2507000943
  • Open Access
  • Review
A Current Review on the Impact of Environmental and Biological Stresses on the Production of Bioactive Compounds in Berries
  • Manuel Chacón-Fuentes 1,   
  • Mauricio Opazo-Navarrete 1, 2,   
  • Grace Armijo-Godoy 1,   
  • Macarena Barra-Jiménez 1,   
  • Luís Mojica 3,   
  • César Burgos-Díaz 1, *

Received: 26 Apr 2025 | Revised: 05 Jul 2025 | Accepted: 08 Jul 2025 | Published: 10 Jul 2025

Abstract

In recent years, interest in functional foods has grown due to increasing consumer awareness of the link between diet, health, and nutrition. Berries are a source of bioactive compounds, including particularly secondary metabolites such as polyphenols, flavonoids, and anthocyanins, which are bioactive compounds valued for their antioxidant properties and their potential for producing functional food ingredients. However, berry production faces challenges from environmental stressors, including drought, salinity, and extreme temperatures (either heat or low), which can negatively affect the biosynthesis of these compounds. Such stressors have become more frequent and intense due to climate change. Biological stressors, such as herbivory and pathogens, also threaten berries, triggering complex defense responses that activate secondary metabolic pathways involved in bioactive compound production. These bioactive compounds play a critical role in plant defense and offer potential health benefits, making berries an appealing model for studying plant metabolic responses under stress. Native berries, such as those found in Chile, offer a unique yet underexplored opportunity to investigate how environmental and biological interactions shape metabolite accumulation. Therefore, this review explores how environmental and biological stresses influence bioactive compounds, particularly secondary metabolite production in berries, highlighting their functional potential and emphasizing the importance of understanding these responses to support sustainable use in agri-food industries and human health. This review also highlights recent advances in pre-harvest stress management and emerging food processing technologies, which offer promising approaches to sustainably enhance and valorize bioactive compounds. These insights may guide the development of functional foods and nutraceuticals, fostering innovation in the agri-food sector and informing evidence-based public health policies.

References 

  • 1.
    Speer, H.; D’Cunha, N.M.; Alexopoulos, N.I.; et al. Anthocyanins and Human Health—A Focus on Oxidative Stress, Inflammation and Disease. Antioxidants 2020, 9, 366.
  • 2.
    Gergerich, R.C.; Welliver, R.A.; Gettys, S.; et al. Safeguarding Fruit Crops in the Age of Agricultural Globalization. Plant Dis. 2015, 99, 176–187.
  • 3.
    Skrovankova, S.; Sumczynski, D.; Mlcek, J.; et al. Bioactive Compounds and Antioxidant Activity in Different Types of Berries. Int. J. Mol. Sci. 2015, 16, 24673–24706.
  • 4.
    Kortbeek, R.W.; van der Gragt, M.; Bleeker, P.M. Endogenous Plant Metabolites Against Insects. Eur. J. Plant Pathol. 2019, 154, 67–90.
  • 5.
    Gupta, E.; Mishra, P. Functional Food with Some Health Benefits, So Called Superfood: A Review. Curr. Nutr. Food Sci. 2021, 17, 144–166.
  • 6.
    Saavedra, G.; Kehr, E.; Elgueta, S.; et al. Breeding Challenges for Species Adaptation in the South of Chile. In Agriculture Value Chain—Challenges and Trends in Academia and Industry: RUC-APS Volume 2; Springer Nature Switzerland: Cham, Switzerland, 2025; pp. 75–86.
  • 7.
    Schmeda-Hirschmann, G.; Jimenez-Aspee, F.; Theoduloz, C.; et al. Patagonian Berries as Native Food and Medicine. J. Ethnopharmacol. 2019, 241, 111979.
  • 8.
    Sharma, N.; Yeasmen, N.; Dube, L.; et al. Rise of Plant-Based Beverages: A Consumer-Driven Perspective. Food Rev. Int. 2024, 40, 3315–3341.
  • 9.
    Ribas-Agustí, A.; Martín-Belloso, O.; Soliva-Fortuny, R.; et al. Food Processing Strategies to Enhance Phenolic Compounds Bioaccessibility and Bioavailability in Plant-Based Foods. Crit. Rev. Food Sci. Nutr. 2018, 58, 2531–2548.
  • 10.
    Fernández-Ríos, A.; Laso, J.; Hoehn, D.; et al. A Critical Review of Superfoods from a Holistic Nutritional and Environmental Approach. J. Clean. Prod. 2022, 379, 134491.
  • 11.
    Letelier, L.; Gaete-Eastman, C.; Peñailillo, P.; et al. Southern Species from the Biodiversity Hotspot of Central Chile: A Source of Color, Aroma, and Metabolites for Global Agriculture and Food Industry in a Scenario of Climate Change. Front. Plant Sci. 2020, 11, 1002.
  • 12.
    López, J.; Vera, C.; Bustos, R.; et al. Native Berries of Chile: A Comprehensive Review on Nutritional Aspects, Functional Properties, and Potential Health Benefits. J. Food Meas. Charact. 2021, 15, 1139–1160.
  • 13.
    Vega-Galvez, A.; Rodríguez, A.; Stucken, K. Antioxidant, Functional Properties and Health-Promoting Potential of Native South American Berries: A Review. J. Sci. Food Agric. 2021, 101, 364–378.
  • 14.
    Fuentes, L.; Figueroa, C.R.; Valdenegro, M.; et al. Patagonian Berries: Healthy Potential and the Path to Becoming Functional Foods. Foods 2019, 8, 289.
  • 15.
    Rogiers, S.Y.; Greer, D.H.; Liu, Y.; et al. Impact of Climate Change on Grape Berry Ripening: An Assessment of Adaptation Strategies for the Australian Vineyard. Front. Plant Sci. 2022, 13, 1094633.
  • 16.
    Jimenez-Garcia, S.N.; Guevara-Gonzalez, R.G.; Miranda-Lopez, R.; et al. Functional Properties and Quality Characteristics of Bioactive Compounds in Berries: Biochemistry, Biotechnology, and Genomics. Food Res. Int. 2013, 54, 1195–1207.
