; et al. Towards understanding the modulation of in vitro gastrointestinal lipolysis kinetics through emulsions with mixed interfaces. Food Hydrocoll. 2022, 124, 107240. https://doi.org/10.1016/j.foodhyd.2021.107240.
- 4.
Zhao, P.; Yang, X.; Li, D.; et al. Development of in vitro digestion simulation of gastrointestinal tract to evaluate lipolysis and proteolysis: Comparison of infant model digestion of breast milk and adult model digestion of cow milk. Food Hydrocoll. 2023, 142, 108859. https://doi.org/10.1016/j.foodhyd.2023.108859 R.
- 5.
González, C.; Simpson, R.; Vega, O.; et al. Effect of particle size on in vitro intestinal digestion of emulsion-filled gels: Mathematical analysis based on the Gallagher–Corrigan model. Food Bioprod. Process. 2020, 120, 33–40. https://doi.org/10.1016/j.fbp.2019.12.009.
- 6.
Zhao, P.; Yang, X.; Gan, J.; et al. In Vitro Lipid Digestion of milk formula with different lipid droplets: A study on the gastric digestion emulsion structure and lipid release pattern. J. Agric. Food Chem. 2024, 72, 24736–24748. https://doi.org/10.1021/acs.jafc.4c05114.
- 7.
de Abreu-Martins, H.H.; Artiga-Artigas, M.; Piccoli, R.H.; et al. The lipid type affects the in vitro digestibility and β-carotene bioaccessibility of liquid or solid lipid nanoparticles. Food Chem. 2020, 311, 126024. https://doi.org/10.1016/j.foodchem.2019.126024.
- 8.
Giang, T.M.; Le Feunteun, S.; Gaucel, S.; et al. Dynamic modeling highlights the major impact of droplet coalescence on the in vitro digestion kinetics of a whey protein stabilized submicron emulsion. Food Hydrocoll. 2015, 43, 66–72. https://doi.org/10.1016/j.foodhyd.2014.04.037.
- 9.
Okuro, P.K.; Viau, M.; Marze, M.; et al. In vitro digestion of high-lipid emulsions: Towards a critical interpretation of lipolysis. Food Funct. 2023, 14, 10868. https://doi.org/10.1039/d3fo03816e.
- 10.
Li, Y.; McClements, D. New mathematical model for interpreting pH-stat digestion profiles: Impact of lipid droplet characteristics on in vitro digestibility. J. Agric. Food Chem. 2010, 58, 8085–8092. https://doi.org/10.1021/jf101325m.
- 11.
Gaucel, S.; Trelea, I.C.; Le Feunteun, S. Comment on new mathematical model for interpreting pH-stat digestion profiles: Impact of lipid droplet characteristics on in vitro digestibility. J. Agric. Food Chem. 2015, 63, 10352–10353. https://doi.org/10.1021/acs.jafc.5b03573.
- 12.
Sarkar, A.; Murray, B.; Holmes, M.; et al. In vitro digestion of Pickering emulsions stabilized by soft whey protein microgel particles: Influence of thermal treatment. Soft Matter 2016, 12, 3558–3569. https://doi.org/10.1039/C5SM02998H.
- 13.
Verger, R.; Mieras, C.E.; de Haas, G.H. Action of phospholipase A at interfaces. J. Biol. Chem. 1973, 248, 4023–4034. https://doi.org/10.1016/S0021-9258(19)43833-7.
- 14.
Giang, T.M.; Gaucel, S.; Brestaz, P.; et al. Dynamic modeling of in vitro lipid digestion: Individual fatty acid release and bioaccessibility kinetics. Food Chem. 2016, 194, 1180–1188. https://doi.org/10.1016/j.foodchem.2015.08.125.
- 15.
Le Feunteun, S.; Verkempinck, S.; Floury, J.; et al. Mathematical modelling of food hydrolysis during in vitro digestion: From single nutrient to complex foods in static and dynamic conditions. Trends Food Sci. Technol. 2021, 116, 870–883. https://doi.org/10.1016/j.tifs.2021.08.030.
- 16.
Nguyen, G.T.; Sopade, P.A. Modeling starch digestograms: Computational characteristics of kinetic models for in vitro starch digestion in food research. Compr. Rev. Food Sci. Food Saf. 2018, 17, 1422–1445. https://doi.org/10.1111/1541-4337.12384.
- 17.
Sopade, P.A. Computational characteristics of kinetic models for in vitro protein digestion: A review. J. Food Eng. 2024, 360, 111690. https://doi.org/10.1016/j.jfoodeng.2023.111690.
- 18.
Sarkar, A.; Zhang, S.; Holmes, M.; et al. Colloidal aspects of digestion of Pickering emulsions: Experiments and theoretical models of lipid digestion kinetics. Adv. Colloid Interface Sci. 2019, 263, 195–211. https://doi.org/10.1016/j.cis.2018.10.002.
- 19.
Butterworth, P.J.; Bajka, B.H.; Edwards, C.H.; et al. Enzyme kinetic approach for mechanistic insight and predictions of in vivo starch digestibility and the glycaemic index of foods. Trends Food Sci. Technol. 2022, 120, 254–264. https://doi.org/10.1016/j.tifs.2021.11.015.
- 20.
Sopade, P.A. Modelling multiphasic starch digestograms: An objective procedure for slope discontinuities. Int. J. Food Sci. Technol. 2021, 56, 2651–2661. https://doi.org/10.1111/ijfs.14931.
- 21.
Sopade, P.A. Modelling multiphasic starch digestograms with multiterm exponential and non-exponential equations. Carbohydr. Polym. 2022, 275, 118698. https://doi.org/10.1016/j.carbpol.2021.118698.