- 1.
Manzoor, M.; Singh, J.; Gani, A.; et al. Valorization of natural colors as health-promoting bioactive compounds: Phytochemical profile, extraction techniques, and pharmacological perspectives. Food Chem. 2021, 362, 130141.
- 2.
Pai, S.; Hebbar, A.; Selvaraj, S. A critical look at challenges and future scopes of bioactive compounds and their incorporations in the food, energy, and pharmaceutical sector. Environ. Sci. Pollut. Res. 2022, 29, 35518–35541.
- 3.
Mittal, R.K.; Mishra, R.; Sharma, V.; et al. Bioactive Exploration in Functional Foods: Unlocking Nature’s Treasures. Curr. Pharm. Biotechnol. 2024, 25, 1419–1435.
- 4.
López, J.; Vera, C.; Bustos, R.; et al. Native berries of Chile: A comprehensive review on nutritional aspects, functional properties, and potential health benefits. J. Food Meas. Charact. 2021, 15, 1139–1160.
- 5.
Ortiz, T.; Argüelles-Arias, F.; Begines, B.; et al. Native Chilean berries preservation and in vitro studies of a polyphenol highly antioxidant extract from maqui as a potential agent against inflammatory diseases. Antioxidants 2021, 10, 843.
- 6.
Vega-Galvez, A.; Rodríguez, A.; Stucken, K. Antioxidant, functional properties and health-promoting potential of native South American berries: A review. J. Sci. Food Agric. 2021, 101, 364–378.
- 7.
Salehi, B.; Sharifi-Rad, J.; Herrera-Bravo, J.; et al. Ethnopharmacology, phytochemistry and biological activities of native Chilean plants. Curr. Pharm. Des. 2021, 27, 953–970.
- 8.
Ono, E.; Murata, J. Exploring the evolvability of plant specialized metabolism: Uniqueness out of uniformity and uniqueness behind uniformity. Plant Cell Physiol. 2023, 64, 1449–1465.
- 9.
Kallali, N.S.; Goura, K.; Lahmamsi, H.; et al. Speed Breeding Technology for Enhanced Production of Secondary Metabolites in Medicinal Plants. In Biotechnology, Multiple Omics, and Precision Breeding in Medicinal Plants; CRC Press: Boca Raton, FL, USA, 2025; pp. 20–34.
- 10.
Divekar, P.A.; Narayana, S.; Divekar, B.A.; et al. Plant secondary metabolites as defense tools against herbivores for sustainable crop protection. Int. J. Mol. Sci. 2022, 23, 2690.
- 11.
Chacón-Fuentes, M.; Bardehle, L.; Seguel, I.; et al. Domestication of Plants of Ugni molinae Turcz (Myrtaceae) Interferes in the Biology of Chilesia rudis (Lepidoptera: Erebidae) Larvae. Molecules 2021, 26, 2063.
- 12.
Chacón-Fuentes, M.A.; Lizama, M.G.; Parra, L.J.; et al. Insect diversity, community composition and damage index on wild and cultivated murtilla. Cienc. Investig. Agraria 2016, 43, 57–67.
- 13.
Chacón-Fuentes, M.; Bardehle, L.; Seguel, I.; et al. Herbivory damage increased VOCs in wild relatives of Murtilla plants compared to their first offspring. Metabolites 2023, 13, 616.
- 14.
Van Tassel, D.L.; Tesdell, O.; Schlautman, B.; et al. New food crop domestication in the age of gene editing: Genetic, agronomic and cultural change remain co-evolutionarily entangled. Front. Plant Sci. 2020, 11, 789.
- 15.
Krug, A.S.; Drummond, E.B.M.; Van Tassel, D.L.; et al. The next era of crop domestication starts now. Proc. Natl. Acad. Sci. USA 2023, 120, e2205769120.
- 16.
Hernandez-Cumplido, J.; Giusti, M.M.; Zhou, Y.; et al. Testing the ‘plant domestication-reduced defense’ hypothesis in blueberries: The role of herbivore identity. Arthropod-Plant Interact. 2018, 12, 483–493.