  • 17.
    Ulloa-Inostroza, E.M.; Ulloa-Inostroza, E.G.; Alberdi, M.; et al. Native Chilean Fruits and the Effects of Their Functional Compounds on Human Health. In Superfood and Functional Food—An Overview of Their Processing and Utilization; InTech: Rijeka, Croatia, 2017; pp. 1–33.
  • 18.
    Chacón-Fuentes, M.; Burgos-Díaz, C.; Opazo-Navarrete, M.; et al. Berberine and Palmatine Distribution Across Plant Organs in Berberis darwinii: Basis for Selecting Superior-Producing Accessions. Molecules 2025, 30, 1849.
  • 19.
    Aguirre-Becerra, H.; Vazquez-Hernandez, M.C.; Saenz de la O, D.; et al. Role of Stress and Defense in Plant Secondary Metabolites Production. In Bioactive Natural Products for Pharmaceutical Applications; Elsevier: Amsterdam, The Netherlands, 2021; pp. 151–195.
  • 20.
    Kumar, S.; Korra, T.; Thakur, R.; et al. Role of Plant Secondary Metabolites in Defence and Transcriptional Regulation in Response to Biotic Stress. Plant Stress 2023, 8, 100154.
  • 21.
    Serrano, A.; Ros, G.; Nieto, G. Bioactive Compounds and Extracts from Traditional Herbs and Their Potential Anti-Inflammatory Health Effects. Medicines 2018, 5, 76.
  • 22.
    Zorzi, M.; Gai, F.; Medana, C.; et al. Bioactive Compounds and Antioxidant Capacity of Small Berries. Foods 2020, 9, 623.
  • 23.
    Rocchetti, G.; Gregorio, R.P.; Lorenzo, J.M.; et al. Functional Implications of Bound Phenolic Compounds and Phenolics–Food Interaction: A Review. Compr. Rev. Food Sci. Food Saf. 2022, 21, 811–842.
  • 24.
    Nunes, A.R.; Alves, G.; Falcão, A.; et al. Phenolic Acids from Fruit By-Products as Therapeutic Agents for Metabolic Syndrome: A Review. Int. J. Mol. Sci. 2025, 26, 3834.
  • 25.
    Smeriglio, A.; Barreca, D.; Bellocco, E.; et al. Proanthocyanidins and Hydrolysable Tannins: Occurrence, Dietary Intake and Pharmacological Effects. Br. J. Pharmacol. 2017, 174, 1244–1262.
  • 26.
    Bernjak, B.; Kristl, J. A Review of Tannins in Berries. Agric. Sci. 2020, 17, 27–36.
  • 27.
    Błaszczyk, A.; Sady, S.; Sielicka, M. The Stilbene Profile in Edible Berries. Phytochem. Rev. 2019, 18, 37–67.
  • 28.
    Veberic, R.; Slatnar, A.; Bizjak, J.; et al. Anthocyanin Composition of Different Wild and Cultivated Berry Species. LWT Food Sci. Technol. 2015, 60, 509–517.
  • 29.
    Cortez, R.E. Characterization of Blackcurrant Berries (Ribes nigrum) and the Evaluation of Their Bioactive Compounds after Ultrasound-Assisted Water Extractions, Enzymatic Treatments, and Fermentation. Ph.D. Thesis, University of Illinois at Urbana-Champaign, Urbana, IL, USA, 2019.
  • 30.
    Chung, S.W.; Yu, D.J.; Lee, H.J. Changes in Anthocyanidin and Anthocyanin Pigments in Highbush Blueberry (Vaccinium corymbosum cv. Bluecrop) Fruits During Ripening. Hortic. Environ. Biotechnol. 2016, 57, 424–430.
  • 31.
    Almonacid, Z.F. Southern Chile as a Part of Global Value Chains, 1985–2016: Blueberry Production and the Regional Economy. Ager Rev. Estud. Despob. Desarro. Rural 2018, 25, 131–158.
  • 32.
    López, M.D.; Noriega, F.; Romero-Román, M.E. A Drying Model to Study Bioactive Compounds Loss in Beverage Ingredients Based on Chilean Fruits. III Int. Symp. Beverage Crops 2023, 1387, 201–208.
  • 33.
    Golovinskaia, O.; Wang, C.K. Review of Functional and Pharmacological Activities of Berries. Molecules 2021, 26, 3904.
  • 34.
    Chamorro, M.F.; Ladio, A.; Molares, S. Patagonian Berries: An Ethnobotanical Approach to Exploration of Their Nutraceutical Potential. In Ethnobotany; CRC Press: Boca Raton, FL, USA, 2019; pp. 50–69.
  • 35.
    Asif, M. Chemistry and Antioxidant Activity of Plants Containing Some Phenolic Compounds. Chem. Int. 2015, 1, 35–52.
  • 36.
    Yang, B.; Kortesniemi, M. Clinical Evidence on Potential Health Benefits of Berries. Curr. Opin. Food Sci. 2015, 2, 36–42.
  • 37.
    Lanuza, F.; Zamora-Ros, R.; Petermann-Rocha, F.; et al. Advances in Polyphenol Research from Chile: A Literature Review. Food Rev. Int. 2023, 39, 3134–3171.
  • 38.
    Chacón-Fuentes, M.; Parra, L.; Rodriguez-Saona, C.; et al. Domestication in Murtilla (Ugni molinae) Reduced Defensive Flavonol Levels but Increased Resistance against a Native Herbivorous Insect. Environ. Entomol. 2015, 44, 627–637.
  • 39.
    Chacón-Fuentes, M.A.; Lizama, M.G.; Parra, L.J.; et al. Insect Diversity, Community Composition and Damage Index on Wild and Cultivated Murtilla. Cienc. Investig. Agrar. 2016, 43, 57–67.
  • 40.
    Chacón-Fuentes, M.; Bardehle, L.; Lizama, M.; et al. Restoration of Flavonols and Isoflavonoids in Ugni molinae Subjected to a Reciprocal Transplant Experiment in a Domestication Framework. Chem. Ecol. 2019, 35, 115–127.
