2510001709
  • Open Access
  • Review

Nutritional Quality of Edible Insects Protein

  • Rodrigo Jiménez-Pichardo 1,   
  • Eva María Santos 2,   
  • José Manuel Lorenzo 3,   
  • Rubén Agregán 3,   
  • Juana Fernández-López 4,   
  • Irais Sánchez-Ortega 2, *

Received: 11 Jul 2025 | Revised: 25 Sep 2025 | Accepted: 30 Sep 2025 | Published: 15 Oct 2025

Abstract

World human population growth has increased the demand for sustainable protein sources, motivating interest in edible insects as a viable alternative to conventional protein from livestock. Insects offer significant environmental and nutritional advantages, requiring less land, water, and feed while emitting fewer greenhouse gases. Over 2000 species are consumed worldwide, with prominent examples including crickets, beetles, caterpillars, and ants. Their protein content is highly variable—ranging from approximately 3.9% to over 80% on a dry-weight basis—depending on species, developmental stage, and analytical methods. Notably, many insects surpass the protein levels of beef and chicken. However, traditional nitrogen-to-protein conversion factors may overestimate the protein content due to chitin, underscoring the need for tailored methodologies. The amino acid profile of insects’ protein is rich in essential nutrients, with lysine, methionine, and tryptophan often exceeding the levels found in meat, supporting diverse physiological functions. Digestibility studies indicate that processed insect proteins approach 85–95% digestibility, comparable to casein and beef protein, though chitin can limit bioavailability if it is unprocessed. While cultural barriers and regulatory challenges persist, education, product innovation, and processing improvements can enhance their acceptance. Edible insects also present opportunities for bioactive peptides and functional food ingredients. Considering their nutritional value, low ecological footprint, and potential to strengthen food security, edible insects are positioned as a promising component of sustainable diets. Advancing research on processing methods, safety standards, and consumer engagement is essential to fully realize their role in addressing global nutritional and environmental challenges.