- 17.
Rodriguez-Saona, C.; Parra, L.; Quiroz, A.; et al. Variation in highbush blueberry floral volatile profiles as a function of pollination status, cultivar, time of day and flower part: Implications for flower visitation by bees. Ann. Bot. 2011, 107, 1377–1390.
- 18.
Leakey, R.R.; Tientcheu Avana, M.L.; Awazi, N.P.; et al. The Future of Food: Domestication and Commercialization of Indigenous Food Crops in Africa over the Third Decade (2012–2021). Sustainability 2022, 14, 2355.
- 19.
Fuller, D.Q.; Denham, T.; Allaby, R. Plant domestication and agricultural ecologies. Curr. Biol. 2023, 33, R636–R649.
- 20.
Alam, O.; Purugganan, M.D. Domestication and the evolution of crops: Variable syndromes, complex genetic architectures, and ecological entanglements. Plant Cell 2024, 36, 1227–1241.
- 21.
Abdul Kareem, F.B.; Elumalai, A.; Anandharaj, A.; et al. Exploring the preservation efficiency of cured betel leaf essential oil in augmenting the quality of fruit juice: A comprehensive evaluation of physicochemical, microbial, and sensory parameters. J. Food Sci. Technol. 2024, 61, 1862–1873.
- 22.
Stone, G.D. The Agricultural Dilemma: How Not to Feed the World; Routledge: London, UK, 2022.
- 23.
Kumar, S.; Korra, T.; Thakur, R.; et al. Role of plant secondary metabolites in defence and transcriptional regulation in response to biotic stress. Plant Stress 2023, 8, 100154.
- 24.
Barberis, M. Beyond Pollinator Reward: Steps forward and Knowledge Gaps on the Role of Floral Nectar in Plant-Animal Interactions. Ph.D. Thesis, Alma Mater Studiorum Università di Bologna, Bologna, Italy, 2023.
- 25.
Khalifa, S.A.; Elshafiey, E.H.; Shetaia, A.A.; et al. Overview of bee pollination and its economic value for crop production. Insects 2021, 12, 688.
- 26.
Egan, P.A.; Adler, L.S.; Irwin, R.E.; et al. Crop domestication alters floral reward chemistry with potential consequences for pollinator health. Front. Plant Sci. 2018, 9, 1357.
- 27.
Ahmed, S.; Warne, T.; Stewart, A.; et al. Role of wild food environments for cultural identity, food security, and dietary quality in a rural American state. Front. Sustain. Food Syst. 2022, 6, 774701.
- 28.
Ali, J.; Chen, R.Z. Chemical Ecology: Insect-Plant Interactions; CRC Press: Boca Raton, FL, 2024.
- 29.
Oliveira, H.; Pérez-Gregorio, R.; Fernandes, I.; et al. New trends from plant secondary metabolism in the pharmaceutical industry. In Natural Secondary Metabolites: From Nature, Through Science, to Industry; Springer International Publishing: Cham, Switzerland, 2023; pp 779–822.
- 30.
Ahmad, N.; Nadeem, F.; Al-Sabahi, J.N.; et al. Chemical conversions of essential oil components and their properties—A review. Int. J. Chem. Biochem. Sci. 2016, 9, 63–78.
- 31.
Chacón-Fuentes, M.; Burgos-Díaz, C.; Opazo-Navarrete, M.; et al. Berberine and Palmatine Distribution Across Plant Organs in Berberis darwinii: Basis for Selecting Superior-Producing Accessions. Molecules 2025, 30, 1849.
- 32.
Vogel, H.; González, B.; Catenacci, G.; et al. Domestication and Sustainable Production of Wild Crafted Plants with Special Reference to the Chilean Maqui Berry (Aristotelia chilensis). Julius-Kühn-Archiv 2016, 50.
- 33.