  • 41.
    Chacón-Fuentes, M.A.C.; Mutis, A.; Bardehle, L.; et al. Decrease of Flavonol Synthase Enzymatic Activity in Ugni molinae Turcz Due to the Domestication Process. Cienc. Investig. Agrar. 2019, 46, 30–39.
  • 42.
    Ipinza, R. La Domesticación del Maqui, un Estudio de Caso en Chile. Maqui 2020, 4, 106.
  • 43.
    Morales-Quintana, L.; Ramos, P. Chilean Strawberry (Fragaria chiloensis): An Integrative and Comprehensive Review. Food Res. Int. 2019, 119, 769–776.
  • 44.
    De Paulo Farias, D.; Neri-Numa, I.A.; de Araujo, F.F.; et al. A Critical Review of Some Fruit Trees from the Myrtaceae Family as Promising Sources for Food Applications with Functional Claims. Food Chem. 2020, 306, 125630.
  • 45.
    López, J.; Gálvez, A.V.; Rodríguez, A.; et al. Murta (Ugni molinae Turcz.): A Review on Chemical Composition, Functional Components and Biological Activities of Leaves and Fruits. Chil. J. Agric. Anim. Sci. 2018, 34, 43–56.
  • 46.
    Peña-Cerda, M.; Arancibia-Radich, J.; Valenzuela-Bustamante, P.; et al. Phenolic Composition and Antioxidant Capacity of Ugni molinae Turcz. Leaves of Different Genotypes. Food Chem. 2017, 215, 219–227.
  • 47.
    Fredes, C.; Parada, A.; Salinas, J.; et al. Phytochemicals and Traditional Use of Two Southernmost Chilean Berry Fruits: Murta (Ugni molinae Turcz) and Calafate (Berberis buxifolia Lam.). Foods 2020, 9, 54.
  • 48.
    Ospina-Posada, A.C.; Porras, O.; Rincón-Cervera, M.A.; et al. Antioxidant Properties of Phenolic Extracts of Murtilla Pomace: First Report on the Importance of Soluble and Insoluble-Bound Compounds. Food Res. Int. 2024, 196, 115114.
  • 49.
    Jofré, I.; Pezoa, C.; Cuevas, M.; et al. Antioxidant and Vasodilator Activity of Ugni molinae Turcz. (Murtilla) and Its Modulatory Mechanism in Hypotensive Response. Oxid. Med. Cell. Longev. 2016, 2016, 6513416.
  • 50.
    Espinoza-Tellez, T.; Bastías-Montes, J.M.; Quevedo-León, R.; et al. La Murta (Ugni molinae) y sus Propiedades Benéficas para la Salud: Una Revisión. Sci. Agropecu. 2021, 12, 121–131.
  • 51.
    Misle, E.; Garrido, E.; Contardo, H.; et al. Geographic Variation in Total Phenol Content and Specific Leaf Area, as Antioxidant Indicators, of Maqui in Central Chile. Bioagro 2023, 35, 227–236.
  • 52.
    García-Milla, P.; Peñalver, R.; Nieto, G. A Review of the Functional Characteristics and Applications of Aristotelia chilensis (Maqui Berry), in the Food Industry. Foods 2024, 13, 838.
  • 53.
    Rodríguez, L.; Trostchansky, A.; Vogel, H.; et al. A Comprehensive Literature Review on Cardioprotective Effects of Bioactive Compounds Present in Fruits of Aristotelia Chilensis Stuntz (Maqui). Molecules 2022, 27, 6147.
  • 54.
    Fuentealba, V.C. Comportamiento de Maqui Silvestre (Aristotelia chilensis (Mol.) Stuntz; Elaeocarpaceae): Manejo de Canopia y Compuestos Bioactivos en Frutos. Doctoral Dissertation, Universidad de Concepción, Concepción, Chile, 2022.
  • 55.
    Saavedra, J.; Pino, M.T.; Zamora, O.; et al. Análisis de Diversidad Genética del Calafate en Magallanes; Informativo INIA Kampenaike No. 69; Instituto de Investigaciones Agropecuarias: Punta Arenas, Chile, 2017.
  • 56.
    Gutiérrez, R.S.; Pincheira, C.G. Description of the Antioxidant Capacity of Calafate Berries (Berberis microphylla) Collected in Southern Chile. Food Sci. Technol. 2020, 41, 864–869.
  • 57.
    Soto-Covasich, J.; Reyes-Farias, M.; Torres, R.F.; et al. A Polyphenol-Rich Calafate (Berberis microphylla) Extract Rescues Glucose Tolerance in Mice Fed with Cafeteria Diet. J. Funct. Foods 2020, 67, 103856.
  • 58.
    Fundación Para la Innovación Agraria (FIA). Agenda de Innovación Agraria Territorial: Región de Aysén; Fundación Para la Innovación Agraria: Santiago, Chile, 2016.
  • 59.
    Betancur, M.; Retamal-Salgado, J.; López, M.D.; et al. Planting Density: Key Strategy for Optimizing Soil Health and Fruit Antioxidant Activity in a Calafate Orchard. Chilean J. Agric. Res. 2024, 84, 439–453.
  • 60.
    Fajardo Morales, V.; Araya, M.; Manosalva, L. Berberis Darwinii Hook. In Medicinal and Aromatic Plants of South America Vol. 2: Argentina, Chile and Uruguay; Spring: Berlin/Heidelberg, Germany, 2021; pp. 127–133.
  • 61.
    Pérez-San Martín, A.; Alvear-Zamora, M.; Carvajal-Caiconte, F.; et al. Identification and Antibacterial Activity of Benzylisoquinoline Alkaloids from Berberis empetrifolia L. and Berberis darwinii H. Roots. Nat. Prod. Res. 2025, 1–11. https://doi.org/10.1080/14786419.2025.2471828
  • 62.
