2507000941
  • Open Access
  • Perspective
Kinetic Models for Lipid Digestograms Need to Be Unwrapped: A Research Perspective
  • Peter Adeoye Sopade

Received: 27 Mar 2025 | Revised: 12 Jun 2025 | Accepted: 18 Jun 2025 | Published: 24 Jun 2025

Abstract

Food digestibility is a major consideration in formulating, developing, and processing foods for health and nutrition. Lipid digestion is important for nutrient supplies, and with in vitro digestion procedures widely used, the results from which are described by kinetic models, there is a need for an in-depth understanding of these kinetic models. With more than 10 kinetic models reported for lipolysis, the relative computational characteristics of these models together are yet to be fully unwrapped along a detailed comparative approach. Kinetic models in amylolysis and proteolysis have been detailedly studied, and a study on kinetic models for lipolysis will complement the other macronutrients to better understand food digestion. A comprehensive review, in a follow-up study, is required to fill this research vacuum and guide researchers on kinetic models for lipolysis.

References 

  • 1.
    Callahan, A.; Leonard, H.; Powell, T. Nutrition: Science and Everyday Application. Oregon Educational Resources. 2022; Volume 2. Available online: https://openoregon.pressbooks.pub/nutritionscience2e/#main (accessed on 14 April 2024).
  • 2.
    UN-SDGs. United Nations Sustainable Development Goals. 2025. Available online: https://unglobalcompact.org/sdgs (accessed on 24 March 2025).
  • 3.
    Infantes-Garcia, M.R.; Verkempinck, S.H.E.; Saadi, M.R.; et al. Towards understanding the modulation of in vitro gastrointestinal lipolysis kinetics through emulsions with mixed interfaces. Food Hydrocoll. 2022, 124, 107240. https://doi.org/10.1016/j.foodhyd.2021.107240.
  • 4.
    Zhao, P.; Yang, X.; Li, D.; et al. Development of in vitro digestion simulation of gastrointestinal tract to evaluate lipolysis and proteolysis: Comparison of infant model digestion of breast milk and adult model digestion of cow milk. Food Hydrocoll. 2023, 142, 108859. https://doi.org/10.1016/j.foodhyd.2023.108859 R.
  • 5.
    González, C.; Simpson, R.; Vega, O.; et al. Effect of particle size on in vitro intestinal digestion of emulsion-filled gels: Mathematical analysis based on the Gallagher–Corrigan model. Food Bioprod. Process. 2020, 120, 33–40. https://doi.org/10.1016/j.fbp.2019.12.009.
  • 6.
    Zhao, P.; Yang, X.; Gan, J.; et al. In Vitro Lipid Digestion of milk formula with different lipid droplets: A study on the gastric digestion emulsion structure and lipid release pattern. J. Agric. Food Chem. 2024, 72, 24736–24748. https://doi.org/10.1021/acs.jafc.4c05114.
  • 7.
    de Abreu-Martins, H.H.; Artiga-Artigas, M.; Piccoli, R.H.; et al. The lipid type affects the in vitro digestibility and β-carotene bioaccessibility of liquid or solid lipid nanoparticles. Food Chem. 2020, 311, 126024. https://doi.org/10.1016/j.foodchem.2019.126024.
  • 8.
    Giang, T.M.; Le Feunteun, S.; Gaucel, S.; et al. Dynamic modeling highlights the major impact of droplet coalescence on the in vitro digestion kinetics of a whey protein stabilized submicron emulsion. Food Hydrocoll. 2015, 43, 66–72. https://doi.org/10.1016/j.foodhyd.2014.04.037.
  • 9.