References 

  • 1.
    Halloran, A.; Muenke, C.; Vantomme, P.; et al. Insects in the Human Food Chain: Global Status and Opportunities. Food Chain. 2014, 4, 103–118. https://doi.org/10.3362/2046-1887.2014.011.
  • 2.
    Ishara, J.; Ayagirwe, R.; Karume, K.; et al. Inventory Reveals Wide Biodiversity of Edible Insects in the Eastern Democratic Republic of Congo. Sci. Rep. 2022, 12, 1576. https://doi.org/10.1038/s41598-022-05607-y.
  • 3.
    Siddiqui, S.A.; Fernando, I.; Povetkin, S.N.; et al. Edible Dragonflies and Damselflies (Order Odonata) as Human Food–A Comprehensive Review. J. Insects Food Feed. 2024, 1, 1–26. https://doi.org/10.1163/23524588-20230097.
  • 4.
    Papastavropoulou, K.; Koupa, A.; Kritikou, E.; et al. Edible Insects: Benefits and Potential Risk for Consumers and the Food Industry. Biointerface Res. Appl. Chem. 2022, 12, 5131–5149. https://doi.org/10.33263/BRIAC124.51315149.
  • 5.
    Omuse, E.R.; Tonnang, H.E.Z.; Yusuf, A.A.; et al. The Global Atlas of Edible Insects: Analysis of Diversity and Commonality Contributing to Food Systems and Sustainability. Sci. Rep. 2024, 14, 5045. https://doi.org/10.1038/s41598-024-55603-7.
  • 6.
    Liceaga, A.M. Edible Insects, a Valuable Protein Source from Ancient to Modern Times. Adv. Food Nutr. Res. 2022, 101, 129–152. https://doi.org/10.1016/bs.afnr.2022.04.002.
  • 7.
    Ramos-Elorduy, J.; Moreno, J.M.P.; Vázquez, A.I.; et al. Edible Lepidoptera in Mexico: Geographic Distribution, Ethnicity, Economic and Nutritional Importance for Rural People. J. Ethnobiol. Ethnomed. 2011, 7, 2. https://doi.org/10.1186/1746-4269-7-2.
  • 8.
    Rumpold, B.A.; Schlüter, O.K. Nutritional Composition and Safety Aspects of Edible Insects. Mol. Nutr. Food Res. 2013, 57, 802–823. https://doi.org/10.1002/mnfr.201200735.
  • 9.
    Huis, A.; Itterbeeck, J.V.; Klunder, H.; et al. Edible Insects Future Prospects for Food and Feed Security; Food and Agriculture Organization of the United Nations: Rome, Italy, 2014.
  • 10.
    Kouřimská, L.; Adámková, A. Nutritional and Sensory Quality of Edible Insects. NFS J. 2016, 4, 22–26. https://doi.org/10.1016/j.nfs.2016.07.001.
  • 11.
    Tang, C.; Yang, D.; Liao, H.; et al. Edible Insects as a Food Source: A Review. Food Prod. Process. Nutr. 2019, 1, 1–13. https://doi.org/10.1186/s43014-019-0008-1.
  • 12.
    Weru, J.; Chege, P.; Kinyuru, J. Nutritional Potential of Edible Insects: A Systematic Review of Published Data. Int. J. Trop. Insect Sci. 2021, 41, 2015–2037. https://doi.org/10.1007/s42690-021-00464-0.
  • 13.
    Granados-Echegoyen, C.; Vásquez-López, A.; Calderón-Cortés, N.; et al. Brief Overview of Edible Insects: Exploring Consumption and Promising Sustainable Uses in Latin America. Front. Sustain. Food Syst. 2024, 8, 1385081. https://doi.org/10.3389/fsufs.2024.1385081.
  • 14.
    Lange, K.W.; Nakamura, Y. Edible Insects as Future Food: Chances and Challenges. J. Future Foods 2021, 1, 38–46. https://doi.org/10.1016/j.jfutfo.2021.10.001.
  • 15.
    Bresciani, A.; Cardone, G.; Jucker, C.; et al. Technological Performance of Cricket Powder (Acheta domesticus L.) in Wheat-Based Formulations. Insects 2022, 13, 546. https://doi.org/10.3390/insects13060546.
  • 16.
    Nachtigall, L.; Grune, T.; Weber, D. Proteins and Amino Acids from Edible Insects for the Human Diet—A Narrative Review Considering Environmental Sustainability and Regulatory Challenges. Nutrients 2025, 17, 1245. https://doi.org/10.3390/nu17071245.
  • 17.
    Payne, C.L.R.; Scarborough, P.; Rayner, M.; et al. A Systematic Review of Nutrient Composition Data Available for Twelve Commercially Available Edible Insects, and Comparison with Reference Values. Trends Food Sci. Technol. 2016, 47, 69–77. https://doi.org/10.1016/j.tifs.2015.10.012.
  • 18.
    Dobermann, D.; Swift, J.A.; Field, L.M. Opportunities and Hurdles of Edible Insects for Food and Feed. Nutr. Bull. 2017, 42, 293–308. https://doi.org/10.1111/nbu.12291.
  • 19.