    Ahmed, S.; Khan, S.T.; Zargaham, M.K.; et al. Potential Therapeutic Natural Products Against Alzheimer’s Disease with Reference of Acetylcholinesterase. Biomed. Pharmacother. 2021, 139, 111609.
  • 63.
    Shakeri, F.; Kiani, S.; Rahimi, G.; et al. Anti-inflammatory, Antioxidant, and Immunomodulatory Effects of Berberis vulgaris and Its Constituent Berberine, Experimental and Clinical, a Review. Phytother. Res. 2024, 38, 1882–1902.
  • 64.
    Molinett, S.; Nuñez, F.; Moya-León, M.A.; et al. Chilean Strawberry Consumption Protects Against LPS-Induced Liver Injury by Anti-inflammatory and Antioxidant Capability in Sprague-Dawley Rats. Evid. Based Complement. Altern. Med. 2015, 2015, 320136.
  • 65.
    Cheeseman, J. Food Security in the Face of Salinity, Drought, Climate Change, and Population Growth. In Halophytes for Food Security in Dry Lands; Academic Press: Cambridge, MA, USA, 2016; pp. 111–123.
  • 66.
    Yeshi, K.; Crayn, D.; Ritmejerytė, E.; et al. Plant Secondary Metabolites Produced in Response to Abiotic Stresses Has Potential Application in Pharmaceutical Product Development. Molecules 2022, 27, 313.
  • 67.
    Cervantes, L.; Ariza, M.T.; Gómez-Mora, J.A.; et al. Light Exposure Affects Fruit Quality in Different Strawberry Cultivars Under Field Conditions. Scientia Hortic. 2019, 252, 291–297.
  • 68.
    Foyer, C.H.; Kyndt, T.; Hancock, R.D. Vitamin C in Plants: Novel Concepts, New Perspectives, and Outstanding Issues. Antioxid. Redox Signal. 2020, 32, 463–485.
  • 69.
    Flores, G.; Blanch, G.P.; del Castillo, M.L.R. Postharvest Treatment with (−) and (+)-Methyl Jasmonate Stimulates Anthocyanin Accumulation in Grapes. LWT–Food Sci. Technol. 2015, 62, 807–812.
  • 70.
    Teklić, T.; Parađiković, N.; Špoljarević, M.; et al. Linking Abiotic Stress, Plant Metabolites, Biostimulants and Functional Food. Ann. Appl. Biol. 2021, 178, 169–191.
  • 71.
    Isah, T. Stress and Defense Responses in Plant Secondary Metabolites Production. Biol. Res. 2019, 52, 1–12.
  • 72.
    Feng, X.; Bai, S.; Zhou, L.; et al. Integrated Analysis of Transcriptome and Metabolome Provides Insights into Flavonoid Biosynthesis of Blueberry Leaves in Response to Drought Stress. Int. J. Mol. Sci. 2024, 25, 11135.
  • 73.
    Ru, S.; Sanz-Saez, A.; Leisner, C.P.; et al. Review on Blueberry Drought Tolerance from the Perspective of Cultivar Improvement. Front. Plant Sci. 2024, 15, 1352768.
  • 74.
    Molnar, S.; Clapa, D.; Pop, V.C.; et al. Investigation of Salinity Tolerance to Different Cultivars of Highbush Blueberry (Vaccinium corymbosum L.) Grown In Vitro. Not. Bot. Horti Agrobo. 2024, 52, 13691.
  • 75.
    Park, M.Y.; Kang, D.H. Antibacterial Activity of Caffeic Acid Combined with UV-A Light against Escherichia coli O157: H7, Salmonella enterica Serovar Typhimurium, and Listeria monocytogenes. Appl. Environ. Microbiol. 2021, 87, e00631-21.
  • 76.
    Naing, A.H.; Kim, C.K. Abiotic Stress-Induced Anthocyanins in Plants: Their Role in Tolerance to Abiotic Stresses. Physiol. Plant. 2021, 172, 1711–1723.
  • 77.
    Dabravolski, S.A.; Isayenkov, S.V. The Role of Anthocyanins in Plant Tolerance to Drought and Salt Stresses. Plants 2023, 12, 2558.
  • 78.
    Lin, J.; Zhou, W. Role of Quercetin in the Physicochemical Properties, Antioxidant and Antiglycation Activities of Bread. J. Funct. Foods 2018, 40, 299–306.
  • 79.
    Karppinen, K.; Lafferty, D.J.; Albert, N.W.; et al. MYBA and MYBPA Transcription Factors Co-Regulate Anthocyanin Biosynthesis in Blue-Coloured Berries. New Phytol. 2021, 232, 1350–1367.
  • 80.
    Madhumita, M.; Rohini, C. Natural preservatives for beverages. In Natural Preservatives for Food; Academic Press: Cambridge, MA, USA, 2025; pp. 291–308.
  • 81.
    Zifkin, M.; Jin, A.; Ozga, J.A.; et al. Gene expression and metabolite profiling of developing highbush blueberry fruit indicates transcriptional regulation of flavonoid metabolism and activation of abscisic acid metabolism. Plant Physiol. 2012, 158, 200–224.
  • 82.
    Pereira, V.; Figueira, O.; Castilho, P.C. Hesperidin: A Flavanone with Multifaceted Applications in the Food, Animal Feed, and Environmental Fields. Phytochem. Rev. 2024, 23, 1–23.
  • 83.
    Oh, H.D.; Yu, D.J.; Chung, S.W.; et al. Abscisic acid stimulates anthocyanin accumulation in ‘Jersey’ highbush blueberry fruits during ripening. Food Chem. 2018, 244, 403–407.
  • 84.
    Chacón-Fuentes, M.; Bardehle, L.; Seguel, I.; et al. Herbivory damage increased VOCs in wild relatives of murtilla plants compared to their first offspring. Metabolites 2023, 13, 616.
  • 85.
    Zhang, S.; Zhao, H.; Tang, Z.; et al. Flavor characteristics of key aroma compounds in bayberry juice, fruit, and thinning fruit using HS-SPME coupled with GC/Q-TOF-MS. J. Food Compos. Anal. 2024, 128, 106032.