Fredes, C.; Robert, P. The Powerful Colour of the Maqui (Aristotelia chilensis [Mol.] Stuntz) Fruit. J. Berry Res. 2014, 4, 175–182.
- 34.
Rodríguez, L.; Trostchansky, A.; Vogel, H.; et al. A Comprehensive Literature Review on Cardioprotective Effects of Bioactive Compounds Present in Fruits of Aristotelia chilensis Stuntz (Maqui). Molecules 2022, 27, 6147.
- 35.
Pinto, A.A.; Fuentealba-Sandoval, V.; López, M.D.; et al. Accumulation of Delphinidin Derivatives and Other Bioactive Compounds in Wild Maqui under Different Environmental Conditions and Fruit Ripening Stages. Ind. Crops Prod. 2022, 184, 115064.
- 36.
Fernie, A.R.; Tohge, T. The Genetics of Plant Metabolism. Annu. Rev. Genet. 2017, 51, 287–310.
- 37.
Meyer, R.S.; DuVal, A.E.; Jensen, H.R. Patterns and Processes in Crop Domestication: An Historical Review and Quantitative Analysis of 203 Global Food Crops. New Phytol. 2012, 196, 29–48.
- 38.
Moore, B.D.; Andrew, R.L.; Külheim, C.; Foley, W.J. Explaining Intraspecific Diversity in Plant Secondary Metabolites in an Ecological Context. New Phytol. 2014, 201, 733–750.
- 39.
Azcón-Bieto, J.; Talón, M. Fundamentals of Plant Physiology; McGraw-Hill Interamericana: Madrid, Spain, 2013.
- 40.
Gautier, H.; Massot, C.; Stevens, R.; et al. Regulation of Tomato Fruit Ascorbate Content Is More Highly Dependent on Fruit Development than on Environmental Factors. J. Exp. Bot. 2009, 60, 963–974.
- 41.
Zhu, G.; Wang, S.; Huang, Z.; et al. Rewiring of the Fruit Metabolome in Tomato Breeding. Cell 2018, 172, 249–261.e12.
- 42.
Doebley, J.F.; Gaut, B.S.; Smith, B.D. The Molecular Genetics of Crop Domestication. Cell 2006, 127, 1309–1321.
- 43.
Meyer, R.S.; Purugganan, M.D. Evolution of Crop Species: Genetics of Domestication and Diversification. Nat. Rev. Genet. 2013, 14, 840–852.
- 44.
Fu, Y.-B. Understanding Crop Genetic Diversity under Modern Plant Breeding. Theor. Appl. Genet. 2015, 128, 2131–2142.
- 45.
Chen, L.; Gao, L.; Wang, Y.; et al. Deciphering the Genetic Architecture of Quality-Related Traits in Tomato Using a High-Density Bin Map. J. Exp. Bot. 2020, 71, 2341–2354.
- 46.
Fang, C.; Fernie, A.R.; Luo, J. Exploring the Application of Metabolomics in Crop Improvement. Trends Plant Sci. 2019, 24, 940–952.
- 47.
Osorio, S.; Scossa, F.; Fernie, A.R. Molecular Regulation of Fruit Ripening. Front. Plant Sci. 2013, 4, 198.
- 48.
Tohge, T.; Fernie, A.R. Leveraging Natural Variation for Metabolic Engineering of Plant Primary Metabolism. Plant J. 2010, 61, 1022–1031.
- 49.
González, M.; Godoy, R.; Reyes-Díaz, M.; et al. The Sensory, Nutritional and Bioactive Quality of Wild vs. Cultivated Chilean Berries: Consumer Preferences and Antioxidant Properties. J. Food Compos. Anal. 2021, 100, 103938.
- 50.
Zoratti, L.; Karppinen, K.; Luengo Escobar, A.; et al. Light-Controlled Flavonoid Biosynthesis in Fruits. Front. Plant Sci. 2014, 5, 534.
- 51.
Ceccarelli, S.; Grando, S. Participatory Plant Breeding: Who Did It, Who Does It and Where? Exp. Agric. 2007, 43, 1–11.