    Kim, T.K.; Yong, H.I.; Kim, Y.B.; et al. Edible Insects as a Protein Source: A Review of Public Perception, Processing Technology, and Research Trends. Food Sci. Anim. Resour. 2019, 39, 521. https://doi.org/10.5851/kosfa.2019.e53.
  • 20.
    Gahukar, R.T. Edible Insects Collected from Forests for Family Livelihood and Wellness of Rural Communities: A Review. Glob. Food Secur. 2020, 25, 100348. https://doi.org/10.1016/j.gfs.2020.100348.
  • 21.
    Melo, V.; Garcia, M.; Sandoval, H.; et al. Quality Proteins from Edible Indigenous Insect Food of Latin America and Asia. Emir. J. Food Agric. 2011, 23, 283.
  • 22.
    Zielińska, E.; Baraniak, B.; Karaś, M.; et al. Selected Species of Edible Insects as a Source of Nutrient Composition. Food Res. Int. 2015, 77, 460–466. https://doi.org/10.1016/j.foodres.2015.09.008.
  • 23.
    Ghosh, S.; Lee, S.M.; Jung, C.; et al. Nutritional Composition of Five Commercial Edible Insects in South Korea. J. Asia Pac. Entomol. 2017, 20, 686–694. https://doi.org/10.1016/j.aspen.2017.04.003.
  • 24.
    Köhler, R.; Kariuki, L.; Lambert, C.; et al. Protein, Amino Acid and Mineral Composition of Some Edible Insects from Thailand. J. Asia Pac. Entomol. 2019, 22, 372–378. https://doi.org/10.1016/j.aspen.2019.02.002.
  • 25.
    Bbosa, T.; Tamale Ndagire, C.; Muzira Mukisa, I.; et al. Nutritional Characteristics of Selected Insects in Uganda for Use as Alternative Protein Sources in Food and Feed. J. Insect Sci. 2019, 19, 23. https://doi.org/10.1093/jisesa/iez124.
  • 26.
    Akhtar, Y.; Isman, M.B. Insects as an Alternative Protein Source. In Proteins in Food Processing, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2017; pp. 263–288. https://doi.org/10.1016/B978-0-08-100722-8.00011-5.
  • 27.
    Baigts-Allende, D.; Doost, A.S.; Ramírez-Rodrigues, M.; et al. Insect Protein Concentrates from Mexican Edible Insects: Structural and Functional Characterization. LWT 2021, 152, 112267. https://doi.org/10.1016/j.lwt.2021.112267.
  • 28.
    Cruz-Labana, J.D.; Crosby-Galván, M.M.; Delgado-Alvarado, A.; et al. A. Nutritional Content of Liometopum apiculatum Mayr Larvae (“Escamoles”) by Vegetation Type in North-Central Mexico. J. Asia Pac. Entomol. 2018, 21, 1239–1245. https://doi.org/10.1016/j.aspen.2018.09.008.
  • 29.
    Melo-Ruiz, V.; Sandoval-Trujillo, H.; Quirino-Barreda, T.; et al. Chemical Composition and Amino Acids Content of Five Species of Edible Grasshoppers from Mexico. Emir. J. Food Agric. 2015, 27, 654–658. https://doi.org/10.9755/ejfa.2015.04.093.
  • 30.
    Churchward-Venne, T.A.; Pinckaers, P.J.M.; van Loon, J.J.A.; et al. Consideration of Insects as a Source of Dietary Protein for Human Consumption. Nutr. Rev. 2017, 75, 1035–1045. https://doi.org/10.1093/nutrit/nux057.
  • 31.
    González-Aguilar, D.; Galván-Lozano, D.; Pacheco-Gallardo, C.; et al. Determination of Protein of Edible Insects. ECORFAN J. Repub. Nicar. 2019, 12–16. https://doi.org/10.35429/ejrn.2019.9.5.12.16.
  • 32.
    Papastavropoulou, K.; Xiao, J.; Proestos, C. Edible Insects: Tendency or Necessity (a Review). eFood 2023, 4, e58. https://doi.org/10.1002/efd2.58.
  • 33.
    Ramos-Elorduy, J.; Manuel, J.; Moreno, P.; et al. Nutritional Value of Edible Insects from the State of Oaxaca, Mexico. J. Food Compos. Anal. 1997, 10, 142–157.
  • 34.
    Janssen, R.H.; Vincken, J.P.; Van Den Broek, L.A.M.; et al. Nitrogen-to-Protein Conversion Factors for Three Edible Insects: Tenebrio molitor, Alphitobius diaperinus, and Hermetia illucens. J. Agric. Food Chem. 2017, 65, 2275–2278. https://doi.org/10.1021/acs.jafc.7b00471.
  • 35.
    Jonas-Levi, A.; Martinez, J.J.I. The High Level of Protein Content Reported in Insects for Food and Feed Is Overestimated. J. Food Compos. Anal. 2017, 62, 184–188. https://doi.org/10.1016/j.jfca.2017.06.004.
  • 36.
    Merzendorfer, H. Integument. In The Insects, Structure and Function, 5th ed.; Chapman, R.F., Simpson, S.J., Douglas, A.E., Eds.; Cambridge University Press: Cambridge, UK, 2013, p. 483.
  • 37.
    Hawkey, K.J.; Lopez-Viso, C.; Brameld, J.M.; et al. Insects: A Potential Source of Protein and Other Nutrients for Feed and Food. Annu. Rev. Anim. Biosci. 2021, 9, 333–354. https://doi.org/10.1146/annurev-animal-021419.