  • 86.
    KR, R.; Gopi, S.; Balakrishnan, P. Introduction to flavor and fragrance in food processing. In Flavors and Fragrances in Food Processing: Preparation and Characterization Methods; American Chemical Society: Washington, DC, USA, 2022; pp. 1–19.
  • 87.
    Hassan, M.U.; Chattha, M.U.; Khan, I.; et al. Heat Stress in Cultivated Plants: Nature, Impact, Mechanisms, and Mitigation Strategies—A Review. Plant Biosyst. Int. J. Deal. All Asp. Plant Biol. 2021, 155, 211–234.
  • 88.
    Wahab, A.; Abdi, G.; Saleem, M.H.; et al. Plants’ Physio-Biochemical and Phyto-Hormonal Responses to Alleviate the Adverse Effects of Drought Stress: A Comprehensive Review. Plants 2022, 11, 1620.
  • 89.
    Rugienius, R.; Vinskienė, J.; Andriūnaitė, E.; et al. Genomic Design of Abiotic Stress-Resistant Berries. In Genomic Designing for Abiotic Stress Resistant Fruit Crops; Springer International Publishing: Cham, Switzerland, 2022; pp. 197–249.
  • 90.
    Krishna, P.; Pandey, G.; Thomas, R.; et al. Improving Blueberry Fruit Nutritional Quality through Physiological and Genetic Interventions: A Review of Current Research and Future Directions. Antioxidants 2023, 12, 810.
  • 91.
    Toscano, S.; Trivellini, A.; Cocetta, G.; et al. Effect of Preharvest Abiotic Stresses on the Accumulation of Bioactive Compounds in Horticultural Produce. Front. Plant Sci. 2019, 10, 1212.
  • 92.
    Song, Y.; Ma, B.; Guo, Q.; et al. MYB Pathways that Regulate UV-B-Induced Anthocyanin Biosynthesis in Blueberry (Vaccinium corymbosum). Front. Plant Sci. 2023, 14, 1234–1245.
  • 93.
    Rugienius, R.; Bendokas, V.; Siksnianas, T.; et al. Characteristics of Fragaria vesca Yield Parameters and Anthocyanin Accumulation under Water Deficit Stress. Plants 2021, 10, 557.
  • 94.
    Aguilera, J.M. Berries as Foods: Processing, Products, and Health Implications. Annu. Rev. Food Sci. Technol. 2024, 15, 1–20.
  • 95.
    Zandi, P.; Schnug, E. Reactive Oxygen Species, Antioxidant Responses and Implications from a Microbial Modulation Perspective. Biology 2022, 11, 155.
  • 96.
    Mohanavelu, A.; Naganna, S.R.; Al-Ansari, N. Irrigation Induced Salinity and Sodicity Hazards on Soil and Groundwater: An Overview of Its Causes, Impacts and Mitigation Strategies. Agriculture 2021, 11, 983.
  • 97.
    Zhang, Q.; Li, Z.; Liu, Z.; et al. Microwave-Assisted Biorefineries. Nat. Rev. Clean Technol. 2025, 2, 1–19.
  • 98.
    Botton, A.; Girardi, F.; Ruperti, B.; et al. Grape Berry Responses to Sequential Flooding and Heatwave Events: A Physiological, Transcriptional, and Metabolic Overview. Plants 2022, 11, 3574.
  • 99.
    Keutgen, A.J.; Pawelzik, E. Modifications of Strawberry Fruit Antioxidant Pools and Fruit Quality under NaCl Stress. J. Agric. Food Chem. 2007, 55, 4066–4072.
  • 100.
    Ordonez-Diaz, J.L.; Cardenosa, V.; Munoz-Redondo, J.M.; et al. Impact of Abiotic Stresses (Nitrogen Reduction and Salinity Conditions) on Phenolic Compounds and Antioxidant Activity of Strawberries. Processes 2021, 9, 1044.
  • 101.
    Kumar, R.; Singh, P.C.; Singh, S. A Review Report: Low Temperature Stress for Crop Production. Int. J. Pure Appl. Biosci. 2018, 6, 575–598.
  • 102.
    Aslam, M.A.; Ahmed, M.; Hassan, F.U.; et al. Impact of Temperature Fluctuations on Plant Morphological and Physiological Traits. In Building Climate Resilience in Agriculture: Theory, Practice and Future Perspective; Springer: Berlin/Heidelberg, Germany, 2022; pp. 25–52.
  • 103.
    Fernández, M.P.; Preller, C.; Fischer, S.; et al. Maqui (Aristotelia chilensis [Molina] Stuntz): The Most Antioxidant Wild Berry towards Agricultural Production. Fruits 2019, 74, 214–226.
  • 104.
    Oğuz, İ.; Oğuz, H.İ.; Attar, Ş.H.; et al. Preferable Berry Fruits for Tolerance to Global Climate Change and Dry Conditions. In Edible Berries—New Insights; Kafkas, N.E.Y., Çelik, H., Eds.; IntechOpen: Aberdeen, UK, 2023; pp. 1–23.
  • 105.
    Roussos, P.A.; Ntanos, E.; Tsafouros, A.; et al. Strawberry Physiological and Biochemical Responses to Chilling and Freezing Stress and Application of Alleviating Factors as Countermeasures. J. Berry Res. 2020, 10, 437–457.
  • 106.
    Perin, E.C.; Messias, R.D.S.; Galli, V.; et al. Mineral Content and Antioxidant Compounds in Strawberry Fruit Submitted to Drought Stress. Food Sci. Technol. 2019, 39, 245–254.
  • 107.
    George, A.S.; Brandl, M.T. Plant bioactive compounds as an intrinsic and sustainable tool to enhance the microbial safety of crops. Microorganisms 2021, 9, 2485.
  • 108.
    Dussarrat, T.; Nilo-Poyanco, R.; Moyano, T.C.; et al. Phylogenetically diverse wild plant species use common biochemical strategies to thrive in the Atacama Desert. J. Exp. Bot. 2024, 75, 3596–3611.