    Okuro, P.K.; Viau, M.; Marze, M.; et al. In vitro digestion of high-lipid emulsions: Towards a critical interpretation of lipolysis. Food Funct. 2023, 14, 10868. https://doi.org/10.1039/d3fo03816e.
  • 10.
    Li, Y.; McClements, D. New mathematical model for interpreting pH-stat digestion profiles: Impact of lipid droplet characteristics on in vitro digestibility. J. Agric. Food Chem. 2010, 58, 8085–8092. https://doi.org/10.1021/jf101325m.
  • 11.
    Gaucel, S.; Trelea, I.C.; Le Feunteun, S. Comment on new mathematical model for interpreting pH-stat digestion profiles: Impact of lipid droplet characteristics on in vitro digestibility. J. Agric. Food Chem. 2015, 63, 10352–10353. https://doi.org/10.1021/acs.jafc.5b03573.
  • 12.
    Sarkar, A.; Murray, B.; Holmes, M.; et al. In vitro digestion of Pickering emulsions stabilized by soft whey protein microgel particles: Influence of thermal treatment. Soft Matter 2016, 12, 3558–3569. https://doi.org/10.1039/C5SM02998H.
  • 13.
    Verger, R.; Mieras, C.E.; de Haas, G.H. Action of phospholipase A at interfaces. J. Biol. Chem. 1973, 248, 4023–4034. https://doi.org/10.1016/S0021-9258(19)43833-7.
  • 14.
    Giang, T.M.; Gaucel, S.; Brestaz, P.; et al. Dynamic modeling of in vitro lipid digestion: Individual fatty acid release and bioaccessibility kinetics. Food Chem. 2016, 194, 1180–1188. https://doi.org/10.1016/j.foodchem.2015.08.125.
  • 15.
    Le Feunteun, S.; Verkempinck, S.; Floury, J.; et al. Mathematical modelling of food hydrolysis during in vitro digestion: From single nutrient to complex foods in static and dynamic conditions. Trends Food Sci. Technol. 2021, 116, 870–883. https://doi.org/10.1016/j.tifs.2021.08.030.
  • 16.
    Nguyen, G.T.; Sopade, P.A. Modeling starch digestograms: Computational characteristics of kinetic models for in vitro starch digestion in food research. Compr. Rev. Food Sci. Food Saf. 2018, 17, 1422–1445. https://doi.org/10.1111/1541-4337.12384.
  • 17.
    Sopade, P.A. Computational characteristics of kinetic models for in vitro protein digestion: A review. J. Food Eng. 2024, 360, 111690. https://doi.org/10.1016/j.jfoodeng.2023.111690.
  • 18.
    Sarkar, A.; Zhang, S.; Holmes, M.; et al. Colloidal aspects of digestion of Pickering emulsions: Experiments and theoretical models of lipid digestion kinetics. Adv. Colloid Interface Sci. 2019, 263, 195–211. https://doi.org/10.1016/j.cis.2018.10.002.
  • 19.
    Butterworth, P.J.; Bajka, B.H.; Edwards, C.H.; et al. Enzyme kinetic approach for mechanistic insight and predictions of in vivo starch digestibility and the glycaemic index of foods. Trends Food Sci. Technol. 2022, 120, 254–264. https://doi.org/10.1016/j.tifs.2021.11.015.
  • 20.
    Sopade, P.A. Modelling multiphasic starch digestograms: An objective procedure for slope discontinuities. Int. J. Food Sci. Technol. 2021, 56, 2651–2661. https://doi.org/10.1111/ijfs.14931.
  • 21.
    Sopade, P.A. Modelling multiphasic starch digestograms with multiterm exponential and non-exponential equations. Carbohydr. Polym. 2022, 275, 118698. https://doi.org/10.1016/j.carbpol.2021.118698.
Share this article:
How to Cite
Sopade, P. A. Kinetic Models for Lipid Digestograms Need to Be Unwrapped: A Research Perspective. Food Science and Processing 2025, 1 (1), 1. https://doi.org/10.53941/fsp.2025.100001.
RIS
BibTex
Copyright & License
article copyright Image
Copyright (c) 2025 by the authors.