  • 38.
    Takov, D.I.; Zubrik, M.; Contarini, M. Insects as a Food Source-Potential and Perspectives. Pol. J. Entomol. 2021, 90, 48–62. https://doi.org/10.5604/01.3001.0014.8764.
  • 39.
    Hasnan, F.F.B.; Feng, Y.; Sun, T.; et al. Insects as Valuable Sources of Protein and Peptides: Production, Functional Properties, and Challenges. Foods 2023, 12, 4243. https://doi.org/10.3390/foods12234243.
  • 40.
    Longvah, T.; Mangthya, K.; Ramulu, P. Nutrient Composition and Protein Quality Evaluation of Eri Silkworm (Samia ricinii) Prepupae and Pupae. Food Chem. 2011, 128, 400–403. https://doi.org/10.1016/j.foodchem.2011.03.041.
  • 41.
    Belluco, S.; Losasso, C.; Maggioletti, M.; et al. Edible Insects in a Food Safety and Nutritional Perspective: A Critical Review. Compr. Rev. Food Sci. Food Saf. 2013, 12, 296–313. https://doi.org/10.1111/1541-4337.12014.
  • 42.
    Roncolini, A.; Milanović, V.; Cardinali, F.; et al. Protein Fortification with Mealworm (Tenebrio molitor L.) Powder: Effect on Textural, Microbiological, Nutritional and Sensory Features of Bread. PLoS ONE 2019, 14, e0211747. https://doi.org/10.1371/journal.pone.0211747.
  • 43.
    Mishyna, M.; Keppler, J.K.; Chen, J. Techno-Functional Properties of Edible Insect Proteins and Effects of Processing. Curr. Opin. Colloid. Interface Sci. 2021, 56, 101508. https://doi.org/10.1016/j.cocis.2021.101508.
  • 44.
    Ojha, S.; Bekhit, A.E.D.; Grune, T.; et al. Bioavailability of Nutrients from Edible Insects. Curr. Opin. Food Sci. 2021, 41, 240–248. https://doi.org/10.1016/j.cofs.2021.08.003.
  • 45.
    Oonincx, D.G.A.B.; Finke, M.D. Nutritional Value of Insects and Ways to Manipulate Their Composition. J. Insects Food Feed. 2021, 7, 639–659. https://doi.org/10.3920/JIFF2020.0050.
  • 46.
    Yang, J.; Zhou, S.; Kuang, H.; et al. Edible Insects as Ingredients in Food Products: Nutrition, Functional Properties, Allergenicity of Insect Proteins, and Processing Modifications. Crit. Rev. Food Sci. Nutr. 2024, 64, 10361–10383. https://doi.org/10.1080/10408398.2023.2223644.
  • 47.
    Yi, L.; Lakemond, C.M.M.; Sagis, L.M.C.; et al. Extraction and Characterisation of Protein Fractions from Five Insect Species. Food Chem. 2013, 141, 3341–3348. https://doi.org/10.1016/j.foodchem.2013.05.115.
  • 48.
    Wu, G. Functional Amino Acids in Growth, Reproduction, and Health. Adv. Nutr. 2010, 1, 31–37. https://doi.org/10.3945/an.110.1008.
  • 49.
    Wu, G. Functional Amino Acids in Nutrition and Health. Amino Acids 2013, 45, 407–411. https://doi.org/10.1007/s00726-013-1500-6.
  • 50.
    Mishyna, M.; Chen, J.; Benjamin, O. Sensory Attributes of Edible Insects and Insect-Based Foods–Future Outlooks for Enhancing Consumer Appeal. Trends Food Sci. Technol. 2020, 95, 141–148. https://doi.org/10.1016/j.tifs.2019.11.016.
  • 51.
    Poelaert, C.; Francis, F.; Alabi, T.; et al. Protein Value of Two Insects, Subjected to Various Heat Treatments, Using Growing Rats and the Protein Digestibility-Corrected Amino Acid Score. J. Insects Food Feed. 2018, 4, 77–87. https://doi.org/10.3920/JIFF2017.0003.
  • 52.
    Jensen, L.D.; Miklos, R.; Dalsgaard, T.K.; et al. Nutritional Evaluation of Common (Tenebrio molitor) and Lesser (Alphitobius diaperinus) Mealworms in Rats and Processing Effect on the Lesser Mealworm. J. Insects Food Feed. 2019, 5, 257–266. https://doi.org/10.3920/JIFF2018.0048.
  • 53.
    Ochiai, M.; Suzuki, Y.; Suzuki, R.; et al. Low Protein Digestibility-Corrected Amino Acid Score and Net Nitrogen-to-Protein Conversion Factor Value of Edible Insects. Food Chem. 2024, 454, 139781 https://doi.org/10.1016/j.foodchem.2024.139781.
Share this article:
How to Cite
Jiménez-Pichardo, R.; Santos, E. M.; Lorenzo, J. M.; Agregán, R.; Fernández-López, J.; Sánchez-Ortega, I. Nutritional Quality of Edible Insects Protein. Food Science and Processing 2025, 1 (1), 5. https://doi.org/10.53941/fsp.2025.100005.
RIS
BibTex
Copyright & License
article copyright Image
Copyright (c) 2025 by the authors.