  • 109.
    Nawaz, M.; Sun, J.; Shabbir, S.; et al. A review of plant strategies to resist biotic and abiotic environmental stressors. Sci. Total Environ. 2023, 900, 165832.
  • 110.
    Yang, W.; Zhang, L.; Yang, Y.; et al. Plant secondary metabolites-mediated plant defense against bacteria and fungi pathogens. Plant Physiol. Biochem. 2024, 217, 109224.
  • 111.
    Al-Khayri, J.M.; Rashmi, R.; Toppo, V.; et al. Plant secondary metabolites: The weapons for biotic stress management. Metabolites 2023, 13, 716.
  • 112.
    Mahanta, D.K.; Komal, J.; Samal, I.; et al. Plant defense responses to insect herbivores through molecular signaling, secondary metabolites, and associated epigenetic regulation. Plant Environ. Interact. 2025, 6, e70035.
  • 113.
    Aljbory, Z.; Chen, M.S. Indirect plant defense against insect herbivores: A review. Insect Sci. 2018, 25, 2–23.
  • 114.
    Mucha, P.; Skoczyńska, A.; Małecka, M.; et al. Overview of the antioxidant and anti-inflammatory activities of selected plant compounds and their metal ions complexes. Molecules 2021, 26, 4886.
  • 115.
    Divekar, P.A.; Narayana, S.; Divekar, B.A.; et al. Plant secondary metabolites as defense tools against herbivores for sustainable crop protection. Int. J. Mol. Sci. 2022, 23, 2690.
  • 116.
    De Rossi, L.; Rocchetti, G.; Lucini, L.; et al. Antimicrobial potential of polyphenols: Mechanisms of action and microbial responses—A narrative review. Antioxidants 2025, 14, 200.
  • 117.
    Mandal, M.K.; Domb, A.J. Antimicrobial activities of natural bioactive polyphenols. Pharmaceutics 2024, 16, 718.
  • 118.
    Chacón-Fuentes, M.; Bardehle, L.; Seguel, I.; et al. Domestication of plants of Ugni molinae Turcz. (Myrtaceae) interferes in the biology of Chilesia rudis (Lepidoptera: Erebidae) larvae. Molecules 2021, 26, 2063.
  • 119.
    Sarang, K.; Rudziński, K.J.; Szmigielski, R. Green leaf volatiles in the atmosphere—Properties, transformation, and significance. Atmosphere 2021, 12, 1655.
  • 120.
    Sangiorgio, D.; Cellini, A.; Spinelli, F.; et al. Does Organic Farming Increase Raspberry Quality, Aroma and Beneficial Bacterial Biodiversity? Microorganisms 2021, 9, 1617.
  • 121.
    Saini, N.; Anmol, A.; Kumar, S.; et al. Exploring phenolic compounds as natural stress alleviators in plants—A comprehensive review. Physiol. Mol. Plant Pathol. 2024, 133, 102383.
  • 122.
    González-Bosch, C. Priming plant resistance by activation of redox-sensitive genes. Free Radic. Biol. Med. 2018, 122, 171–180.
  • 123.
    Lee, K.; Lee, J.G.; Min, K.; et al. Transcriptome analysis of the fruit of two strawberry cultivars “Sunnyberry” and “Kingsberry” that show different susceptibility to Botrytis cinerea after harvest. Int. J. Mol. Sci. 2021, 22, 1518.
  • 124.
    Shalaby, S.; Horwitz, B.A. Plant Phenolic Compounds and Oxidative Stress: Integrated Signals in Fungal–Plant Interactions. Curr. Genet. 2015, 61, 347–357.
  • 125.
    Wang, J.; Zhao, R.; Li, Y.; et al. Effect and mechanism of L-arginine against Alternaria fruit rot in postharvest blueberry fruit. Plants 2024, 13, 1058.
  • 126.
    Brosset, A.; Blande, J.D. Volatile-mediated plant-plant interactions: Volatile organic compounds as modulators of receiver plant defense, growth, and reproduction. J. Exp. Bot. 2022, 73, 511–528.
  • 127.
    Guidi, L.; Tattini, M. Antioxidant Defenses in Plants: A Dated Topic of Current Interest. Antioxidants 2021, 10, 855.
  • 128.
    Pérez-Hedo, M.; Gallego-Giraldo, C.; Forner-Giner, M.Á.; et al. Plant volatile-triggered defense in citrus against biotic stressors. Front. Plant Sci. 2024, 15, 1425364.
  • 129.
    Peng, H.; Pang, Y.; Liao, Q.; et al. The effect of preharvest UV light irradiation on berries quality: A review. Horticulturae 2022, 8, 1171.
  • 130.
    Yang, J.; Shi, W.; Li, B.; et al. Preharvest and postharvest UV radiation affected flavonoid metabolism and antioxidant capacity differently in developing blueberries (Vaccinium corymbosum L.). Food Chem. 2019, 301, 125248.
  • 131.
    Li, T.; Yamane, H.; Tao, R. Preharvest Long-Term Exposure to UV-B Radiation Promotes Fruit Ripening and Modifies Stage-Specific Anthocyanin Metabolism in Highbush Blueberry. Hortic. Res. 2021, 8, 208.
  • 132.
    Wang, N.; Zhu, H.; Wang, M.; et al. Recent advancements in microwave-assisted extraction of flavonoids: A review. Food Bioprocess Technol. 2025, 18, 2083–2100.
  • 133.
    Çeliktopuz, E.; Sarıdaş, M.A.; Kapur, B.; et al. The impact of irrigation levels and abscisic acid application on the biochemical profiles of strawberries. Food Chem. 2025, 482, 144077.
  • 134.
    Cisneros-Zevallos, L. The use of controlled postharvest abiotic stresses as a tool for enhancing the nutraceutical content and adding-value of fresh fruits and vegetables. J. Food Sci. 2003, 68, 1560–1565.
  • 135.
    Caleb, O.J.; Wegner, G.; Rolleczek, C.; et al. Hot water dipping: Impact on postharvest quality, individual sugars, and bioactive compounds during storage of ‘Sonata’ strawberry. Scientia Horticulturae 2016, 210, 150–157.
  • 136.
    Flores, G.; del Castillo, M.L.R. Influence of preharvest and postharvest methyl jasmonate treatments on flavonoid content and metabolomic enzymes in red raspberry. Postharvest Biol. Technol. 2014, 97, 77–82.
  • 137.
    Fazili, M.A.; Bashir, I.; Ahmad, M.; et al. In vitro strategies for the enhancement of secondary metabolite production in plants: A review. Bull. Natl. Res. Cent. 2022, 46, 35.
  • 138.
    Espinosa-Leal, C.A.; Puente-Garza, C.A.; García-Lara, S. In vitro plant tissue culture: Means for production of biologically active compounds. Planta 2018, 248, 1–18.
  • 139.
    Hasnain, A.; Naqvi, S.A.H.; Ayesha, S.I.; et al. Plants in vitro propagation with its applications in food, pharmaceuticals, and cosmetic industries; current scenario and future approaches. Front. Plant Sci. 2022, 13, 1009395.
  • 140.
    Ozyigit, I.I.; Dogan, I.; Hocaoglu-Ozyigit, A.; et al. Production of secondary metabolites using tissue culture-based biotechnological applications. Front. Plant Sci. 2023, 14, 1132555.
  • 141.
    Zuzarte, M.; Salgueiro, L.; Canhoto, J. Plant Tissue Culture: Industrial Relevance and Future Directions. In Plants as Factories for Bioproduction: Recent Developments and Applications; Steingroewer, J., Ed.; Springer International Publishing: Cham, Switzerland, 2024; pp. 1–15.
  • 142.
    Guru, A.; Dwivedi, P.; Kaur, P.; et al. Exploring the role of elicitors in enhancing medicinal values of plants under in vitro condition. S. Afr. J. Bot. 2022, 149, 1029–1043.
  • 143.
    Molnar, S.; Clapa, D.; Mitre, V. Response of the Five Highbush Blueberry Cultivars to In Vitro Induced Drought Stress by Polyethylene Glycol. Agronomy 2022, 12, 732.
  • 144.
    Sharma, A.; Shahzad, B.; Rehman, A.; et al. Response of Phenylpropanoid Pathway and the Role of Polyphenols in Plants under Abiotic Stress. Molecules 2019, 24, 2452.
  • 145.
    Waśkiewicz, A.; Muzolf-Panek, M.; Goliński, P. Phenolic Content Changes in Plants Under Salt Stress. In Ecophysiology and Responses of Plants under Salt Stress; Ahmad, P.; Azooz, M.M.; Prasad, M.N.V., Eds.; Springer New York: New York, NY, USA, 2013; pp. 283–314.
  • 146.
    Ahmadi-Sakha, S.; Sharifi, M.; Niknam, V.; et al. Production of phenylethanoid glycosides under PEG-induced osmotic stress in Scrophularia Striata Boiss. Cell culture in bioreactors. Ind. Crops Prod. 2022, 181, 114843.
  • 147.
    Ramirez-Estrada, K.; Vidal-Limon, H.; Hidalgo, D.; et al. Elicitation, an Effective Strategy for the Biotechnological Production of Bioactive High-Added Value Compounds in Plant Cell Factories. Molecules 2016, 21, 182.
  • 148.
    Dias, M.I.; Sousa, M.J.; Alves, R.C.; et al. Exploring plant tissue culture to improve the production of phenolic compounds: A review. Ind. Crops Prod. 2016, 82, 9–22.
  • 149.
    Yu, H.; Liao, J.; Jiang, Y.; et al. Ecotype-Specific Phenolic Acid Accumulation and Root Softness in Salvia miltiorrhiza Are Driven by Environmental and Genetic Factors. Plant Biotechnol. J. 2025, in press.
  • 150.
    Cetin, E.S. Induction of secondary metabolite production by UV-C radiation in Vitis vinifera L. Öküzgözü callus cultures. Biol. Res. 2014, 47, 37.
  • 151.
    Tonelli, M.; Pellegrini, E.; D’Angiolillo, F.; et al. Ozone-elicited secondary metabolites in shoot cultures of Melissa officinalis L. Plant Cell Tissue Organ Cult. 2015, 120, 617–629.
  • 152.
    Gwynn-Jones, D.; Jones, A.G.; Waterhouse, A.; et al. Enhanced UV-B and elevated CO(2) impacts sub-arctic shrub berry abundance, quality and seed germination. Ambio 2012, 41, 256–268.
  • 153.
    Ding, Y.; Yang, S. Surviving and thriving: How plants perceive and respond to temperature stress. Dev. Cell 2022, 57, 947–958.
  • 154.
    Bidabadi, S.S.; Jain, S.M. Cellular, Molecular, and Physiological Aspects of In Vitro Plant Regeneration. Plants 2020, 9, 702.
  • 155.
    Berezina, E.V.; Syomin, A.A.; Larina, M.V.; et al. Content of Phenolic Compounds in Vaccinium corymbosum L. Callus and Cell Suspension Cultures and Influence of Nutrient Medium Carbohydrate Composition on It. Russ. J. Plant Physiol. 2024, 71, 221.
  • 156.
    Anuradha, M.; Balasubramanya, S. (Eds.). In Vitro Production of Plant Secondary Metabolites: Theory and Practice; 1st ed.; Springer Singapore: Singapore, 2025; p. 346.
  • 157.
    Feng, T.; Zhang, M.; Sun, Q.; et al. Extraction of functional extracts from berries and their high-quality processing: A comprehensive review. Crit. Rev. Food Sci. Nutr. 2023, 63, 7108–7125.
  • 158.
    Wen, L.; Zhang, Z.; Sun, D.W.; et al. Combination of emerging technologies for the extraction of bioactive compounds. Crit. Rev. Food Sci. Nutr. 2020, 60, 1826–1841.
  • 159.
    Čechovičienė, I.; Tarasevičienė, Ž.; Hallman, E.; et al. Ultrasound and Microwave-Assisted Extraction of Blackberry (Rubus fruticosus L.) Pomace: Analysis of Chemical Properties and Anticancer Activity. Plants 2025, 14, 384.
  • 160.
    Sarraf, M.; Beig-Babaei, A.; Naji-Tabasi, S. Optimizing extraction of berberine and antioxidant compounds from barberry by maceration and pulsed electric field-assisted methods. J. Berry Res. 2021, 11, 133–149.
  • 161.
    Ahmadi, S.; Yu, C.; Zaeim, D.; et al. Increasing RG-I content and lipase inhibitory activity of pectic polysaccharides extracted from goji berry and raspberry by high-pressure processing. Food Hydrocolloids 2022, 126, 107477.
  • 162.
    Nguyen, T.M.C.; Gavahian, M.; Tsai, P.J. Effects of ultrasound-assisted extraction (UAE), high voltage electric field (HVEF), high pressure processing (HPP), and combined methods (HVEF+UAE and HPP+UAE) on Gac leaves extraction. LWT Food Sci. Technol. 2021, 143, 111131.
  • 163.
    Afraz, M.T.; Xu, X.; Zeng, X.A.; et al. The science behind physical field technologies for improved extraction of juices with enhanced quality attributes. Food Phys. 2024, 1, 100008.
  • 164.
    Navarro-Baez, J.E.; Martínez, L.M.; Welti-Chanes, J.; et al. High hydrostatic pressure to increase the biosynthesis and extraction of phenolic compounds in food: A review. Molecules 2022, 27, 1502.
  • 165.
    González-Pérez, J.E.; Ramírez-Corona, N.; López-Malo, A. Mass transfer during osmotic dehydration of fruits and vegetables: Process factors and non-thermal methods. Food Eng. Rev. 2021, 13, 344–374.
  • 166.
    Chatzimitakos, T.; Athanasiadis, V.; Kalompatsios, D.; et al. Pulsed electric field applications for the extraction of bioactive compounds from food waste and by-products: A critical review. Biomass 2023, 3, 367–401.
  • 167.
    Demir, E.; Tappi, S.; Dymek, K.; et al. Reversible electroporation caused by pulsed electric field–Opportunities and challenges for the food sector. Trends Food Sci. Technol. 2023, 139, 104120.
  • 168.
    Santos, N.C.; Almeida, R.L.J.; Brito, A.C.D.O.; et al. Effect of pulse electric field (PEF) intensity combined with drying temperature on mass transfer, functional properties, and in vitro digestibility of dehydrated mango peels. J. Food Meas. Charact. 2023, 17, 5219–5233.
  • 169.
    Poljsak, B.; Kovač, V.; Milisav, I. Antioxidants, food processing and health. Antioxidants 2021, 10, 433.
  • 170.
    Tang, J.; Zhu, X.; Jambrak, A.R.; et al. Mechanistic and synergistic aspects of ultrasonics and hydrodynamic cavitation for food processing. Crit. Rev. Food Sci. Nutr. 2024, 64, 8587–8608.
  • 171.
    Mapholi, Z.; Teke, G.M.; Goosen, N.J. An investigation of kinetics and mass transfer parameters during ultrasound-assisted extraction of fucoidan from the brown seaweed Ecklonia maxima. Biochem. Eng. J. 2025, 219, 109717.
  • 172.
    Dasgupta, D.G.D.S. A comprehensive review of conventional and non-conventional solvent extraction techniques. J. Pharmacogn. Phytochem. 2023, 12, 202–211.
  • 173.
    Cannavacciuolo, C.; Pagliari, S.; Celano, R.; et al. Critical analysis of green extraction techniques used for botanicals: Trends, priorities, and optimization strategies-A review. TrAC Trends Anal. Chem. 2024, 173, 117627.
  • 174.
    López-Salazar, H.; Camacho-Díaz, B.H.; Ocampo, M.A.; et al. Microwave-assisted extraction of functional compounds from plants: A Review. Bioresources 2023, 18, 6614.
  • 175.
    Zhang, Y.; Chen, X.; Geng, S.; et al. A review of soil waterlogging impacts, mechanisms, and adaptive strategies. Front. Plant Sci. 2025, 16, 1545912.
  • 176.
    Maled, S.B.; Bhat, A.R.; Hegde, S.; et al. Enzyme-Assisted Extraction. In Bioactive Extraction and Application in Food and Nutraceutical Industries; Springer US: New York, NY, USA, 2024; pp. 173–200.
  • 177.
    Sanjeewa, K.A.; Herath, K.H.I.N.M.; Kim, Y.S.; et al. Enzyme-assisted extraction of bioactive compounds from seaweeds and microalgae. TrAC Trends Anal. Chem. 2023, 167, 117266.
  • 178.
    Castro-Muñoz, R. Nanofiltration-Assisted Concentration Processes of Phenolic Fractions and Carotenoids from Natural Food Matrices. Separations 2024, 11, 64.
  • 179.
    Ismail, I.; Kurnia, K.A.; Samsuri, S.; et al. Energy efficient harvesting of Spirulina sp. from the growth medium using a tilted panel membrane filtration. Bioresour. Technol. Rep. 2021, 15, 100697.
  • 180.
    Teow, Y.H.; Chong, M.T.; Ho, K.C.; et al. Comparative environmental impact evaluation using life cycle assessment approach: A case study of integrated membrane-filtration system for the treatment of aerobically-digested palm oil mill effluent. Sustain. Environ. Res. 2021, 31, 1–14.
Share this article:
How to Cite
Chacón-Fuentes, M.; Opazo-Navarrete, M.; Armijo-Godoy, G.; Barra-Jiménez, M.; Mojica, L.; Burgos-Díaz, C. A Current Review on the Impact of Environmental and Biological Stresses on the Production of Bioactive Compounds in Berries. Food Science and Processing 2025, 1 (1), 2. https://doi.org/10.53941/fsp.2025.100002.
RIS
BibTex
Copyright & License
article copyright Image
Copyright (c) 2025 by the authors.